mirror of
https://github.com/AsahiLinux/u-boot
synced 2025-01-07 18:58:56 +00:00
5ce319133b
These docs are useful for developers, not users. Move them under that section. Suggested-by: Heinrich Schuchardt <xypron.glpk@gmx.de> Signed-off-by: Simon Glass <sjg@chromium.org>
913 lines
36 KiB
ReStructuredText
913 lines
36 KiB
ReStructuredText
.. SPDX-License-Identifier: GPL-2.0+
|
|
|
|
Compiled-in Device Tree / Platform Data
|
|
=======================================
|
|
|
|
|
|
Introduction
|
|
------------
|
|
|
|
Device tree is the standard configuration method in U-Boot. It is used to
|
|
define what devices are in the system and provide configuration information
|
|
to these devices.
|
|
|
|
The overhead of adding devicetree access to U-Boot is fairly modest,
|
|
approximately 3KB on Thumb 2 (plus the size of the DT itself). This means
|
|
that in most cases it is best to use devicetree for configuration.
|
|
|
|
However there are some very constrained environments where U-Boot needs to
|
|
work. These include SPL with severe memory limitations. For example, some
|
|
SoCs require a 16KB SPL image which must include a full MMC stack. In this
|
|
case the overhead of devicetree access may be too great.
|
|
|
|
It is possible to create platform data manually by defining C structures
|
|
for it, and reference that data in a `U_BOOT_DRVINFO()` declaration. This
|
|
bypasses the use of devicetree completely, effectively creating a parallel
|
|
configuration mechanism. But it is an available option for SPL.
|
|
|
|
As an alternative, the 'of-platdata' feature is provided. This converts the
|
|
devicetree contents into C code which can be compiled into the SPL binary.
|
|
This saves the 3KB of code overhead and perhaps a few hundred more bytes due
|
|
to more efficient storage of the data.
|
|
|
|
|
|
How it works
|
|
------------
|
|
|
|
The feature is enabled by CONFIG OF_PLATDATA. This is only available in
|
|
SPL/TPL and should be tested with:
|
|
|
|
.. code-block:: c
|
|
|
|
#if CONFIG_IS_ENABLED(OF_PLATDATA)
|
|
|
|
A tool called 'dtoc' converts a devicetree file either into a set of
|
|
struct declarations, one for each compatible node, and a set of
|
|
`U_BOOT_DRVINFO()` declarations along with the actual platform data for each
|
|
device. As an example, consider this MMC node:
|
|
|
|
.. code-block:: none
|
|
|
|
sdmmc: dwmmc@ff0c0000 {
|
|
compatible = "rockchip,rk3288-dw-mshc";
|
|
clock-freq-min-max = <400000 150000000>;
|
|
clocks = <&cru HCLK_SDMMC>, <&cru SCLK_SDMMC>,
|
|
<&cru SCLK_SDMMC_DRV>, <&cru SCLK_SDMMC_SAMPLE>;
|
|
clock-names = "biu", "ciu", "ciu_drv", "ciu_sample";
|
|
fifo-depth = <0x100>;
|
|
interrupts = <GIC_SPI 32 IRQ_TYPE_LEVEL_HIGH>;
|
|
reg = <0xff0c0000 0x4000>;
|
|
bus-width = <4>;
|
|
cap-mmc-highspeed;
|
|
cap-sd-highspeed;
|
|
card-detect-delay = <200>;
|
|
disable-wp;
|
|
num-slots = <1>;
|
|
pinctrl-names = "default";
|
|
pinctrl-0 = <&sdmmc_clk>, <&sdmmc_cmd>, <&sdmmc_cd>, <&sdmmc_bus4>;
|
|
vmmc-supply = <&vcc_sd>;
|
|
status = "okay";
|
|
u-boot,dm-pre-reloc;
|
|
};
|
|
|
|
|
|
Some of these properties are dropped by U-Boot under control of the
|
|
CONFIG_OF_SPL_REMOVE_PROPS option. The rest are processed. This will produce
|
|
the following C struct declaration:
|
|
|
|
.. code-block:: c
|
|
|
|
struct dtd_rockchip_rk3288_dw_mshc {
|
|
fdt32_t bus_width;
|
|
bool cap_mmc_highspeed;
|
|
bool cap_sd_highspeed;
|
|
fdt32_t card_detect_delay;
|
|
fdt32_t clock_freq_min_max[2];
|
|
struct phandle_1_arg clocks[4];
|
|
bool disable_wp;
|
|
fdt32_t fifo_depth;
|
|
fdt32_t interrupts[3];
|
|
fdt32_t num_slots;
|
|
fdt32_t reg[2];
|
|
fdt32_t vmmc_supply;
|
|
};
|
|
|
|
and the following device declarations:
|
|
|
|
.. code-block:: c
|
|
|
|
/* Node /clock-controller@ff760000 index 0 */
|
|
...
