mirror of
https://github.com/AsahiLinux/u-boot
synced 2024-12-23 11:33:32 +00:00
1a558fafbb
The nxp_fspi_default_setup() is only ever called from nxp_fspi_probe(), where the IP clock are initially disabled. Drop the second disabling of clock to prevent clock enable/disable imbalance reported by clock core: " clk qspi_root_clk already disabled " Signed-off-by: Marek Vasut <marex@denx.de> Cc: Fabio Estevam <festevam@denx.de> Cc: Peng Fan <peng.fan@nxp.com> Cc: Stefano Babic <sbabic@denx.de> Reviewed-by: Peng Fan <peng.fan@nxp.com>
1065 lines
28 KiB
C
1065 lines
28 KiB
C
// SPDX-License-Identifier: GPL-2.0+
|
|
/*
|
|
* NXP FlexSPI(FSPI) controller driver.
|
|
*
|
|
* Copyright (c) 2019 Michael Walle <michael@walle.cc>
|
|
* Copyright (c) 2019 NXP
|
|
*
|
|
* This driver was originally ported from the linux kernel v5.4-rc3, which had
|
|
* the following notes:
|
|
*
|
|
* FlexSPI is a flexsible SPI host controller which supports two SPI
|
|
* channels and up to 4 external devices. Each channel supports
|
|
* Single/Dual/Quad/Octal mode data transfer (1/2/4/8 bidirectional
|
|
* data lines).
|
|
*
|
|
* FlexSPI controller is driven by the LUT(Look-up Table) registers
|
|
* LUT registers are a look-up-table for sequences of instructions.
|
|
* A valid sequence consists of four LUT registers.
|
|
* Maximum 32 LUT sequences can be programmed simultaneously.
|
|
*
|
|
* LUTs are being created at run-time based on the commands passed
|
|
* from the spi-mem framework, thus using single LUT index.
|
|
*
|
|
* Software triggered Flash read/write access by IP Bus.
|
|
*
|
|
* Memory mapped read access by AHB Bus.
|
|
*
|
|
* Based on SPI MEM interface and spi-fsl-qspi.c driver.
|
|
*
|
|
* Author:
|
|
* Yogesh Narayan Gaur <yogeshnarayan.gaur@nxp.com>
|
|
* Boris Brezillon <bbrezillon@kernel.org>
|
|
* Frieder Schrempf <frieder.schrempf@kontron.de>
|
|
*/
|
|
|
|
#include <common.h>
|
|
#include <clk.h>
|
|
#include <dm.h>
|
|
#include <dm/device_compat.h>
|
|
#include <malloc.h>
|
|
#include <spi.h>
|
|
#include <spi-mem.h>
|
|
#include <asm/io.h>
|
|
#ifdef CONFIG_FSL_LAYERSCAPE
|
|
#include <asm/arch/clock.h>
|
|
#include <asm/arch/soc.h>
|
|
#include <asm/arch/speed.h>
|
|
#endif
|
|
#include <linux/bitops.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/sizes.h>
|
|
#include <linux/iopoll.h>
|
|
#include <linux/bug.h>
|
|
#include <linux/err.h>
|
|
|
|
/*
|
|
* The driver only uses one single LUT entry, that is updated on
|
|
* each call of exec_op(). Index 0 is preset at boot with a basic
|
|
* read operation, so let's use the last entry (31).
|
|
*/
|
|
#define SEQID_LUT 31
|
|
|
|
/* Registers used by the driver */
|
|
#define FSPI_MCR0 0x00
|
|
#define FSPI_MCR0_AHB_TIMEOUT(x) ((x) << 24)
|
|
#define FSPI_MCR0_IP_TIMEOUT(x) ((x) << 16)
|
|
#define FSPI_MCR0_LEARN_EN BIT(15)
|
|
#define FSPI_MCR0_SCRFRUN_EN BIT(14)
|
|
#define FSPI_MCR0_OCTCOMB_EN BIT(13)
|
|
#define FSPI_MCR0_DOZE_EN BIT(12)
|
|
#define FSPI_MCR0_HSEN BIT(11)
|
|
#define FSPI_MCR0_SERCLKDIV BIT(8)
|
|
#define FSPI_MCR0_ATDF_EN BIT(7)
|
|
#define FSPI_MCR0_ARDF_EN BIT(6)
|
|
#define FSPI_MCR0_RXCLKSRC(x) ((x) << 4)
|
|
#define FSPI_MCR0_END_CFG(x) ((x) << 2)
|
|
#define FSPI_MCR0_MDIS BIT(1)
|
|
#define FSPI_MCR0_SWRST BIT(0)
|
|
|
|
#define FSPI_MCR1 0x04
|
|
#define FSPI_MCR1_SEQ_TIMEOUT(x) ((x) << 16)
|
|
#define FSPI_MCR1_AHB_TIMEOUT(x) (x)
|
|
|
|
#define FSPI_MCR2 0x08
|
|
#define FSPI_MCR2_IDLE_WAIT(x) ((x) << 24)
|
|
#define FSPI_MCR2_SAMEDEVICEEN BIT(15)
|
|
#define FSPI_MCR2_CLRLRPHS BIT(14)
|
|
#define FSPI_MCR2_ABRDATSZ BIT(8)
|
|
#define FSPI_MCR2_ABRLEARN BIT(7)
|
|
#define FSPI_MCR2_ABR_READ BIT(6)
|
|
#define FSPI_MCR2_ABRWRITE BIT(5)
|
|
#define FSPI_MCR2_ABRDUMMY BIT(4)
|
|
#define FSPI_MCR2_ABR_MODE BIT(3)
|
|
#define FSPI_MCR2_ABRCADDR BIT(2)
|
|
#define FSPI_MCR2_ABRRADDR BIT(1)
|
|
#define FSPI_MCR2_ABR_CMD BIT(0)
|
|
|
|
#define FSPI_AHBCR 0x0c
|
|
#define FSPI_AHBCR_RDADDROPT BIT(6)
|
|
#define FSPI_AHBCR_PREF_EN BIT(5)
|
|
