mirror of
https://github.com/AsahiLinux/u-boot
synced 2024-11-11 15:37:23 +00:00
1001502545
While converting CONFIG_SYS_[DI]CACHE_OFF to Kconfig, there are instances where these configuration items are conditional on SPL. This commit adds SPL variants of these configuration items, uses CONFIG_IS_ENABLED(), and updates the configurations as required. Acked-by: Alexey Brodkin <abrodkin@synopsys.com> Signed-off-by: Trevor Woerner <trevor@toganlabs.com> [trini: Make the default depend on the setting for full U-Boot, update more zynq hardware] Signed-off-by: Tom Rini <trini@konsulko.com>
660 lines
14 KiB
C
660 lines
14 KiB
C
// SPDX-License-Identifier: GPL-2.0+
|
|
/*
|
|
* Copyright 2018 NXP
|
|
*/
|
|
|
|
#include <common.h>
|
|
#include <clk.h>
|
|
#include <cpu.h>
|
|
#include <dm.h>
|
|
#include <dm/device-internal.h>
|
|
#include <dm/lists.h>
|
|
#include <dm/uclass.h>
|
|
#include <errno.h>
|
|
#include <asm/arch/sci/sci.h>
|
|
#include <asm/arch/sys_proto.h>
|
|
#include <asm/arch-imx/cpu.h>
|
|
#include <asm/armv8/cpu.h>
|
|
#include <asm/armv8/mmu.h>
|
|
#include <asm/mach-imx/boot_mode.h>
|
|
|
|
DECLARE_GLOBAL_DATA_PTR;
|
|
|
|
#define BT_PASSOVER_TAG 0x504F
|
|
struct pass_over_info_t *get_pass_over_info(void)
|
|
{
|
|
struct pass_over_info_t *p =
|
|
(struct pass_over_info_t *)PASS_OVER_INFO_ADDR;
|
|
|
|
if (p->barker != BT_PASSOVER_TAG ||
|
|
p->len != sizeof(struct pass_over_info_t))
|
|
return NULL;
|
|
|
|
return p;
|
|
}
|
|
|
|
int arch_cpu_init(void)
|
|
{
|
|
#ifdef CONFIG_SPL_BUILD
|
|
struct pass_over_info_t *pass_over;
|
|
|
|
if (is_soc_rev(CHIP_REV_A)) {
|
|
pass_over = get_pass_over_info();
|
|
if (pass_over && pass_over->g_ap_mu == 0) {
|
|
/*
|
|
* When ap_mu is 0, means the U-Boot booted
|
|
* from first container
|
|
*/
|
|
sc_misc_boot_status(-1, SC_MISC_BOOT_STATUS_SUCCESS);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
return 0;
|
|
}
|
|
|
|
int arch_cpu_init_dm(void)
|
|
{
|
|
struct udevice *devp;
|
|
int node, ret;
|
|
|
|
node = fdt_node_offset_by_compatible(gd->fdt_blob, -1, "fsl,imx8-mu");
|
|
ret = device_bind_driver_to_node(gd->dm_root, "imx8_scu", "imx8_scu",
|
|
offset_to_ofnode(node), &devp);
|
|
|
|
if (ret) {
|
|
printf("could not find scu %d\n", ret);
|
|
return ret;
|
|
}
|
|
|
|
ret = device_probe(devp);
|
|
if (ret) {
|
|
printf("scu probe failed %d\n", ret);
|
|
return ret;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
int print_bootinfo(void)
|
|
{
|
|
enum boot_device bt_dev = get_boot_device();
|
|
|
|
puts("Boot: ");
|
|
switch (bt_dev) {
|
|
case SD1_BOOT:
|
|
puts("SD0\n");
|
|
break;
|
|
case SD2_BOOT:
|
|
puts("SD1\n");
|
|
break;
|
|
case SD3_BOOT:
|
|
puts("SD2\n");
|
|
break;
|
|
case MMC1_BOOT:
|
|
puts("MMC0\n");
|
|
break;
|
|
case MMC2_BOOT:
|
|
puts("MMC1\n");
|
|
break;
|
|
case MMC3_BOOT:
|
|
puts("MMC2\n");
|
|
break;
|
|
case FLEXSPI_BOOT:
|
|
puts("FLEXSPI\n");
|
|
break;
|
|
case SATA_BOOT:
|
|
puts("SATA\n");
|
|
break;
|
|
case NAND_BOOT:
|
|
puts("NAND\n");
|
|
break;
|
|
case USB_BOOT:
|
|
puts("USB\n");
|
|
break;
|
|
default:
|
|
printf("Unknown device %u\n", bt_dev);
|
|
break;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
enum boot_device get_boot_device(void)
|
|
{
|
|
enum boot_device boot_dev = SD1_BOOT;
|
|
|
|
sc_rsrc_t dev_rsrc;
|
|
|
|
sc_misc_get_boot_dev(-1, &dev_rsrc);
|
|
|
|
switch (dev_rsrc) {
|
|
case SC_R_SDHC_0:
|
|
boot_dev = MMC1_BOOT;
|
|
break;
|
|
case SC_R_SDHC_1:
|
|
boot_dev = SD2_BOOT;
|
|
break;
|
|
case SC_R_SDHC_2:
|
|
boot_dev = SD3_BOOT;
|
|
break;
|
|
case SC_R_NAND:
|
|
boot_dev = NAND_BOOT;
|
|
break;
|
|
case SC_R_FSPI_0:
|
|
boot_dev = FLEXSPI_BOOT;
|
|
break;
|
|
case SC_R_SATA_0:
|
|
boot_dev = SATA_BOOT;
|
|
break;
|
|
case SC_R_USB_0:
|
|
case SC_R_USB_1:
|
|
case SC_R_USB_2:
|
|
boot_dev = USB_BOOT;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
return boot_dev;
|
|
}
|
|
|
|
#ifdef CONFIG_ENV_IS_IN_MMC
|
|
__weak int board_mmc_get_env_dev(int devno)
|
|
{
|
|
return CONFIG_SYS_MMC_ENV_DEV;
|
|
}
|
|
|
|
int mmc_get_env_dev(void)
|
|
{
|
|
sc_rsrc_t dev_rsrc;
|
|
int devno;
|
|
|
|
sc_misc_get_boot_dev(-1, &dev_rsrc);
|
|
|
|
switch (dev_rsrc) {
|
|
case SC_R_SDHC_0:
|
|
devno = 0;
|
|
break;
|
|
case SC_R_SDHC_1:
|
|
devno = 1;
|
|
break;
|
|
case SC_R_SDHC_2:
|
|
devno = 2;
|
|
break;
|
|
default:
|
|
/* If not boot from sd/mmc, use default value */
|
|
return CONFIG_SYS_MMC_ENV_DEV;
|
|
}
|
|
|
|
return board_mmc_get_env_dev(devno);
|
|
}
|
|
#endif
|
|
|
|
#define MEMSTART_ALIGNMENT SZ_2M /* Align the memory start with 2MB */
|
|
|
|
static int get_owned_memreg(sc_rm_mr_t mr, sc_faddr_t *addr_start,
|
|
sc_faddr_t *addr_end)
|
|
{
|
|
sc_faddr_t start, end;
|
|
int ret;
|
|
bool owned;
|
|
|
|
owned = sc_rm_is_memreg_owned(-1, mr);
|
|
if (owned) {
|
|
ret = sc_rm_get_memreg_info(-1, mr, &start, &end);
|
|
if (ret) {
|
|
printf("Memreg get info failed, %d\n", ret);
|
|
return -EINVAL;
|
|
}
|
|
debug("0x%llx -- 0x%llx\n", start, end);
|
|
*addr_start = start;
|
|
*addr_end = end;
|
|
|
|
return 0;
|
|
}
|
|
|
|
return -EINVAL;
|
|
}
|
|
|
|
phys_size_t get_effective_memsize(void)
|
|
{
|
|
sc_rm_mr_t mr;
|
|
sc_faddr_t start, end, end1;
|
|
int err;
|
|
|
|
end1 = (sc_faddr_t)PHYS_SDRAM_1 + PHYS_SDRAM_1_SIZE;
|
|
|
|
for (mr = 0; mr < 64; mr++) {
|
|
err = get_owned_memreg(mr, &start, &end);
|
|
if (!err) {
|
|
start = roundup(start, MEMSTART_ALIGNMENT);
|
|