|
|
|
|
/* Node /dwmmc@ff0c0000 index 2 */
|
|
static struct dtd_rockchip_rk3288_dw_mshc dtv_dwmmc_at_ff0c0000 = {
|
|
.fifo_depth = 0x100,
|
|
.cap_sd_highspeed = true,
|
|
.interrupts = {0x0, 0x20, 0x4},
|
|
.clock_freq_min_max = {0x61a80, 0x8f0d180},
|
|
.vmmc_supply = 0xb,
|
|
.num_slots = 0x1,
|
|
.clocks = {{0, 456},
|
|
{0, 68},
|
|
{0, 114},
|
|
{0, 118}},
|
|
.cap_mmc_highspeed = true,
|
|
.disable_wp = true,
|
|
.bus_width = 0x4,
|
|
.u_boot_dm_pre_reloc = true,
|
|
.reg = {0xff0c0000, 0x4000},
|
|
.card_detect_delay = 0xc8,
|
|
};
|
|
|
|
U_BOOT_DRVINFO(dwmmc_at_ff0c0000) = {
|
|
.name = "rockchip_rk3288_dw_mshc",
|
|
.plat = &dtv_dwmmc_at_ff0c0000,
|
|
.plat_size = sizeof(dtv_dwmmc_at_ff0c0000),
|
|
.parent_idx = -1,
|
|
};
|
|
|
|
The device is then instantiated at run-time and the platform data can be
|
|
accessed using:
|
|
|
|
.. code-block:: c
|
|
|
|
struct udevice *dev;
|
|
struct dtd_rockchip_rk3288_dw_mshc *plat = dev_get_plat(dev);
|
|
|
|
This avoids the code overhead of converting the devicetree data to
|
|
platform data in the driver. The `of_to_plat()` method should
|
|
therefore do nothing in such a driver.
|
|
|
|
Note that for the platform data to be matched with a driver, the 'name'
|
|
property of the `U_BOOT_DRVINFO()` declaration has to match a driver declared
|
|
via `U_BOOT_DRIVER()`. This effectively means that a `U_BOOT_DRIVER()` with a
|
|
'name' corresponding to the devicetree 'compatible' string (after converting
|
|
it to a valid name for C) is needed, so a dedicated driver is required for
|
|
each 'compatible' string.
|
|
|
|
In order to make this a bit more flexible, the `DM_DRIVER_ALIAS()` macro can be
|
|
used to declare an alias for a driver name, typically a 'compatible' string.
|
|
This macro produces no code, but is used by dtoc tool. It must be located in the
|
|
same file as its associated driver, ideally just after it.
|
|
|
|
The parent_idx is the index of the parent `driver_info` structure within its
|
|
linker list (instantiated by the `U_BOOT_DRVINFO()` macro). This is used to
|
|
support `dev_get_parent()`.
|
|
|
|
During the build process dtoc parses both `U_BOOT_DRIVER()` and
|
|
`DM_DRIVER_ALIAS()` to build a list of valid driver names and driver aliases.
|
|
If the 'compatible' string used for a device does not not match a valid driver
|
|
name, it will be checked against the list of driver aliases in order to get the
|
|
right driver name to use. If in this step there is no match found a warning is
|
|
issued to avoid run-time failures.
|
|
|
|
Where a node has multiple compatible strings, dtoc generates a `#define` to
|
|
make them equivalent, e.g.:
|
|
|
|
.. code-block:: c
|
|
|
|
#define dtd_rockchip_rk3299_dw_mshc dtd_rockchip_rk3288_dw_mshc
|
|
|
|
|
|
Converting of-platdata to a useful form
|
|
---------------------------------------
|
|
|
|
Of course it would be possible to use the of-platdata directly in your driver
|
|
whenever configuration information is required. However this means that the
|
|
driver will not be able to support devicetree, since the of-platdata
|
|
structure is not available when devicetree is used. It would make no sense
|
|
to use this structure if devicetree were available, since the structure has
|
|
all the limitations metioned in caveats below.
|
|
|
|
Therefore it is recommended that the of-platdata structure should be used
|
|
only in the `probe()` method of your driver. It cannot be used in the
|
|
`of_to_plat()` method since this is not called when platform data is
|
|
already present.
|
|
|
|
|
|
How to structure your driver
|
|
----------------------------
|
|
|
|
Drivers should always support devicetree as an option. The of-platdata
|
|
feature is intended as a add-on to existing drivers.
|
|
|
|
Your driver should convert the plat struct in its `probe()` method. The
|
|
existing devicetree decoding logic should be kept in the
|
|
`of_to_plat()` method and wrapped with `#if`.
|
|
|
|
For example:
|
|
|
|
.. code-block:: c
|
|
|
|
#include <dt-structs.h>
|
|
|
|
struct mmc_plat {
|
|
#if CONFIG_IS_ENABLED(OF_PLATDATA)
|
|
/* Put this first since driver model will copy the data here */
|
|
struct dtd_mmc dtplat;
|
|
#endif
|
|
/*
|
|
* Other fields can go here, to be filled in by decoding from
|
|
* the devicetree (or the C structures when of-platdata is used).
|
|
*/
|
|
int fifo_depth;
|
|
};
|
|
|
|
static int mmc_of_to_plat(struct udevice *dev)
|
|
{
|
|
#if !CONFIG_IS_ENABLED(OF_PLATDATA)
|
|
/* Decode the devicetree data */
|
|
struct mmc_plat *plat = dev_get_plat(dev);
|
|
const void *blob = gd->fdt_blob;
|
|
int node = dev_of_offset(dev);
|
|
|
|
plat->fifo_depth = fdtdec_get_int(blob, node, "fifo-depth", 0);
|
|
#endif
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int mmc_probe(struct udevice *dev)
|
|
{
|
|
struct mmc_plat *plat = dev_get_plat(dev);
|
|
|
|
#if CONFIG_IS_ENABLED(OF_PLATDATA)
|
|
/* Decode the of-platdata from the C structures */
|
|
struct dtd_mmc *dtplat = &plat->dtplat;
|
|
|
|
plat->fifo_depth = dtplat->fifo_depth;
|
|
#endif
|
|
/* Set up the device from the plat data */
|
|
writel(plat->fifo_depth, ...)