#define FSPI_AHBCR_BUFF_EN BIT(4)
|
|
#define FSPI_AHBCR_CACH_EN BIT(3)
|
|
#define FSPI_AHBCR_CLRTXBUF BIT(2)
|
|
#define FSPI_AHBCR_CLRRXBUF BIT(1)
|
|
#define FSPI_AHBCR_PAR_EN BIT(0)
|
|
|
|
#define FSPI_INTEN 0x10
|
|
#define FSPI_INTEN_SCLKSBWR BIT(9)
|
|
#define FSPI_INTEN_SCLKSBRD BIT(8)
|
|
#define FSPI_INTEN_DATALRNFL BIT(7)
|
|
#define FSPI_INTEN_IPTXWE BIT(6)
|
|
#define FSPI_INTEN_IPRXWA BIT(5)
|
|
#define FSPI_INTEN_AHBCMDERR BIT(4)
|
|
#define FSPI_INTEN_IPCMDERR BIT(3)
|
|
#define FSPI_INTEN_AHBCMDGE BIT(2)
|
|
#define FSPI_INTEN_IPCMDGE BIT(1)
|
|
#define FSPI_INTEN_IPCMDDONE BIT(0)
|
|
|
|
#define FSPI_INTR 0x14
|
|
#define FSPI_INTR_SCLKSBWR BIT(9)
|
|
#define FSPI_INTR_SCLKSBRD BIT(8)
|
|
#define FSPI_INTR_DATALRNFL BIT(7)
|
|
#define FSPI_INTR_IPTXWE BIT(6)
|
|
#define FSPI_INTR_IPRXWA BIT(5)
|
|
#define FSPI_INTR_AHBCMDERR BIT(4)
|
|
#define FSPI_INTR_IPCMDERR BIT(3)
|
|
#define FSPI_INTR_AHBCMDGE BIT(2)
|
|
#define FSPI_INTR_IPCMDGE BIT(1)
|
|
#define FSPI_INTR_IPCMDDONE BIT(0)
|
|
|
|
#define FSPI_LUTKEY 0x18
|
|
#define FSPI_LUTKEY_VALUE 0x5AF05AF0
|
|
|
|
#define FSPI_LCKCR 0x1C
|
|
|
|
#define FSPI_LCKER_LOCK 0x1
|
|
#define FSPI_LCKER_UNLOCK 0x2
|
|
|
|
#define FSPI_BUFXCR_INVALID_MSTRID 0xE
|
|
#define FSPI_AHBRX_BUF0CR0 0x20
|
|
#define FSPI_AHBRX_BUF1CR0 0x24
|
|
#define FSPI_AHBRX_BUF2CR0 0x28
|
|
#define FSPI_AHBRX_BUF3CR0 0x2C
|
|
#define FSPI_AHBRX_BUF4CR0 0x30
|
|
#define FSPI_AHBRX_BUF5CR0 0x34
|
|
#define FSPI_AHBRX_BUF6CR0 0x38
|
|
#define FSPI_AHBRX_BUF7CR0 0x3C
|
|
#define FSPI_AHBRXBUF0CR7_PREF BIT(31)
|
|
|
|
#define FSPI_AHBRX_BUF0CR1 0x40
|
|
#define FSPI_AHBRX_BUF1CR1 0x44
|
|
#define FSPI_AHBRX_BUF2CR1 0x48
|
|
#define FSPI_AHBRX_BUF3CR1 0x4C
|
|
#define FSPI_AHBRX_BUF4CR1 0x50
|
|
#define FSPI_AHBRX_BUF5CR1 0x54
|
|
#define FSPI_AHBRX_BUF6CR1 0x58
|
|
#define FSPI_AHBRX_BUF7CR1 0x5C
|
|
|
|
#define FSPI_FLSHA1CR0 0x60
|
|
#define FSPI_FLSHA2CR0 0x64
|
|
#define FSPI_FLSHB1CR0 0x68
|
|
#define FSPI_FLSHB2CR0 0x6C
|
|
#define FSPI_FLSHXCR0_SZ_KB 10
|
|
#define FSPI_FLSHXCR0_SZ(x) ((x) >> FSPI_FLSHXCR0_SZ_KB)
|
|
|
|
#define FSPI_FLSHA1CR1 0x70
|
|
#define FSPI_FLSHA2CR1 0x74
|
|
#define FSPI_FLSHB1CR1 0x78
|
|
#define FSPI_FLSHB2CR1 0x7C
|
|
#define FSPI_FLSHXCR1_CSINTR(x) ((x) << 16)
|
|
#define FSPI_FLSHXCR1_CAS(x) ((x) << 11)
|
|
#define FSPI_FLSHXCR1_WA BIT(10)
|
|
#define FSPI_FLSHXCR1_TCSH(x) ((x) << 5)
|
|
#define FSPI_FLSHXCR1_TCSS(x) (x)
|
|
|
|
#define FSPI_FLSHA1CR2 0x80
|
|
#define FSPI_FLSHA2CR2 0x84
|
|
#define FSPI_FLSHB1CR2 0x88
|
|
#define FSPI_FLSHB2CR2 0x8C
|
|
#define FSPI_FLSHXCR2_CLRINSP BIT(24)
|
|
#define FSPI_FLSHXCR2_AWRWAIT BIT(16)
|
|
#define FSPI_FLSHXCR2_AWRSEQN_SHIFT 13
|
|
#define FSPI_FLSHXCR2_AWRSEQI_SHIFT 8
|
|
#define FSPI_FLSHXCR2_ARDSEQN_SHIFT 5
|
|
#define FSPI_FLSHXCR2_ARDSEQI_SHIFT 0
|
|
|
|
#define FSPI_IPCR0 0xA0
|
|
|
|
#define FSPI_IPCR1 0xA4
|
|
#define FSPI_IPCR1_IPAREN BIT(31)
|
|
#define FSPI_IPCR1_SEQNUM_SHIFT 24
|
|
#define FSPI_IPCR1_SEQID_SHIFT 16
|
|
#define FSPI_IPCR1_IDATSZ(x) (x)
|
|
|
|
#define FSPI_IPCMD 0xB0
|
|
#define FSPI_IPCMD_TRG BIT(0)
|
|
|
|
#define FSPI_DLPR 0xB4
|
|
|
|
#define FSPI_IPRXFCR 0xB8
|
|
#define FSPI_IPRXFCR_CLR BIT(0)
|
|
#define FSPI_IPRXFCR_DMA_EN BIT(1)
|
|
#define FSPI_IPRXFCR_WMRK(x) ((x) << 2)
|
|
|
|
#define FSPI_IPTXFCR 0xBC
|
|
#define FSPI_IPTXFCR_CLR BIT(0)
|
|
#define FSPI_IPTXFCR_DMA_EN BIT(1)
|
|
#define FSPI_IPTXFCR_WMRK(x) ((x) << 2)
|
|
|
|
#define FSPI_DLLACR 0xC0
|
|
#define FSPI_DLLACR_OVRDEN BIT(8)
|
|
|
|
#define FSPI_DLLBCR 0xC4
|
|
#define FSPI_DLLBCR_OVRDEN BIT(8)
|
|
|
|
#define FSPI_STS0 0xE0
|
|
#define FSPI_STS0_DLPHB(x) ((x) << 8)
|
|
#define FSPI_STS0_DLPHA(x) ((x) << 4)
|
|
#define FSPI_STS0_CMD_SRC(x) ((x) << 2)
|
|
#define FSPI_STS0_ARB_IDLE BIT(1)
|
|
#define FSPI_STS0_SEQ_IDLE BIT(0)
|
|
|
|
#define FSPI_STS1 0xE4
|
|
#define FSPI_STS1_IP_ERRCD(x) ((x) << 24)
|
|
#define FSPI_STS1_IP_ERRID(x) ((x) << 16)
|
|
#define FSPI_STS1_AHB_ERRCD(x) ((x) << 8)
|
|