/* Too small memory region, not use it */
|
|
if (start > end)
|
|
continue;
|
|
|
|
/* Find the memory region runs the U-Boot */
|
|
if (start >= PHYS_SDRAM_1 && start <= end1 &&
|
|
(start <= CONFIG_SYS_TEXT_BASE &&
|
|
end >= CONFIG_SYS_TEXT_BASE)) {
|
|
if ((end + 1) <= ((sc_faddr_t)PHYS_SDRAM_1 +
|
|
PHYS_SDRAM_1_SIZE))
|
|
return (end - PHYS_SDRAM_1 + 1);
|
|
else
|
|
return PHYS_SDRAM_1_SIZE;
|
|
}
|
|
}
|
|
}
|
|
|
|
return PHYS_SDRAM_1_SIZE;
|
|
}
|
|
|
|
int dram_init(void)
|
|
{
|
|
sc_rm_mr_t mr;
|
|
sc_faddr_t start, end, end1, end2;
|
|
int err;
|
|
|
|
end1 = (sc_faddr_t)PHYS_SDRAM_1 + PHYS_SDRAM_1_SIZE;
|
|
end2 = (sc_faddr_t)PHYS_SDRAM_2 + PHYS_SDRAM_2_SIZE;
|
|
for (mr = 0; mr < 64; mr++) {
|
|
err = get_owned_memreg(mr, &start, &end);
|
|
if (!err) {
|
|
start = roundup(start, MEMSTART_ALIGNMENT);
|
|
/* Too small memory region, not use it */
|
|
if (start > end)
|
|
continue;
|
|
|
|
if (start >= PHYS_SDRAM_1 && start <= end1) {
|
|
if ((end + 1) <= end1)
|
|
gd->ram_size += end - start + 1;
|
|
else
|
|
gd->ram_size += end1 - start;
|
|
} else if (start >= PHYS_SDRAM_2 && start <= end2) {
|
|
if ((end + 1) <= end2)
|
|
gd->ram_size += end - start + 1;
|
|
else
|
|
gd->ram_size += end2 - start;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* If error, set to the default value */
|
|
if (!gd->ram_size) {
|
|
gd->ram_size = PHYS_SDRAM_1_SIZE;
|
|
gd->ram_size += PHYS_SDRAM_2_SIZE;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static void dram_bank_sort(int current_bank)
|
|
{
|
|
phys_addr_t start;
|
|
phys_size_t size;
|
|
|
|
while (current_bank > 0) {
|
|
if (gd->bd->bi_dram[current_bank - 1].start >
|
|
gd->bd->bi_dram[current_bank].start) {
|
|
start = gd->bd->bi_dram[current_bank - 1].start;
|
|
size = gd->bd->bi_dram[current_bank - 1].size;
|
|
|
|
gd->bd->bi_dram[current_bank - 1].start =
|
|
gd->bd->bi_dram[current_bank].start;
|
|
gd->bd->bi_dram[current_bank - 1].size =
|
|
gd->bd->bi_dram[current_bank].size;
|
|
|
|
gd->bd->bi_dram[current_bank].start = start;
|
|
gd->bd->bi_dram[current_bank].size = size;
|
|
}
|
|
current_bank--;
|
|
}
|
|
}
|
|
|
|
int dram_init_banksize(void)
|
|
{
|
|
sc_rm_mr_t mr;
|
|
sc_faddr_t start, end, end1, end2;
|
|
int i = 0;
|
|
int err;
|
|
|
|
end1 = (sc_faddr_t)PHYS_SDRAM_1 + PHYS_SDRAM_1_SIZE;
|
|
end2 = (sc_faddr_t)PHYS_SDRAM_2 + PHYS_SDRAM_2_SIZE;
|
|
|
|
for (mr = 0; mr < 64 && i < CONFIG_NR_DRAM_BANKS; mr++) {
|
|
err = get_owned_memreg(mr, &start, &end);
|
|
if (!err) {
|
|
start = roundup(start, MEMSTART_ALIGNMENT);
|
|
if (start > end) /* Small memory region, no use it */
|
|
continue;
|
|
|
|
if (start >= PHYS_SDRAM_1 && start <= end1) {
|
|
gd->bd->bi_dram[i].start = start;
|
|
|
|