|
|
}
|
|
|
|
static const struct udevice_id mmc_ids[] = {
|
|
{ .compatible = "vendor,mmc" },
|
|
{ }
|
|
};
|
|
|
|
U_BOOT_DRIVER(mmc_drv) = {
|
|
.name = "mmc_drv",
|
|
.id = UCLASS_MMC,
|
|
.of_match = mmc_ids,
|
|
.of_to_plat = mmc_of_to_plat,
|
|
.probe = mmc_probe,
|
|
.priv_auto = sizeof(struct mmc_priv),
|
|
.plat_auto = sizeof(struct mmc_plat),
|
|
};
|
|
|
|
DM_DRIVER_ALIAS(mmc_drv, vendor_mmc) /* matches compatible string */
|
|
|
|
Note that `struct mmc_plat` is defined in the C file, not in a header. This
|
|
is to avoid needing to include dt-structs.h in a header file. The idea is to
|
|
keep the use of each of-platdata struct to the smallest possible code area.
|
|
There is just one driver C file for each struct, that can convert from the
|
|
of-platdata struct to the standard one used by the driver.
|
|
|
|
In the case where SPL_OF_PLATDATA is enabled, `plat_auto` is
|
|
still used to allocate space for the platform data. This is different from
|
|
the normal behaviour and is triggered by the use of of-platdata (strictly
|
|
speaking it is a non-zero `plat_size` which triggers this).
|
|
|
|
The of-platdata struct contents is copied from the C structure data to the
|
|
start of the newly allocated area. In the case where devicetree is used,
|
|
the platform data is allocated, and starts zeroed. In this case the
|
|
`of_to_plat()` method should still set up the platform data (and the
|
|
of-platdata struct will not be present).
|
|
|
|
SPL must use either of-platdata or devicetree. Drivers cannot use both at
|
|
the same time, but they must support devicetree. Supporting of-platdata is
|
|
optional.
|
|
|
|
The devicetree becomes inaccessible when CONFIG_SPL_OF_PLATDATA is enabled,
|
|
since the devicetree access code is not compiled in. A corollary is that
|
|
a board can only move to using of-platdata if all the drivers it uses support
|
|
it. There would be little point in having some drivers require the device
|
|
tree data, since then libfdt would still be needed for those drivers and
|
|
there would be no code-size benefit.
|
|
|
|
|
|
Build-time instantiation
|
|
------------------------
|
|
|
|
Even with of-platdata there is a fair amount of code required in driver model.
|
|
It is possible to have U-Boot handle the instantiation of devices at build-time,
|
|
so avoiding the need for the `device_bind()` code and some parts of
|
|
`device_probe()`.
|
|
|
|
The feature is enabled by CONFIG_OF_PLATDATA_INST.
|
|
|
|
Here is an example device, as generated by dtoc::
|
|
|
|
/*
|
|
* Node /serial index 6
|
|
* driver sandbox_serial parent root_driver
|
|
*/
|
|
|
|
#include <asm/serial.h>
|
|
struct sandbox_serial_plat __attribute__ ((section (".priv_data")))
|
|
_sandbox_serial_plat_serial = {
|
|
.dtplat = {
|
|
.sandbox_text_colour = "cyan",
|
|
},
|
|
};
|
|
#include <asm/serial.h>
|
|
u8 _sandbox_serial_priv_serial[sizeof(struct sandbox_serial_priv)]
|
|
__attribute__ ((section (".priv_data")));
|
|
#include <serial.h>
|
|
u8 _sandbox_serial_uc_priv_serial[sizeof(struct serial_dev_priv)]
|
|
__attribute__ ((section (".priv_data")));
|
|
|
|
DM_DEVICE_INST(serial) = {
|
|
.driver = DM_DRIVER_REF(sandbox_serial),
|
|
.name = "sandbox_serial",
|
|
.plat_ = &_sandbox_serial_plat_serial,
|
|
.priv_ = _sandbox_serial_priv_serial,
|
|
.uclass = DM_UCLASS_REF(serial),
|
|
.uclass_priv_ = _sandbox_serial_uc_priv_serial,
|
|
.uclass_node = {
|
|
.prev = &DM_UCLASS_REF(serial)->dev_head,
|
|
.next = &DM_UCLASS_REF(serial)->dev_head,
|
|
},
|
|
.child_head = {
|
|
.prev = &DM_DEVICE_REF(serial)->child_head,
|
|
.next = &DM_DEVICE_REF(serial)->child_head,
|
|
},
|
|
.sibling_node = {
|
|
.prev = &DM_DEVICE_REF(i2c_at_0)->sibling_node,
|
|
.next = &DM_DEVICE_REF(spl_test)->sibling_node,
|
|
},
|
|
.seq_ = 0,
|
|
};
|
|
|
|
Here is part of the driver, for reference::
|
|
|
|
static const struct udevice_id sandbox_serial_ids[] = {
|
|
{ .compatible = "sandbox,serial" },
|
|
{ }
|
|
};
|
|
|
|
U_BOOT_DRIVER(sandbox_serial) = {
|
|
.name = "sandbox_serial",
|
|
.id = UCLASS_SERIAL,
|
|
.of_match = sandbox_serial_ids,
|
|
.of_to_plat = sandbox_serial_of_to_plat,
|
|
.plat_auto = sizeof(struct sandbox_serial_plat),
|
|
.priv_auto = sizeof(struct sandbox_serial_priv),
|
|
.probe = sandbox_serial_probe,
|
|
.remove = sandbox_serial_remove,
|
|
.ops = &sandbox_serial_ops,
|
|
.flags = DM_FLAG_PRE_RELOC,
|
|
};
|
|
|
|
|
|
The `DM_DEVICE_INST()` macro declares a struct udevice so you can see that the
|
|
members are from that struct. The private data is declared immediately above,
|
|
as `_sandbox_serial_priv_serial`, so there is no need for run-time memory
|
|
allocation. The #include lines are generated as well, since dtoc searches the
|
|
U-Boot source code for the definition of `struct sandbox_serial_priv` and adds
|
|
the relevant header so that the code will compile without errors.