#define FSPI_STS1_AHB_ERRID(x) (x)
|
|
|
|
#define FSPI_AHBSPNST 0xEC
|
|
#define FSPI_AHBSPNST_DATLFT(x) ((x) << 16)
|
|
#define FSPI_AHBSPNST_BUFID(x) ((x) << 1)
|
|
#define FSPI_AHBSPNST_ACTIVE BIT(0)
|
|
|
|
#define FSPI_IPRXFSTS 0xF0
|
|
#define FSPI_IPRXFSTS_RDCNTR(x) ((x) << 16)
|
|
#define FSPI_IPRXFSTS_FILL(x) (x)
|
|
|
|
#define FSPI_IPTXFSTS 0xF4
|
|
#define FSPI_IPTXFSTS_WRCNTR(x) ((x) << 16)
|
|
#define FSPI_IPTXFSTS_FILL(x) (x)
|
|
|
|
#define FSPI_RFDR 0x100
|
|
#define FSPI_TFDR 0x180
|
|
|
|
#define FSPI_LUT_BASE 0x200
|
|
#define FSPI_LUT_OFFSET (SEQID_LUT * 4 * 4)
|
|
#define FSPI_LUT_REG(idx) \
|
|
(FSPI_LUT_BASE + FSPI_LUT_OFFSET + (idx) * 4)
|
|
|
|
/* register map end */
|
|
|
|
/* Instruction set for the LUT register. */
|
|
#define LUT_STOP 0x00
|
|
#define LUT_CMD 0x01
|
|
#define LUT_ADDR 0x02
|
|
#define LUT_CADDR_SDR 0x03
|
|
#define LUT_MODE 0x04
|
|
#define LUT_MODE2 0x05
|
|
#define LUT_MODE4 0x06
|
|
#define LUT_MODE8 0x07
|
|
#define LUT_NXP_WRITE 0x08
|
|
#define LUT_NXP_READ 0x09
|
|
#define LUT_LEARN_SDR 0x0A
|
|
#define LUT_DATSZ_SDR 0x0B
|
|
#define LUT_DUMMY 0x0C
|
|
#define LUT_DUMMY_RWDS_SDR 0x0D
|
|
#define LUT_JMP_ON_CS 0x1F
|
|
#define LUT_CMD_DDR 0x21
|
|
#define LUT_ADDR_DDR 0x22
|
|
#define LUT_CADDR_DDR 0x23
|
|
#define LUT_MODE_DDR 0x24
|
|
#define LUT_MODE2_DDR 0x25
|
|
#define LUT_MODE4_DDR 0x26
|
|
#define LUT_MODE8_DDR 0x27
|
|
#define LUT_WRITE_DDR 0x28
|
|
#define LUT_READ_DDR 0x29
|
|
#define LUT_LEARN_DDR 0x2A
|
|
#define LUT_DATSZ_DDR 0x2B
|
|
#define LUT_DUMMY_DDR 0x2C
|
|
#define LUT_DUMMY_RWDS_DDR 0x2D
|
|
|
|
/*
|
|
* Calculate number of required PAD bits for LUT register.
|
|
*
|
|
* The pad stands for the number of IO lines [0:7].
|
|
* For example, the octal read needs eight IO lines,
|
|
* so you should use LUT_PAD(8). This macro
|
|
* returns 3 i.e. use eight (2^3) IP lines for read.
|
|
*/
|
|
#define LUT_PAD(x) (fls(x) - 1)
|
|
|
|
/*
|
|
* Macro for constructing the LUT entries with the following
|
|
* register layout:
|
|
*
|
|
* ---------------------------------------------------
|
|
* | INSTR1 | PAD1 | OPRND1 | INSTR0 | PAD0 | OPRND0 |
|
|
* ---------------------------------------------------
|
|
*/
|
|
#define PAD_SHIFT 8
|
|
#define INSTR_SHIFT 10
|
|
#define OPRND_SHIFT 16
|
|
|
|
/* Macros for constructing the LUT register. */
|
|
#define LUT_DEF(idx, ins, pad, opr) \
|
|
((((ins) << INSTR_SHIFT) | ((pad) << PAD_SHIFT) | \
|
|
(opr)) << (((idx) % 2) * OPRND_SHIFT))
|
|
|
|
#define POLL_TOUT 5000
|
|
#define NXP_FSPI_MAX_CHIPSELECT 4
|
|
|
|
/* Access flash memory using IP bus only */
|
|
#define FSPI_QUIRK_USE_IP_ONLY BIT(0)
|
|
|
|
struct nxp_fspi_devtype_data {
|
|
unsigned int rxfifo;
|
|
unsigned int txfifo;
|
|
unsigned int ahb_buf_size;
|
|
unsigned int quirks;
|
|
bool little_endian;
|
|
};
|
|
|
|
static struct nxp_fspi_devtype_data lx2160a_data = {
|
|
.rxfifo = SZ_512, /* (64 * 64 bits) */
|
|
.txfifo = SZ_1K, /* (128 * 64 bits) */
|
|
.ahb_buf_size = SZ_2K, /* (256 * 64 bits) */
|
|
.quirks = 0,
|
|
.little_endian = true, /* little-endian */
|
|
};
|
|
|
|
static struct nxp_fspi_devtype_data imx8mm_data = {
|
|
.rxfifo = SZ_512, /* (64 * 64 bits) */
|
|
.txfifo = SZ_1K, /* (128 * 64 bits) */
|
|
.ahb_buf_size = SZ_2K, /* (256 * 64 bits) */
|
|
.quirks = 0,
|
|
.little_endian = true, /* little-endian */
|
|
};
|
|
|
|
struct nxp_fspi {
|
|
struct udevice *dev;
|
|
void __iomem *iobase;
|
|
void __iomem *ahb_addr;
|
|
u32 memmap_phy;
|
|
u32 memmap_phy_size;
|
|
struct clk clk, clk_en;
|
|
struct nxp_fspi_devtype_data *devtype_data;
|
|
};
|
|
|
|
static inline int needs_ip_only(struct nxp_fspi *f)
|
|
{
|
|
return f->devtype_data->quirks & FSPI_QUIRK_USE_IP_ONLY;
|
|
}
|
|
|
|
/*
|
|
* R/W functions for big- or little-endian registers:
|
|
* The FSPI controller's endianness is independent of
|
|
* the CPU core's endianness. So far, although the CPU
|
|
* core is little-endian the FSPI controller can use
|
|
* big-endian or little-endian.