if ((end + 1) <= end1)
|
|
gd->bd->bi_dram[i].size =
|
|
end - start + 1;
|
|
else
|
|
gd->bd->bi_dram[i].size = end1 - start;
|
|
|
|
dram_bank_sort(i);
|
|
i++;
|
|
} else if (start >= PHYS_SDRAM_2 && start <= end2) {
|
|
gd->bd->bi_dram[i].start = start;
|
|
|
|
if ((end + 1) <= end2)
|
|
gd->bd->bi_dram[i].size =
|
|
end - start + 1;
|
|
else
|
|
gd->bd->bi_dram[i].size = end2 - start;
|
|
|
|
dram_bank_sort(i);
|
|
i++;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* If error, set to the default value */
|
|
if (!i) {
|
|
gd->bd->bi_dram[0].start = PHYS_SDRAM_1;
|
|
gd->bd->bi_dram[0].size = PHYS_SDRAM_1_SIZE;
|
|
gd->bd->bi_dram[1].start = PHYS_SDRAM_2;
|
|
gd->bd->bi_dram[1].size = PHYS_SDRAM_2_SIZE;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static u64 get_block_attrs(sc_faddr_t addr_start)
|
|
{
|
|
u64 attr = PTE_BLOCK_MEMTYPE(MT_DEVICE_NGNRNE) | PTE_BLOCK_NON_SHARE |
|
|
PTE_BLOCK_PXN | PTE_BLOCK_UXN;
|
|
|
|
if ((addr_start >= PHYS_SDRAM_1 &&
|
|
addr_start <= ((sc_faddr_t)PHYS_SDRAM_1 + PHYS_SDRAM_1_SIZE)) ||
|
|
(addr_start >= PHYS_SDRAM_2 &&
|
|
addr_start <= ((sc_faddr_t)PHYS_SDRAM_2 + PHYS_SDRAM_2_SIZE)))
|
|
return (PTE_BLOCK_MEMTYPE(MT_NORMAL) | PTE_BLOCK_OUTER_SHARE);
|
|
|
|
return attr;
|
|
}
|
|
|
|
static u64 get_block_size(sc_faddr_t addr_start, sc_faddr_t addr_end)
|
|
{
|
|
sc_faddr_t end1, end2;
|
|
|
|
end1 = (sc_faddr_t)PHYS_SDRAM_1 + PHYS_SDRAM_1_SIZE;
|
|
end2 = (sc_faddr_t)PHYS_SDRAM_2 + PHYS_SDRAM_2_SIZE;
|
|
|
|
if (addr_start >= PHYS_SDRAM_1 && addr_start <= end1) {
|
|
if ((addr_end + 1) > end1)
|
|
return end1 - addr_start;
|
|
} else if (addr_start >= PHYS_SDRAM_2 && addr_start <= end2) {
|
|
if ((addr_end + 1) > end2)
|
|
return end2 - addr_start;
|
|
}
|
|
|
|
return (addr_end - addr_start + 1);
|
|
}
|
|
|
|
#define MAX_PTE_ENTRIES 512
|
|
#define MAX_MEM_MAP_REGIONS 16
|
|
|
|
static struct mm_region imx8_mem_map[MAX_MEM_MAP_REGIONS];
|
|
struct mm_region *mem_map = imx8_mem_map;
|
|
|
|
void enable_caches(void)
|
|
{
|
|
sc_rm_mr_t mr;
|
|
sc_faddr_t start, end;
|
|
int err, i;
|
|
|
|
/* Create map for registers access from 0x1c000000 to 0x80000000*/
|
|
imx8_mem_map[0].virt = 0x1c000000UL;
|
|
imx8_mem_map[0].phys = 0x1c000000UL;
|
|
imx8_mem_map[0].size = 0x64000000UL;
|
|
imx8_mem_map[0].attrs = PTE_BLOCK_MEMTYPE(MT_DEVICE_NGNRNE) |
|
|
PTE_BLOCK_NON_SHARE | PTE_BLOCK_PXN | PTE_BLOCK_UXN;
|
|
|
|
i = 1;
|
|
for (mr = 0; mr < 64 && i < MAX_MEM_MAP_REGIONS; mr++) {
|
|
err = get_owned_memreg(mr, &start, &end);
|
|
if (!err) {
|
|
imx8_mem_map[i].virt = start;
|
|
imx8_mem_map[i].phys = start;
|
|
imx8_mem_map[i].size = get_block_size(start, end);
|
|
imx8_mem_map[i].attrs = get_block_attrs(start);
|
|
i++;
|
|