|
|
|
|
The `plat_` member is set to the dtv data which is declared immediately above
|
|
the device. This is similar to how it would look without of-platdata-inst, but
|
|
node that the `dtplat` member inside is part of the wider
|
|
`_sandbox_serial_plat_serial` struct. This is because the driver declares its
|
|
own platform data, and the part generated by dtoc can only be a portion of it.
|
|
The `dtplat` part is always first in the struct. If the device has no
|
|
`.plat_auto` field, then a simple dtv struct can be used as with this example::
|
|
|
|
static struct dtd_sandbox_clk dtv_clk_sbox = {
|
|
.assigned_clock_rates = 0x141,
|
|
.assigned_clocks = {0x7, 0x3},
|
|
};
|
|
|
|
#include <asm/clk.h>
|
|
u8 _sandbox_clk_priv_clk_sbox[sizeof(struct sandbox_clk_priv)]
|
|
__attribute__ ((section (".priv_data")));
|
|
|
|
DM_DEVICE_INST(clk_sbox) = {
|
|
.driver = DM_DRIVER_REF(sandbox_clk),
|
|
.name = "sandbox_clk",
|
|
.plat_ = &dtv_clk_sbox,
|
|
|
|
Here is part of the driver, for reference::
|
|
|
|
static const struct udevice_id sandbox_clk_ids[] = {
|
|
{ .compatible = "sandbox,clk" },
|
|
{ }
|
|
};
|
|
|
|
U_BOOT_DRIVER(sandbox_clk) = {
|
|
.name = "sandbox_clk",
|
|
.id = UCLASS_CLK,
|
|
.of_match = sandbox_clk_ids,
|
|
.ops = &sandbox_clk_ops,
|
|
.probe = sandbox_clk_probe,
|
|
.priv_auto = sizeof(struct sandbox_clk_priv),
|
|
};
|
|
|
|
|
|
You can see that `dtv_clk_sbox` just has the devicetree contents and there is
|
|
no need for the `dtplat` separation, since the driver has no platform data of
|
|
its own, besides that provided by the devicetree (i.e. no `.plat_auto` field).
|
|
|
|
The doubly linked lists are handled by explicitly declaring the value of each
|
|
node, as you can see with the `.prev` and `.next` values in the example above.
|
|
Since dtoc knows the order of devices it can link them into the appropriate
|
|
lists correctly.
|
|
|
|
One of the features of driver model is the ability for a uclass to have a
|
|
small amount of private data for each device in that uclass. This is used to
|
|
provide a generic data structure that the uclass can use for all devices, thus
|
|
allowing generic features to be implemented in common code. An example is I2C,
|
|
which stores the bus speed there.
|
|
|
|
Similarly, parent devices can have data associated with each of their children.
|
|
This is used to provide information common to all children of a particular bus.
|
|
For an I2C bus, this is used to store the I2C address of each child on the bus.
|
|
|
|
This is all handled automatically by dtoc::
|
|
|
|
#include <asm/i2c.h>
|
|
u8 _sandbox_i2c_priv_i2c_at_0[sizeof(struct sandbox_i2c_priv)]
|
|
__attribute__ ((section (".priv_data")));
|
|
#include <i2c.h>
|
|
u8 _sandbox_i2c_uc_priv_i2c_at_0[sizeof(struct dm_i2c_bus)]
|
|
__attribute__ ((section (".priv_data")));
|
|
|
|
DM_DEVICE_INST(i2c_at_0) = {
|
|
.driver = DM_DRIVER_REF(sandbox_i2c),
|
|
.name = "sandbox_i2c",
|
|
.plat_ = &dtv_i2c_at_0,
|
|
.priv_ = _sandbox_i2c_priv_i2c_at_0,
|
|
.uclass = DM_UCLASS_REF(i2c),
|
|
.uclass_priv_ = _sandbox_i2c_uc_priv_i2c_at_0,
|
|
...
|
|
|
|
Part of driver, for reference::
|
|
|
|
static const struct udevice_id sandbox_i2c_ids[] = {
|
|
{ .compatible = "sandbox,i2c" },
|
|
{ }
|
|
};
|
|
|
|
U_BOOT_DRIVER(sandbox_i2c) = {
|
|
.name = "sandbox_i2c",
|
|
.id = UCLASS_I2C,
|
|
.of_match = sandbox_i2c_ids,
|
|
.ops = &sandbox_i2c_ops,
|
|
.priv_auto = sizeof(struct sandbox_i2c_priv),
|
|
};
|
|
|
|
Part of I2C uclass, for reference::
|
|
|
|
UCLASS_DRIVER(i2c) = {
|
|
.id = UCLASS_I2C,
|
|
.name = "i2c",
|
|
.flags = DM_UC_FLAG_SEQ_ALIAS,
|
|
.post_bind = i2c_post_bind,
|
|
.pre_probe = i2c_pre_probe,
|
|
.post_probe = i2c_post_probe,
|
|
.per_device_auto = sizeof(struct dm_i2c_bus),
|
|
.per_child_plat_auto = sizeof(struct dm_i2c_chip),
|
|
.child_post_bind = i2c_child_post_bind,
|
|
};
|
|
|
|
Here, `_sandbox_i2c_uc_priv_i2c_at_0` is required by the uclass but is declared
|
|
in the device, as required by driver model. The required header file is included
|
|
so that the code will compile without errors. A similar mechanism is used for
|
|
child devices, but is not shown by this example.