|
|
*/
|
|
static void fspi_writel(struct nxp_fspi *f, u32 val, void __iomem *addr)
|
|
{
|
|
if (f->devtype_data->little_endian)
|
|
out_le32(addr, val);
|
|
else
|
|
out_be32(addr, val);
|
|
}
|
|
|
|
static u32 fspi_readl(struct nxp_fspi *f, void __iomem *addr)
|
|
{
|
|
if (f->devtype_data->little_endian)
|
|
return in_le32(addr);
|
|
else
|
|
return in_be32(addr);
|
|
}
|
|
|
|
static int nxp_fspi_check_buswidth(struct nxp_fspi *f, u8 width)
|
|
{
|
|
switch (width) {
|
|
case 1:
|
|
case 2:
|
|
case 4:
|
|
case 8:
|
|
return 0;
|
|
}
|
|
|
|
return -ENOTSUPP;
|
|
}
|
|
|
|
static bool nxp_fspi_supports_op(struct spi_slave *slave,
|
|
const struct spi_mem_op *op)
|
|
{
|
|
struct nxp_fspi *f;
|
|
struct udevice *bus;
|
|
int ret;
|
|
|
|
bus = slave->dev->parent;
|
|
f = dev_get_priv(bus);
|
|
|
|
ret = nxp_fspi_check_buswidth(f, op->cmd.buswidth);
|
|
|
|
if (op->addr.nbytes)
|
|
ret |= nxp_fspi_check_buswidth(f, op->addr.buswidth);
|
|
|
|
if (op->dummy.nbytes)
|
|
ret |= nxp_fspi_check_buswidth(f, op->dummy.buswidth);
|
|
|
|
if (op->data.nbytes)
|
|
ret |= nxp_fspi_check_buswidth(f, op->data.buswidth);
|
|
|
|
if (ret)
|
|
return false;
|
|
|
|
/*
|
|
* The number of address bytes should be equal to or less than 4 bytes.
|
|
*/
|
|
if (op->addr.nbytes > 4)
|
|
return false;
|
|
|
|
/*
|
|
* If requested address value is greater than controller assigned
|
|
* memory mapped space, return error as it didn't fit in the range
|
|
* of assigned address space.
|
|
*/
|
|
if (op->addr.val >= f->memmap_phy_size)
|
|
return false;
|
|
|
|
/* Max 64 dummy clock cycles supported */
|
|
if (op->dummy.buswidth &&
|
|
(op->dummy.nbytes * 8 / op->dummy.buswidth > 64))
|
|
return false;
|
|
|
|
/* Max data length, check controller limits and alignment */
|
|
if (op->data.dir == SPI_MEM_DATA_IN &&
|
|
(op->data.nbytes > f->devtype_data->ahb_buf_size ||
|
|
(op->data.nbytes > f->devtype_data->rxfifo - 4 &&
|
|
!IS_ALIGNED(op->data.nbytes, 8))))
|
|
return false;
|
|
|
|
if (op->data.dir == SPI_MEM_DATA_OUT &&
|
|
op->data.nbytes > f->devtype_data->txfifo)
|
|
return false;
|
|
|
|
return spi_mem_default_supports_op(slave, op);
|
|
}
|
|
|
|
/* Instead of busy looping invoke readl_poll_sleep_timeout functionality. */
|
|
static int fspi_readl_poll_tout(struct nxp_fspi *f, void __iomem *base,
|
|
u32 mask, u32 delay_us,
|
|
u32 timeout_us, bool c)
|
|
{
|
|
u32 reg;
|
|
|
|
if (!f->devtype_data->little_endian)
|
|
mask = (u32)cpu_to_be32(mask);
|
|
|
|
if (c)
|
|
return readl_poll_sleep_timeout(base, reg, (reg & mask),
|
|
delay_us, timeout_us);
|
|
else
|
|
return readl_poll_sleep_timeout(base, reg, !(reg & mask),
|
|
delay_us, timeout_us);
|
|
}
|
|
|
|
/*
|
|
* If the slave device content being changed by Write/Erase, need to
|
|
* invalidate the AHB buffer. This can be achieved by doing the reset
|
|
* of controller after setting MCR0[SWRESET] bit.
|
|
*/
|
|
static inline void nxp_fspi_invalid(struct nxp_fspi *f)
|
|
{
|
|
u32 reg;
|
|
int ret;
|
|
|
|
reg = fspi_readl(f, f->iobase + FSPI_MCR0);
|
|
fspi_writel(f, reg | FSPI_MCR0_SWRST, f->iobase + FSPI_MCR0);
|
|
|
|
/* w1c register, wait unit clear */
|
|
ret = fspi_readl_poll_tout(f, f->iobase + FSPI_MCR0,
|
|
FSPI_MCR0_SWRST, 0, POLL_TOUT, false);
|
|
WARN_ON(ret);
|
|
}
|
|
|
|
static void nxp_fspi_prepare_lut(struct nxp_fspi *f,
|
|
const struct spi_mem_op *op)
|
|
{
|
|
void __iomem *base = f->iobase;
|
|
u32 lutval[4] = {};
|
|
int lutidx = 1, i;
|
|
|
|
/* cmd */
|
|
lutval[0] |= LUT_DEF(0, LUT_CMD, LUT_PAD(op->cmd.buswidth),
|
|
op->cmd.opcode);
|
|
|
|
/* addr bytes */
|
|
if (op->addr.nbytes) {
|
|
lutval[lutidx / 2] |= LUT_DEF(lutidx, LUT_ADDR,
|
|
LUT_PAD(op->addr.buswidth),
|
|
op->addr.nbytes * 8);
|
|
lutidx++;
|
|
}
|
|
|
|
/* dummy bytes, if needed */
|
|
if (op->dummy.nbytes) {
|
|
lutval[lutidx / 2] |= LUT_DEF(lutidx, LUT_DUMMY,
|
|
/*
|
|
* Due to FlexSPI controller limitation number of PAD for dummy
|
|
* buswidth needs to be programmed as equal to data buswidth.