}
|
|
}
|
|
|
|
if (i < MAX_MEM_MAP_REGIONS) {
|
|
imx8_mem_map[i].size = 0;
|
|
imx8_mem_map[i].attrs = 0;
|
|
} else {
|
|
puts("Error, need more MEM MAP REGIONS reserved\n");
|
|
icache_enable();
|
|
return;
|
|
}
|
|
|
|
for (i = 0; i < MAX_MEM_MAP_REGIONS; i++) {
|
|
debug("[%d] vir = 0x%llx phys = 0x%llx size = 0x%llx attrs = 0x%llx\n",
|
|
i, imx8_mem_map[i].virt, imx8_mem_map[i].phys,
|
|
imx8_mem_map[i].size, imx8_mem_map[i].attrs);
|
|
}
|
|
|
|
icache_enable();
|
|
dcache_enable();
|
|
}
|
|
|
|
#if !CONFIG_IS_ENABLED(SYS_DCACHE_OFF)
|
|
u64 get_page_table_size(void)
|
|
{
|
|
u64 one_pt = MAX_PTE_ENTRIES * sizeof(u64);
|
|
u64 size = 0;
|
|
|
|
/*
|
|
* For each memory region, the max table size:
|
|
* 2 level 3 tables + 2 level 2 tables + 1 level 1 table
|
|
*/
|
|
size = (2 + 2 + 1) * one_pt * MAX_MEM_MAP_REGIONS + one_pt;
|
|
|
|
/*
|
|
* We need to duplicate our page table once to have an emergency pt to
|
|
* resort to when splitting page tables later on
|
|
*/
|
|
size *= 2;
|
|
|
|
/*
|
|
* We may need to split page tables later on if dcache settings change,
|
|
* so reserve up to 4 (random pick) page tables for that.
|
|
*/
|
|
size += one_pt * 4;
|
|
|
|
return size;
|
|
}
|
|
#endif
|
|
|
|
#define FUSE_MAC0_WORD0 708
|
|
#define FUSE_MAC0_WORD1 709
|
|
#define FUSE_MAC1_WORD0 710
|
|
#define FUSE_MAC1_WORD1 711
|
|
|
|
void imx_get_mac_from_fuse(int dev_id, unsigned char *mac)
|
|
{
|
|
u32 word[2], val[2] = {};
|
|
int i, ret;
|
|
|
|
if (dev_id == 0) {
|
|
word[0] = FUSE_MAC0_WORD0;
|
|
word[1] = FUSE_MAC0_WORD1;
|
|
} else {
|
|
word[0] = FUSE_MAC1_WORD0;
|
|
word[1] = FUSE_MAC1_WORD1;
|
|
}
|
|
|
|
for (i = 0; i < 2; i++) {
|
|
ret = sc_misc_otp_fuse_read(-1, word[i], &val[i]);
|
|
if (ret < 0)
|
|
goto err;
|
|
}
|
|
|
|
mac[0] = val[0];
|
|
mac[1] = val[0] >> 8;
|
|
mac[2] = val[0] >> 16;
|
|
mac[3] = val[0] >> 24;
|
|
mac[4] = val[1];
|
|
mac[5] = val[1] >> 8;
|
|
|
|
debug("%s: MAC%d: %02x.%02x.%02x.%02x.%02x.%02x\n",
|
|
__func__, dev_id, mac[0], mac[1], mac[2], mac[3], mac[4], mac[5]);
|
|
return;
|
|
err:
|
|
printf("%s: fuse %d, err: %d\n", __func__, word[i], ret);
|
|
}
|
|
|
|
u32 get_cpu_rev(void)
|
|
{
|
|
u32 id = 0, rev = 0;
|
|
int ret;
|
|
|
|
ret = sc_misc_get_control(-1, SC_R_SYSTEM, SC_C_ID, &id);
|
|
if (ret)
|
|
return 0;
|
|
|
|
rev = (id >> 5) & 0xf;
|
|
id = (id & 0x1f) + MXC_SOC_IMX8; /* Dummy ID for chip */
|
|
|
|
return (id << 12) | rev;
|
|
}
|
|
|
|
#if CONFIG_IS_ENABLED(CPU)
|
|
struct cpu_imx_platdata {
|
|
const char *name;
|
|
const char *rev;
|
|
const char *type;
|
|
u32 cpurev;
|
|
u32 freq_mhz;
|
|
};
|
|
|
|
const char *get_imx8_type(u32 imxtype)
|
|
{
|
|
switch (imxtype) {
|
|
case MXC_CPU_IMX8QXP:
|
|
case MXC_CPU_IMX8QXP_A0:
|
|
return "QXP";
|
|
case MXC_CPU_IMX8QM:
|
|
return "QM";
|
|
default:
|
|
return "??";
|
|
}
|
|
}
|
|
|
|
const char *get_imx8_rev(u32 rev)
|
|
{
|
|
switch (rev) {
|
|
case CHIP_REV_A:
|
|
return "A";
|
|
case CHIP_REV_B:
|
|
return "B";
|
|
default:
|
|
return "?";
|
|
}
|
|
}
|
|
|
|
const char *get_core_name(void)
|
|
{
|
|
if (is_cortex_a35())
|
|
return "A35";
|
|
else if (is_cortex_a53())
|
|
return "A53";
|
|
else if (is_cortex_a72())
|
|
return "A72";
|
|
else
|
|
return "?";
|
|
}
|
|
|
|
int cpu_imx_get_desc(struct udevice *dev, char *buf, int size)
|
|
{
|
|
struct cpu_imx_platdata *plat = dev_get_platdata(dev);
|
|
|
|
if (size < 100)
|
|
return -ENOSPC;
|
|
|
|
snprintf(buf, size, "NXP i.MX8%s Rev%s %s at %u MHz\n",
|
|
plat->type, plat->rev, plat->name, plat->freq_mhz);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int cpu_imx_get_info(struct udevice *dev, struct cpu_info *info)
|
|
{
|
|
struct cpu_imx_platdata *plat = dev_get_platdata(dev);
|
|
|
|
info->cpu_freq = plat->freq_mhz * 1000;
|
|
info->features = BIT(CPU_FEAT_L1_CACHE) | BIT(CPU_FEAT_MMU);
|
|
return 0;
|
|
}
|
|
|
|
static int cpu_imx_get_count(struct udevice *dev)
|
|
{
|
|
return 4;
|
|
}
|
|
|
|
static int cpu_imx_get_vendor(struct udevice *dev, char *buf, int size)
|
|
{
|
|
snprintf(buf, size, "NXP");
|
|
return 0;
|
|
}
|
|
|
|
static const struct cpu_ops cpu_imx8_ops = {
|
|
.get_desc = cpu_imx_get_desc,
|
|
.get_info = cpu_imx_get_info,
|
|
.get_count = cpu_imx_get_count,
|
|
.get_vendor = cpu_imx_get_vendor,
|
|
};
|
|
|
|
static const struct udevice_id cpu_imx8_ids[] = {
|
|
{ .compatible = "arm,cortex-a35" },
|
|
{ .compatible = "arm,cortex-a53" },
|
|
{ }
|
|
};
|
|
|
|
static ulong imx8_get_cpu_rate(void)
|
|
{
|
|
ulong rate;
|
|
int ret;
|
|
|
|
ret = sc_pm_get_clock_rate(-1, SC_R_A35, SC_PM_CLK_CPU,
|
|
(sc_pm_clock_rate_t *)&rate);
|
|
if (ret) {
|
|
printf("Could not read CPU frequency: %d\n", ret);
|
|
return 0;
|
|
}
|
|
|
|
return rate;
|
|
}
|
|
|
|
static int imx8_cpu_probe(struct udevice *dev)
|
|
{
|
|
struct cpu_imx_platdata *plat = dev_get_platdata(dev);
|
|
u32 cpurev;
|
|
|
|
cpurev = get_cpu_rev();
|
|
plat->cpurev = cpurev;
|
|
plat->name = get_core_name();
|
|
plat->rev = get_imx8_rev(cpurev & 0xFFF);
|
|
plat->type = get_imx8_type((cpurev & 0xFF000) >> 12);
|
|
plat->freq_mhz = imx8_get_cpu_rate() / 1000000;
|
|
return 0;
|
|
}
|
|
|
|
U_BOOT_DRIVER(cpu_imx8_drv) = {
|
|
.name = "imx8x_cpu",
|
|
.id = UCLASS_CPU,
|
|
.of_match = cpu_imx8_ids,
|
|
.ops = &cpu_imx8_ops,
|
|
.probe = imx8_cpu_probe,
|
|
.platdata_auto_alloc_size = sizeof(struct cpu_imx_platdata),
|
|
.flags = DM_FLAG_PRE_RELOC,
|
|
};
|
|
#endif
|