|
|
|
|
It would not be that useful to avoid binding devices but still need to allocate
|
|
uclasses at runtime. So dtoc generates uclass instances as well::
|
|
|
|
struct list_head uclass_head = {
|
|
.prev = &DM_UCLASS_REF(serial)->sibling_node,
|
|
.next = &DM_UCLASS_REF(clk)->sibling_node,
|
|
};
|
|
|
|
DM_UCLASS_INST(clk) = {
|
|
.uc_drv = DM_UCLASS_DRIVER_REF(clk),
|
|
.sibling_node = {
|
|
.prev = &uclass_head,
|
|
.next = &DM_UCLASS_REF(i2c)->sibling_node,
|
|
},
|
|
.dev_head = {
|
|
.prev = &DM_DEVICE_REF(clk_sbox)->uclass_node,
|
|
.next = &DM_DEVICE_REF(clk_fixed)->uclass_node,
|
|
},
|
|
};
|
|
|
|
At the top is the list head. Driver model uses this on start-up, instead of
|
|
creating its own.
|
|
|
|
Below that are a set of `DM_UCLASS_INST()` macros, each declaring a
|
|
`struct uclass`. The doubly linked lists work as for devices.
|
|
|
|
All private data is placed into a `.priv_data` section so that it is contiguous
|
|
in the resulting output binary.
|
|
|
|
|
|
Indexes
|
|
-------
|
|
|
|
U-Boot stores drivers, devices and many other things in linker_list structures.
|
|
These are sorted by name, so dtoc knows the order that they will appear when
|
|
the linker runs. Each driver_info / udevice is referenced by its index in the
|
|
linker_list array, called 'idx' in the code.
|
|
|
|
When CONFIG_OF_PLATDATA_INST is enabled, idx is the udevice index, otherwise it
|
|
is the driver_info index. In either case, indexes are used to reference devices
|
|
using device_get_by_ofplat_idx(). This allows phandles to work as expected.
|
|
|
|
|
|
Phases
|
|
------
|
|
|
|
U-Boot operates in several phases, typically TPL, SPL and U-Boot proper.
|
|
The latter does not use dtoc.
|
|
|
|
In some rare cases different drivers are used for two phases. For example,
|
|
in TPL it may not be necessary to use the full PCI subsystem, so a simple
|
|
driver can be used instead.
|
|
|
|
This works in the build system simply by compiling in one driver or the
|
|
other (e.g. PCI driver + uclass for SPL; simple_bus for TPL). But dtoc has
|
|
no way of knowing which code is compiled in for which phase, since it does
|
|
not inspect Makefiles or dependency graphs.
|
|
|
|
So to make this work for dtoc, we need to be able to explicitly mark
|
|
drivers with their phase. This is done by adding a macro to the driver::
|
|
|
|
/* code in tpl.c only compiled into TPL */
|
|
U_BOOT_DRIVER(pci_x86) = {
|
|
.name = "pci_x86",
|
|
.id = UCLASS_SIMPLE_BUS,
|
|
.of_match = of_match_ptr(tpl_fake_pci_ids),
|
|
DM_PHASE(tpl)
|
|
};
|
|
|
|
|
|
/* code in pci_x86.c compiled into SPL and U-Boot proper */
|
|
U_BOOT_DRIVER(pci_x86) = {
|
|
.name = "pci_x86",
|
|
.id = UCLASS_PCI,
|
|
.of_match = pci_x86_ids,
|
|
.ops = &pci_x86_ops,
|
|
};
|
|
|
|
|
|
Notice that the second driver has the same name but no DM_PHASE(), so it will be
|
|
used for SPL and U-Boot.
|
|
|
|
Note also that this only affects the code generated by dtoc. You still need to
|
|
make sure that only the required driver is build into each phase.
|
|
|
|
|
|
Header files
|
|
------------
|
|
|
|
With OF_PLATDATA_INST, dtoc must include the correct header file in the
|
|
generated code for any structs that are used, so that the code will compile.
|
|
For example, if `struct ns16550_plat` is used, the code must include the
|
|
`ns16550.h` header file.
|
|
|
|
Typically dtoc can detect the header file needed for a driver by looking
|
|
for the structs that it uses. For example, if a driver as a `.priv_auto`
|
|
that uses `struct ns16550_plat`, then dtoc can search header files for the
|
|
definition of that struct and use the file.
|
|
|
|
In some cases, enums are used in drivers, typically with the `.data` field
|
|
of `struct udevice_id`. Since dtoc does not support searching for these,
|
|
you must use the `DM_HDR()` macro to tell dtoc which header to use. This works
|
|
as a macro included in the driver definition::
|
|
|
|
static const struct udevice_id apl_syscon_ids[] = {
|
|
{ .compatible = "intel,apl-punit", .data = X86_SYSCON_PUNIT },
|
|
{ }
|
|
};
|
|
|
|
U_BOOT_DRIVER(intel_apl_punit) = {
|
|
.name = "intel_apl_punit",
|
|
.id = UCLASS_SYSCON,
|
|
.of_match = apl_syscon_ids,
|
|
.probe = apl_punit_probe,
|
|
DM_HEADER(<asm/cpu.h>) /* for X86_SYSCON_PUNIT */
|
|
};
|
|
|
|
|
|
|
|
Caveats
|
|
-------
|
|
|
|
There are various complications with this feature which mean it should only
|
|
be used when strictly necessary, i.e. in SPL with limited memory. Notable
|
|
caveats include:
|
|
|
|
- Device tree does not describe data types. But the C code must define a
|
|
type for each property. These are guessed using heuristics which
|
|
are wrong in several fairly common cases. For example an 8-byte value
|
|
is considered to be a 2-item integer array, and is byte-swapped. A
|
|
boolean value that is not present means 'false', but cannot be
|
|
included in the structures since there is generally no mention of it
|
|
in the devicetree file.