|
|
*/
|
|
LUT_PAD(op->data.buswidth),
|
|
op->dummy.nbytes * 8 /
|
|
op->dummy.buswidth);
|
|
lutidx++;
|
|
}
|
|
|
|
/* read/write data bytes */
|
|
if (op->data.nbytes) {
|
|
lutval[lutidx / 2] |= LUT_DEF(lutidx,
|
|
op->data.dir == SPI_MEM_DATA_IN ?
|
|
LUT_NXP_READ : LUT_NXP_WRITE,
|
|
LUT_PAD(op->data.buswidth),
|
|
0);
|
|
lutidx++;
|
|
}
|
|
|
|
/* stop condition. */
|
|
lutval[lutidx / 2] |= LUT_DEF(lutidx, LUT_STOP, 0, 0);
|
|
|
|
/* unlock LUT */
|
|
fspi_writel(f, FSPI_LUTKEY_VALUE, f->iobase + FSPI_LUTKEY);
|
|
fspi_writel(f, FSPI_LCKER_UNLOCK, f->iobase + FSPI_LCKCR);
|
|
|
|
/* fill LUT */
|
|
for (i = 0; i < ARRAY_SIZE(lutval); i++)
|
|
fspi_writel(f, lutval[i], base + FSPI_LUT_REG(i));
|
|
|
|
dev_dbg(f->dev, "CMD[%x] lutval[0:%x \t 1:%x \t 2:%x \t 3:%x], size: 0x%08x\n",
|
|
op->cmd.opcode, lutval[0], lutval[1], lutval[2], lutval[3], op->data.nbytes);
|
|
|
|
/* lock LUT */
|
|
fspi_writel(f, FSPI_LUTKEY_VALUE, f->iobase + FSPI_LUTKEY);
|
|
fspi_writel(f, FSPI_LCKER_LOCK, f->iobase + FSPI_LCKCR);
|
|
}
|
|
|
|
#if CONFIG_IS_ENABLED(CLK)
|
|
static int nxp_fspi_clk_prep_enable(struct nxp_fspi *f)
|
|
{
|
|
int ret;
|
|
|
|
ret = clk_enable(&f->clk_en);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = clk_enable(&f->clk);
|
|
if (ret) {
|
|
clk_disable(&f->clk_en);
|
|
return ret;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void nxp_fspi_clk_disable_unprep(struct nxp_fspi *f)
|
|
{
|
|
clk_disable(&f->clk);
|
|
clk_disable(&f->clk_en);
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* In FlexSPI controller, flash access is based on value of FSPI_FLSHXXCR0
|
|
* register and start base address of the slave device.
|
|
*
|
|
* (Higher address)
|
|
* -------- <-- FLSHB2CR0
|
|
* | B2 |
|
|
* | |
|
|
* B2 start address --> -------- <-- FLSHB1CR0
|
|
* | B1 |
|
|
* | |
|
|
* B1 start address --> -------- <-- FLSHA2CR0
|
|
* | A2 |
|
|
* | |
|
|
* A2 start address --> -------- <-- FLSHA1CR0
|
|
* | A1 |
|
|
* | |
|
|
* A1 start address --> -------- (Lower address)
|
|
*
|
|
*
|
|
* Start base address defines the starting address range for given CS and
|
|
* FSPI_FLSHXXCR0 defines the size of the slave device connected at given CS.
|
|
*
|
|
* But, different targets are having different combinations of number of CS,
|
|
* some targets only have single CS or two CS covering controller's full
|
|
* memory mapped space area.
|
|
* Thus, implementation is being done as independent of the size and number
|
|
* of the connected slave device.
|
|
* Assign controller memory mapped space size as the size to the connected
|
|
* slave device.
|
|
* Mark FLSHxxCR0 as zero initially and then assign value only to the selected
|
|
* chip-select Flash configuration register.
|
|
*
|
|
* For e.g. to access CS2 (B1), FLSHB1CR0 register would be equal to the
|
|
* memory mapped size of the controller.
|
|
* Value for rest of the CS FLSHxxCR0 register would be zero.
|
|
*
|
|
*/
|
|
static void nxp_fspi_select_mem(struct nxp_fspi *f, int chip_select)
|
|
{
|
|
u64 size_kb;
|
|
|
|
/* Reset FLSHxxCR0 registers */
|
|
fspi_writel(f, 0, f->iobase + FSPI_FLSHA1CR0);
|
|
fspi_writel(f, 0, f->iobase + FSPI_FLSHA2CR0);
|
|
fspi_writel(f, 0, f->iobase + FSPI_FLSHB1CR0);
|
|
fspi_writel(f, 0, f->iobase + FSPI_FLSHB2CR0);
|
|
|
|
/* Assign controller memory mapped space as size, KBytes, of flash. */
|
|
size_kb = FSPI_FLSHXCR0_SZ(f->memmap_phy_size);
|
|
|
|
fspi_writel(f, size_kb, f->iobase + FSPI_FLSHA1CR0 +
|
|
4 * chip_select);
|
|
|
|
dev_dbg(f->dev, "Slave device [CS:%x] selected\n", chip_select);
|
|
}
|
|
|
|
static void nxp_fspi_read_ahb(struct nxp_fspi *f, const struct spi_mem_op *op)
|
|
{
|
|
u32 len = op->data.nbytes;
|
|
|
|
/* Read out the data directly from the AHB buffer. */
|
|
memcpy_fromio(op->data.buf.in, (f->ahb_addr + op->addr.val), len);
|
|
}
|
|
|
|
static void nxp_fspi_fill_txfifo(struct nxp_fspi *f,
|
|
const struct spi_mem_op *op)
|
|
{
|
|
void __iomem *base = f->iobase;
|
|
int i, ret;
|
|
u8 *buf = (u8 *)op->data.buf.out;
|
|
|
|
/* clear the TX FIFO. */
|
|
fspi_writel(f, FSPI_IPTXFCR_CLR, base + FSPI_IPTXFCR);
|
|
|
|
/*
|
|
* Default value of water mark level is 8 bytes, hence in single
|
|
* write request controller can write max 8 bytes of data.