|
|
|
|
- Naming of nodes and properties is automatic. This means that they follow
|
|
the naming in the devicetree, which may result in C identifiers that
|
|
look a bit strange.
|
|
|
|
- It is not possible to find a value given a property name. Code must use
|
|
the associated C member variable directly in the code. This makes
|
|
the code less robust in the face of devicetree changes. To avoid having
|
|
a second struct with similar members and names you need to explicitly
|
|
declare it as an alias with `DM_DRIVER_ALIAS()`.
|
|
|
|
- The platform data is provided to drivers as a C structure. The driver
|
|
must use the same structure to access the data. Since a driver
|
|
normally also supports devicetree it must use `#ifdef` to separate
|
|
out this code, since the structures are only available in SPL. This could
|
|
be fixed fairly easily by making the structs available outside SPL, so
|
|
that `IS_ENABLED()` could be used.
|
|
|
|
- With CONFIG_OF_PLATDATA_INST all binding happens at build-time, meaning
|
|
that (by default) it is not possible to call `device_bind()` from C code.
|
|
This means that all devices must have an associated devicetree node and
|
|
compatible string. For example if a GPIO device currently creates child
|
|
devices in its `bind()` method, it will not work with
|
|
CONFIG_OF_PLATDATA_INST. Arguably this is bad practice anyway and the
|
|
devicetree binding should be updated to declare compatible strings for
|
|
the child devices. It is possible to disable OF_PLATDATA_NO_BIND but this
|
|
is not recommended since it increases code size.
|
|
|
|
|
|
Internals
|
|
---------
|
|
|
|
Generated files
|
|
```````````````
|
|
|
|
When enabled, dtoc generates the following five files:
|
|
|
|
include/generated/dt-decl.h (OF_PLATDATA_INST only)
|
|
Contains declarations for all drivers, devices and uclasses. This allows
|
|
any `struct udevice`, `struct driver` or `struct uclass` to be located by its
|
|
name
|
|
|
|
include/generated/dt-structs-gen.h
|
|
Contains the struct definitions for the devicetree nodes that are used. This
|
|
is the same as without OF_PLATDATA_INST
|
|
|
|
spl/dts/dt-plat.c (only with !OF_PLATDATA_INST)
|
|
Contains the `U_BOOT_DRVINFO()` declarations that U-Boot uses to bind devices
|
|
at start-up. See above for an example
|
|
|
|
spl/dts/dt-device.c (only with OF_PLATDATA_INST)
|
|
Contains `DM_DEVICE_INST()` declarations for each device that can be used at
|
|
run-time. These are declared in the file along with any private/platform data
|
|
that they use. Every device has an idx, as above. Since each device must be
|
|
part of a double-linked list, the nodes are declared in the code as well.
|
|
|
|
spl/dts/dt-uclass.c (only with OF_PLATDATA_INST)
|
|
Contains `DM_UCLASS_INST()` declarations for each uclass that can be used at
|
|
run-time. These are declared in the file along with any private data
|
|
associated with the uclass itself (the `.priv_auto` member). Since each
|
|
uclass must be part of a double-linked list, the nodes are declared in the
|
|
code as well.
|
|
|
|
The dt-structs.h file includes the generated file
|
|
`(include/generated/dt-structs.h`) if CONFIG_SPL_OF_PLATDATA is enabled.
|
|
Otherwise (such as in U-Boot proper) these structs are not available. This
|
|
prevents them being used inadvertently. All usage must be bracketed with
|
|
`#if CONFIG_IS_ENABLED(OF_PLATDATA)`.
|
|
|
|
The dt-plat.c file contains the device declarations and is is built in
|
|
spl/dt-plat.c.
|
|
|
|
|
|
CONFIG options
|
|
``````````````
|
|
|
|
Several CONFIG options are used to control the behaviour of of-platdata, all
|
|
available for both SPL and TPL:
|
|
|
|
OF_PLATDATA
|
|
This is the main option which enables the of-platdata feature
|
|
|
|
OF_PLATDATA_PARENT
|
|
This allows `device_get_parent()` to work. Without this, all devices exist as
|
|
direct children of the root node. This option is highly desirable (if not
|
|
always absolutely essential) for buses such as I2C.
|
|
|
|
OF_PLATDATA_INST
|
|
This controls the instantiation of devices at build time. With it disabled,
|
|
only `U_BOOT_DRVINFO()` records are created, with U-Boot handling the binding
|
|
in `device_bind()` on start-up. With it enabled, only `DM_DEVICE_INST()` and
|
|
`DM_UCLASS_INST()` records are created, and `device_bind()` is not needed at
|
|
runtime.
|
|
|
|
OF_PLATDATA_NO_BIND
|
|
This controls whether `device_bind()` is supported. It is enabled by default
|
|
with OF_PLATDATA_INST since code-size reduction is really the main point of
|
|
the feature. It can be disabled if needed but is not likely to be supported
|
|
in the long term.
|
|
|
|
OF_PLATDATA_DRIVER_RT
|
|
This controls whether the `struct driver_rt` records are used by U-Boot.
|
|
Normally when a device is bound, U-Boot stores the device pointer in one of
|
|
these records. There is one for every `struct driver_info` in the system,
|
|
i.e. one for every device that is bound from those records. It provides a
|
|
way to locate a device in the code and is used by
|
|
`device_get_by_ofplat_idx()`. This option is always enabled with of-platdata,
|
|
provided OF_PLATDATA_INST is not. In that case the records are useless since
|
|
we don't have any `struct driver_info` records.
|
|
|
|
OF_PLATDATA_RT
|
|
This controls whether the `struct udevice_rt` records are used by U-Boot.
|
|
It moves the updatable fields from `struct udevice` (currently only `flags`)
|
|
into a separate structure, allowing the records to be kept in read-only
|
|
memory. It is generally enabled if OF_PLATDATA_INST is enabled. This option
|
|
also controls whether the private data is used in situ, or first copied into
|
|
an allocated region. Again this is to allow the private data declared by
|
|
dtoc-generated code to be in read-only memory. Note that access to private
|
|
data must be done via accessor functions, such as `dev_get_priv()`, so that
|
|
the relocation is handled.
|
|
|
|
READ_ONLY
|
|
This indicates that the data generated by dtoc should not be modified. Only
|
|
a few fields actually do get changed in U-Boot, such as device flags. This
|
|
option causes those to move into an allocated space (see OF_PLATDATA_RT).
|
|
Also, since updating doubly linked lists is generally impossible when some of
|
|
the nodes cannot be updated, OF_PLATDATA_NO_BIND is enabled.
|
|
|
|
Data structures
|
|
```````````````
|
|
|
|
A few extra data structures are used with of-platdata:
|
|
|
|
`struct udevice_rt`
|
|
Run-time information for devices. When OF_PLATDATA_RT is enabled, this holds
|
|
the flags for each device, so that `struct udevice` can remain unchanged by
|
|
U-Boot, and potentially reside in read-only memory. Access to flags is then
|
|
via functions like `dev_get_flags()` and `dev_or_flags()`. This data
|
|
structure is allocated on start-up, where the private data is also copied.
|
|
All flags values start at 0 and any changes are handled by `dev_or_flags()`
|
|
and `dev_bic_flags()`. It would be more correct for the flags to be set to
|
|
`DM_FLAG_BOUND`, or perhaps `DM_FLAG_BOUND | DM_FLAG_ALLOC_PDATA`, but since
|
|
there is no code to bind/unbind devices and no code to allocate/free
|
|
private data / platform data, it doesn't matter.
|
|
|
|
`struct driver_rt`
|
|
Run-time information for `struct driver_info` records. When
|
|
OF_PLATDATA_DRIVER_RT is enabled, this holds a pointer to the device
|
|
created by each record. This is needed so that is it possible to locate a
|
|
device from C code. Specifically, the code can use `DM_DRVINFO_GET(name)` to
|
|
get a reference to a particular `struct driver_info`, with `name` being the
|
|
name of the devicetree node. This is very convenient. It is also fast, since
|
|
no searching or string comparison is needed. This data structure is
|
|
allocated on start-up, filled out by `device_bind()` and used by
|
|
`device_get_by_ofplat_idx()`.
|
|
|
|
Other changes
|
|
`````````````
|
|
|
|
Some other changes are made with of-platdata:
|
|
|
|
Accessor functions
|
|
Accessing private / platform data via functions such as `dev_get_priv()` has
|
|
always been encouraged. With OF_PLATDATA_RT this is essential, since the
|
|
`priv_` and `plat_` (etc.) values point to the data generated by dtoc, not
|
|
the read-write copy that is sometimes made on start-up. Changing the
|
|
private / platform data pointers has always been discouraged (the API is
|
|
marked internal) but with OF_PLATDATA_RT this is not currently supported in
|
|
general, since it assumes that all such pointers point to the relocated data.
|
|
Note also that the renaming of struct members to have a trailing underscore
|
|
was partly done to make people aware that they should not be accessed
|
|
directly.
|
|
|
|
`gd->uclass_root_s`
|
|
Normally U-Boot sets up the head of the uclass list here and makes
|
|
`gd->uclass_root` point to it. With OF_PLATDATA_INST, dtoc generates a
|
|
declaration of `uclass_head` in `dt-uclass.c` since it needs to link the
|
|
head node into the list. In that case, `gd->uclass_root_s` is not used and
|
|
U-Boot just makes `gd->uclass_root` point to `uclass_head`.
|
|
|
|
`gd->dm_driver_rt`
|
|
This holds a pointer to a list of `struct driver_rt` records, one for each
|
|
`struct driver_info`. The list is in alphabetical order by the name used
|
|
in `U_BOOT_DRVINFO(name)` and indexed by idx, with the first record having
|
|
an index of 0. It is only used if OF_PLATDATA_INST is not enabled. This is
|
|
accessed via macros so that it can be used inside IS_ENABLED(), rather than
|
|
requiring #ifdefs in the C code when it is not present.
|
|
|
|
`gd->dm_udevice_rt`
|
|
This holds a pointer to a list of `struct udevice_rt` records, one for each
|
|
`struct udevice`. The list is in alphabetical order by the name used
|
|
in `DM_DEVICE_INST(name)` (a C version of the devicetree node) and indexed by
|
|
idx, with the first record having an index of 0. It is only used if
|
|
OF_PLATDATA_INST is enabled. This is accessed via macros so that it can be
|
|
used inside `IS_ENABLED()`, rather than requiring #ifdefs in the C code when
|
|
it is not present.