|
|
*/
|
|
|
|
for (i = 0; i < ALIGN_DOWN(op->data.nbytes, 8); i += 8) {
|
|
/* Wait for TXFIFO empty */
|
|
ret = fspi_readl_poll_tout(f, f->iobase + FSPI_INTR,
|
|
FSPI_INTR_IPTXWE, 0,
|
|
POLL_TOUT, true);
|
|
WARN_ON(ret);
|
|
|
|
fspi_writel(f, *(u32 *)(buf + i), base + FSPI_TFDR);
|
|
fspi_writel(f, *(u32 *)(buf + i + 4), base + FSPI_TFDR + 4);
|
|
fspi_writel(f, FSPI_INTR_IPTXWE, base + FSPI_INTR);
|
|
}
|
|
|
|
if (i < op->data.nbytes) {
|
|
u32 data = 0;
|
|
int j;
|
|
/* Wait for TXFIFO empty */
|
|
ret = fspi_readl_poll_tout(f, f->iobase + FSPI_INTR,
|
|
FSPI_INTR_IPTXWE, 0,
|
|
POLL_TOUT, true);
|
|
WARN_ON(ret);
|
|
|
|
for (j = 0; j < ALIGN(op->data.nbytes - i, 4); j += 4) {
|
|
memcpy(&data, buf + i + j, 4);
|
|
fspi_writel(f, data, base + FSPI_TFDR + j);
|
|
}
|
|
fspi_writel(f, FSPI_INTR_IPTXWE, base + FSPI_INTR);
|
|
}
|
|
}
|
|
|
|
static void nxp_fspi_read_rxfifo(struct nxp_fspi *f,
|
|
const struct spi_mem_op *op)
|
|
{
|
|
void __iomem *base = f->iobase;
|
|
int i, ret;
|
|
int len = op->data.nbytes;
|
|
u8 *buf = (u8 *)op->data.buf.in;
|
|
|
|
/*
|
|
* Default value of water mark level is 8 bytes, hence in single
|
|
* read request controller can read max 8 bytes of data.
|
|
*/
|
|
for (i = 0; i < ALIGN_DOWN(len, 8); i += 8) {
|
|
/* Wait for RXFIFO available */
|
|
ret = fspi_readl_poll_tout(f, f->iobase + FSPI_INTR,
|
|
FSPI_INTR_IPRXWA, 0,
|
|
POLL_TOUT, true);
|
|
WARN_ON(ret);
|
|
|
|
*(u32 *)(buf + i) = fspi_readl(f, base + FSPI_RFDR);
|
|
*(u32 *)(buf + i + 4) = fspi_readl(f, base + FSPI_RFDR + 4);
|
|
/* move the FIFO pointer */
|
|
fspi_writel(f, FSPI_INTR_IPRXWA, base + FSPI_INTR);
|
|
}
|
|
|
|
if (i < len) {
|
|
u32 tmp;
|
|
int size, j;
|
|
|
|
buf = op->data.buf.in + i;
|
|
/* Wait for RXFIFO available */
|
|
ret = fspi_readl_poll_tout(f, f->iobase + FSPI_INTR,
|
|
FSPI_INTR_IPRXWA, 0,
|
|
POLL_TOUT, true);
|
|
WARN_ON(ret);
|
|
|
|
len = op->data.nbytes - i;
|
|
for (j = 0; j < op->data.nbytes - i; j += 4) {
|
|
tmp = fspi_readl(f, base + FSPI_RFDR + j);
|
|
size = min(len, 4);
|
|
memcpy(buf + j, &tmp, size);
|
|
len -= size;
|
|
}
|
|
}
|
|
|
|
/* invalid the RXFIFO */
|
|
fspi_writel(f, FSPI_IPRXFCR_CLR, base + FSPI_IPRXFCR);
|
|
/* move the FIFO pointer */
|
|
fspi_writel(f, FSPI_INTR_IPRXWA, base + FSPI_INTR);
|
|
}
|
|
|
|
static int nxp_fspi_do_op(struct nxp_fspi *f, const struct spi_mem_op *op)
|
|
{
|
|
void __iomem *base = f->iobase;
|
|
int seqnum = 0;
|
|
int err = 0;
|
|
u32 reg;
|
|
|
|
reg = fspi_readl(f, base + FSPI_IPRXFCR);
|
|
/* invalid RXFIFO first */
|
|
reg &= ~FSPI_IPRXFCR_DMA_EN;
|
|
reg = reg | FSPI_IPRXFCR_CLR;
|
|
fspi_writel(f, reg, base + FSPI_IPRXFCR);
|
|
|
|
fspi_writel(f, op->addr.val, base + FSPI_IPCR0);
|
|
/*
|
|
* Always start the sequence at the same index since we update
|
|
* the LUT at each exec_op() call. And also specify the DATA
|
|
* length, since it's has not been specified in the LUT.
|
|
*/
|
|
fspi_writel(f, op->data.nbytes |
|
|
(SEQID_LUT << FSPI_IPCR1_SEQID_SHIFT) |
|
|
(seqnum << FSPI_IPCR1_SEQNUM_SHIFT),
|
|
base + FSPI_IPCR1);
|
|
|
|
/* Trigger the LUT now. */
|
|
fspi_writel(f, FSPI_IPCMD_TRG, base + FSPI_IPCMD);
|
|
|
|
/* Wait for the completion. */
|
|
err = fspi_readl_poll_tout(f, f->iobase + FSPI_STS0,
|
|
FSPI_STS0_ARB_IDLE, 1, 1000 * 1000, true);
|
|
|
|
/* Invoke IP data read, if request is of data read. */
|
|
if (!err && op->data.nbytes && op->data.dir == SPI_MEM_DATA_IN)
|
|
nxp_fspi_read_rxfifo(f, op);
|
|
|
|
return err;
|
|
}
|
|
|
|
static int nxp_fspi_exec_op(struct spi_slave *slave,
|
|
const struct spi_mem_op *op)
|
|
{
|
|
struct nxp_fspi *f;
|
|
struct udevice *bus;
|
|
int err = 0;
|
|
|
|
bus = slave->dev->parent;
|
|
f = dev_get_priv(bus);
|
|
|
|
/* Wait for controller being ready. */
|
|
err = fspi_readl_poll_tout(f, f->iobase + FSPI_STS0,
|
|
FSPI_STS0_ARB_IDLE, 1, POLL_TOUT, true);
|
|
WARN_ON(err);
|
|
|
|
nxp_fspi_prepare_lut(f, op);
|
|
/*
|
|
* If we have large chunks of data, we read them through the AHB bus by
|
|
* accessing the mapped memory. In all other cases we use IP commands
|
|
* to access the flash. Read via AHB bus may be corrupted due to
|
|
* existence of an errata and therefore discard AHB read in such cases.