|
|
|
|
`gd->dm_priv_base`
|
|
When OF_PLATDATA_RT is enabled, the private/platform data for each device is
|
|
copied into an allocated region by U-Boot on start-up. This points to that
|
|
region. All calls to accessor functions (e.g. `dev_get_priv()`) then
|
|
translate from the pointer provided by the caller (assumed to lie between
|
|
`__priv_data_start` and `__priv_data_end`) to the new allocated region. This
|
|
member is accessed via macros so that it can be used inside IS_ENABLED(),
|
|
rather than required #ifdefs in the C code when it is not present.
|
|
|
|
`struct udevice->flags_`
|
|
When OF_PLATDATA_RT is enabled, device flags are no-longer part of
|
|
`struct udevice`, but are instead kept in `struct udevice_rt`, as described
|
|
above. Flags are accessed via functions, such as `dev_get_flags()` and
|
|
`dev_or_flags()`.
|
|
|
|
`struct udevice->node_`
|
|
When OF_PLATDATA is enabled, there is no devicetree at runtime, so no need
|
|
for this field. It is removed, just to save space.
|
|
|
|
`DM_PHASE`
|
|
This macro is used to indicate which phase of U-Boot a driver is intended
|
|
for. See above for details.
|
|
|
|
`DM_HDR`
|
|
This macro is used to indicate which header file dtoc should use to allow
|
|
a driver declaration to compile correctly. See above for details.
|
|
|
|
`device_get_by_ofplat_idx()`
|
|
There used to be a function called `device_get_by_driver_info()` which
|
|
looked up a `struct driver_info` pointer and returned the `struct udevice`
|
|
that was created from it. It was only available for use with of-platdata.
|
|
This has been removed in favour of `device_get_by_ofplat_idx()` which uses
|
|
`idx`, the index of the `struct driver_info` or `struct udevice` in the
|
|
linker_list. Similarly, the `struct phandle_0_arg` (etc.) structs have been
|
|
updated to use this index instead of a pointer to `struct driver_info`.
|
|
|
|
`DM_DRVINFO_GET`
|
|
This has been removed since we now use indexes to obtain a driver from
|
|
`struct phandle_0_arg` and the like.
|
|
|
|
Two-pass binding
|
|
The original of-platdata tried to order `U_BOOT_DRVINFO()` in the generated
|
|
files so as to have parents declared ahead of children. This was convenient
|
|
as it avoided any special code in U-Boot. With OF_PLATDATA_INST this does
|
|
not work as the idx value relies on using alphabetical order for everything,
|
|
so that dtoc and U-Boot's linker_lists agree on the idx value. Devices are
|
|
then bound in order of idx, having no regard to parent/child relationships.
|
|
For this reason, device binding now hapens in multiple passes, with parents
|
|
being bound before their children. This is important so that children can
|
|
find their parents in the bind() method if needed.
|
|
|
|
Root device
|
|
The root device is generally bound by U-Boot but with OF_PLATDATA_INST it
|
|
cannot be, since binding needs to be done at build time. So in this case
|
|
dtoc sets up a root device using `DM_DEVICE_INST()` in `dt-device.c` and
|
|
U-Boot makes use of that. When OF_PLATDATA_INST is not enabled, U-Boot
|
|
generally ignores the root node and does not create a `U_BOOT_DRVINFO()`
|
|
record for it. This means that the idx numbers used by `struct driver_info`
|
|
(when OF_PLATDATA_INST is disabled) and the idx numbers used by
|
|
`struct udevice` (when OF_PLATDATA_INST is enabled) differ, since one has a
|
|
root node and the other does not. This does not actually matter, since only
|
|
one of them is actually used for any particular build, but it is worth
|
|
keeping in mind if comparing index values and switching OF_PLATDATA_INST on
|
|
and off.
|
|
|
|
`__priv_data_start` and `__priv_data_end`
|
|
The private/platform data declared by dtoc is all collected together in
|
|
a linker section and these symbols mark the start and end of it. This allows
|
|
U-Boot to relocate the area to a new location if needed (with
|
|
OF_PLATDATA_RT)
|
|
|
|
`dm_priv_to_rw()`
|
|
This function converts a private- or platform-data pointer value generated by
|
|
dtoc into one that can be used by U-Boot. It is a NOP unless OF_PLATDATA_RT
|
|
is enabled, in which case it translates the address to the relocated
|
|
region. See above for more information.
|
|
|
|
The dm_populate_phandle_data() function that was previous needed has now been
|
|
removed, since dtoc can address the drivers directly from dt-plat.c and does
|
|
not need to fix up things at runtime.
|
|
|
|
The pylibfdt Python module is used to access the devicetree.
|
|
|
|
|
|
Credits
|
|
-------
|
|
|
|
This is an implementation of an idea by Tom Rini <trini@konsulko.com>.
|
|
|
|
|
|
Future work
|
|
-----------
|
|
- Consider programmatically reading binding files instead of devicetree
|
|
contents
|
|
- Allow IS_ENABLED() to be used in the C code instead of #if
|
|
|
|
|
|
.. Simon Glass <sjg@chromium.org>
|
|
.. Google, Inc
|
|
.. 6/6/16
|
|
.. Updated Independence Day 2016
|
|
.. Updated 1st October 2020
|
|
.. Updated 5th February 2021
|