|
|
*/
|
|
if (op->data.nbytes > (f->devtype_data->rxfifo - 4) &&
|
|
op->data.dir == SPI_MEM_DATA_IN &&
|
|
!needs_ip_only(f)) {
|
|
nxp_fspi_read_ahb(f, op);
|
|
} else {
|
|
if (op->data.nbytes && op->data.dir == SPI_MEM_DATA_OUT)
|
|
nxp_fspi_fill_txfifo(f, op);
|
|
|
|
err = nxp_fspi_do_op(f, op);
|
|
}
|
|
|
|
/* Invalidate the data in the AHB buffer. */
|
|
nxp_fspi_invalid(f);
|
|
|
|
return err;
|
|
}
|
|
|
|
static int nxp_fspi_adjust_op_size(struct spi_slave *slave,
|
|
struct spi_mem_op *op)
|
|
{
|
|
struct nxp_fspi *f;
|
|
struct udevice *bus;
|
|
|
|
bus = slave->dev->parent;
|
|
f = dev_get_priv(bus);
|
|
|
|
if (op->data.dir == SPI_MEM_DATA_OUT) {
|
|
if (op->data.nbytes > f->devtype_data->txfifo)
|
|
op->data.nbytes = f->devtype_data->txfifo;
|
|
} else {
|
|
if (op->data.nbytes > f->devtype_data->ahb_buf_size)
|
|
op->data.nbytes = f->devtype_data->ahb_buf_size;
|
|
else if (op->data.nbytes > (f->devtype_data->rxfifo - 4))
|
|
op->data.nbytes = ALIGN_DOWN(op->data.nbytes, 8);
|
|
}
|
|
|
|
/* Limit data bytes to RX FIFO in case of IP read only */
|
|
if (needs_ip_only(f) &&
|
|
op->data.dir == SPI_MEM_DATA_IN &&
|
|
op->data.nbytes > f->devtype_data->rxfifo)
|
|
op->data.nbytes = f->devtype_data->rxfifo;
|
|
|
|
return 0;
|
|
}
|
|
|
|
#ifdef CONFIG_FSL_LAYERSCAPE
|
|
static void erratum_err050568(struct nxp_fspi *f)
|
|
{
|
|
struct sys_info sysinfo;
|
|
u32 svr = 0, freq = 0;
|
|
|
|
/* Check for LS1028A variants */
|
|
svr = SVR_SOC_VER(get_svr());
|
|
if (svr != SVR_LS1017A ||
|
|
svr != SVR_LS1018A ||
|
|
svr != SVR_LS1027A ||
|
|
svr != SVR_LS1028A) {
|
|
dev_dbg(f->dev, "Errata applicable only for LS1028A variants\n");
|
|
return;
|
|
}
|
|
|
|
/* Read PLL frequency */
|
|
get_sys_info(&sysinfo);
|
|
freq = sysinfo.freq_systembus / 1000000; /* Convert to MHz */
|
|
dev_dbg(f->dev, "svr: %08x, Frequency: %dMhz\n", svr, freq);
|
|
|
|
/* Use IP bus only if PLL is 300MHz */
|
|
if (freq == 300)
|
|
f->devtype_data->quirks |= FSPI_QUIRK_USE_IP_ONLY;
|
|
}
|
|
#endif
|
|
|
|
static int nxp_fspi_default_setup(struct nxp_fspi *f)
|
|
{
|
|
void __iomem *base = f->iobase;
|
|
int ret, i;
|
|
u32 reg;
|
|
|
|
#if CONFIG_IS_ENABLED(CLK)
|
|
/* the default frequency, we will change it later if necessary. */
|
|
ret = clk_set_rate(&f->clk, 20000000);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
ret = nxp_fspi_clk_prep_enable(f);
|
|
if (ret)
|
|
return ret;
|
|
#endif
|
|
|
|
#ifdef CONFIG_FSL_LAYERSCAPE
|
|
/*
|
|
* ERR050568: Flash access by FlexSPI AHB command may not work with
|
|
* platform frequency equal to 300 MHz on LS1028A.
|
|
* LS1028A reuses LX2160A compatible entry. Make errata applicable for
|
|
* Layerscape LS1028A platform family.
|
|
*/
|
|
if (device_is_compatible(f->dev, "nxp,lx2160a-fspi"))
|
|
erratum_err050568(f);
|
|
#endif
|
|
|
|
/* Reset the module */
|
|
/* w1c register, wait unit clear */
|
|
ret = fspi_readl_poll_tout(f, f->iobase + FSPI_MCR0,
|
|
FSPI_MCR0_SWRST, 0, POLL_TOUT, false);
|
|
WARN_ON(ret);
|
|
|
|
/* Disable the module */
|
|
fspi_writel(f, FSPI_MCR0_MDIS, base + FSPI_MCR0);
|
|
|
|
/* Reset the DLL register to default value */
|
|
fspi_writel(f, FSPI_DLLACR_OVRDEN, base + FSPI_DLLACR);
|
|
fspi_writel(f, FSPI_DLLBCR_OVRDEN, base + FSPI_DLLBCR);
|
|
|
|
/* enable module */
|
|
fspi_writel(f, FSPI_MCR0_AHB_TIMEOUT(0xFF) | FSPI_MCR0_IP_TIMEOUT(0xFF),
|
|
base + FSPI_MCR0);
|
|
|
|
/*
|
|
* Disable same device enable bit and configure all slave devices
|
|
* independently.
|
|
*/
|
|
reg = fspi_readl(f, f->iobase + FSPI_MCR2);
|
|
reg = reg & ~(FSPI_MCR2_SAMEDEVICEEN);
|
|
fspi_writel(f, reg, base + FSPI_MCR2);
|
|
|
|
/* AHB configuration for access buffer 0~7. */
|
|
for (i = 0; i < 7; i++)
|
|
fspi_writel(f, 0, base + FSPI_AHBRX_BUF0CR0 + 4 * i);
|
|
|
|
/*
|
|
* Set ADATSZ with the maximum AHB buffer size to improve the read
|
|
* performance.
|
|
*/
|
|
fspi_writel(f, (f->devtype_data->ahb_buf_size / 8 |
|
|
FSPI_AHBRXBUF0CR7_PREF), base + FSPI_AHBRX_BUF7CR0);
|
|
|
|
/* prefetch and no start address alignment limitation */
|
|
fspi_writel(f, FSPI_AHBCR_PREF_EN | FSPI_AHBCR_RDADDROPT,
|
|
base + FSPI_AHBCR);
|
|
|
|
/* AHB Read - Set lut sequence ID for all CS. */
|
|
fspi_writel(f, SEQID_LUT, base + FSPI_FLSHA1CR2);
|
|
fspi_writel(f, SEQID_LUT, base + FSPI_FLSHA2CR2);
|
|
fspi_writel(f, SEQID_LUT, base + FSPI_FLSHB1CR2);
|
|
fspi_writel(f, SEQID_LUT, base + FSPI_FLSHB2CR2);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int nxp_fspi_probe(struct udevice *bus)
|
|
{
|
|
struct nxp_fspi *f = dev_get_priv(bus);
|
|
|
|
f->devtype_data =
|
|
(struct nxp_fspi_devtype_data *)dev_get_driver_data(bus);
|
|
nxp_fspi_default_setup(f);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int nxp_fspi_claim_bus(struct udevice *dev)
|
|
{
|
|
struct nxp_fspi *f;
|
|
struct udevice *bus;
|
|
struct dm_spi_slave_plat *slave_plat = dev_get_parent_plat(dev);
|
|
|
|
bus = dev->parent;
|
|
f = dev_get_priv(bus);
|
|
|
|
nxp_fspi_select_mem(f, slave_plat->cs);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int nxp_fspi_set_speed(struct udevice *bus, uint speed)
|
|
{
|
|
#if CONFIG_IS_ENABLED(CLK)
|
|
struct nxp_fspi *f = dev_get_priv(bus);
|
|
int ret;
|
|
|
|
nxp_fspi_clk_disable_unprep(f);
|
|
|
|
ret = clk_set_rate(&f->clk, speed);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
ret = nxp_fspi_clk_prep_enable(f);
|
|
if (ret)
|
|
return ret;
|
|
#endif
|
|
return 0;
|
|
}
|
|
|
|
static int nxp_fspi_set_mode(struct udevice *bus, uint mode)
|
|
{
|
|
/* Nothing to do */
|
|
return 0;
|
|
}
|
|
|
|
static int nxp_fspi_of_to_plat(struct udevice *bus)
|
|
{
|
|
struct nxp_fspi *f = dev_get_priv(bus);
|
|
#if CONFIG_IS_ENABLED(CLK)
|
|
int ret;
|
|
#endif
|
|
|
|
fdt_addr_t iobase;
|
|
fdt_addr_t iobase_size;
|
|
fdt_addr_t ahb_addr;
|
|
fdt_addr_t ahb_size;
|
|
|
|
f->dev = bus;
|
|
|
|
iobase = devfdt_get_addr_size_name(bus, "fspi_base", &iobase_size);
|
|
if (iobase == FDT_ADDR_T_NONE) {
|
|
dev_err(bus, "fspi_base regs missing\n");
|
|
return -ENODEV;
|
|
}
|
|
f->iobase = map_physmem(iobase, iobase_size, MAP_NOCACHE);
|
|
|
|
ahb_addr = devfdt_get_addr_size_name(bus, "fspi_mmap", &ahb_size);
|
|
if (ahb_addr == FDT_ADDR_T_NONE) {
|
|
dev_err(bus, "fspi_mmap regs missing\n");
|
|
return -ENODEV;
|
|
}
|
|
f->ahb_addr = map_physmem(ahb_addr, ahb_size, MAP_NOCACHE);
|
|
f->memmap_phy_size = ahb_size;
|
|
|
|
#if CONFIG_IS_ENABLED(CLK)
|
|
ret = clk_get_by_name(bus, "fspi_en", &f->clk_en);
|
|
if (ret) {
|
|
dev_err(bus, "failed to get fspi_en clock\n");
|
|
return ret;
|
|
}
|
|
|
|
ret = clk_get_by_name(bus, "fspi", &f->clk);
|
|
if (ret) {
|
|
dev_err(bus, "failed to get fspi clock\n");
|
|
return ret;
|
|
}
|
|
#endif
|
|
|
|
dev_dbg(bus, "iobase=<0x%llx>, ahb_addr=<0x%llx>\n", iobase, ahb_addr);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static const struct spi_controller_mem_ops nxp_fspi_mem_ops = {
|
|
.adjust_op_size = nxp_fspi_adjust_op_size,
|
|
.supports_op = nxp_fspi_supports_op,
|
|
.exec_op = nxp_fspi_exec_op,
|
|
};
|
|
|
|
static const struct dm_spi_ops nxp_fspi_ops = {
|
|
.claim_bus = nxp_fspi_claim_bus,
|
|
.set_speed = nxp_fspi_set_speed,
|
|
.set_mode = nxp_fspi_set_mode,
|
|
.mem_ops = &nxp_fspi_mem_ops,
|
|
};
|
|
|
|
static const struct udevice_id nxp_fspi_ids[] = {
|
|
{ .compatible = "nxp,lx2160a-fspi", .data = (ulong)&lx2160a_data, },
|
|
{ .compatible = "nxp,imx8mm-fspi", .data = (ulong)&imx8mm_data, },
|
|
{ .compatible = "nxp,imx8mp-fspi", .data = (ulong)&imx8mm_data, },
|
|
{ }
|
|
};
|
|
|
|
U_BOOT_DRIVER(nxp_fspi) = {
|
|
.name = "nxp_fspi",
|
|
.id = UCLASS_SPI,
|
|
.of_match = nxp_fspi_ids,
|
|
.ops = &nxp_fspi_ops,
|
|
.of_to_plat = nxp_fspi_of_to_plat,
|
|
.priv_auto = sizeof(struct nxp_fspi),
|
|
.probe = nxp_fspi_probe,
|
|
};
|