mirror of
https://github.com/AsahiLinux/u-boot
synced 2024-11-18 10:48:51 +00:00
e01aed47d6
We recently added functions for storing/restoring variables from a file to a memory backed buffer marked as __efi_runtime_data commitf1f990a8c9
("efi_loader: memory buffer for variables") commit5f7dcf079d
("efi_loader: UEFI variable persistence") Using the same idea we now can support GetVariable() and GetNextVariable() on the OP-TEE based variables as well. So let's re-arrange the code a bit and move the commmon code for accessing variables out of efi_variable.c. Create common functions for reading variables from memory that both implementations can use on run-time. Then just use those functions in the run-time variants of the OP-TEE based EFI variable implementation and initialize the memory buffer on ExitBootServices() Signed-off-by: Ilias Apalodimas <ilias.apalodimas@linaro.org> Reviewed-by: Heinrich Schuchardt <xypron.glpk@gmx.de>
735 lines
20 KiB
C
735 lines
20 KiB
C
// SPDX-License-Identifier: GPL-2.0+
|
|
/*
|
|
* EFI variable service via OP-TEE
|
|
*
|
|
* Copyright (C) 2019 Linaro Ltd. <sughosh.ganu@linaro.org>
|
|
* Copyright (C) 2019 Linaro Ltd. <ilias.apalodimas@linaro.org>
|
|
*/
|
|
|
|
#include <common.h>
|
|
#include <efi.h>
|
|
#include <efi_api.h>
|
|
#include <efi_loader.h>
|
|
#include <efi_variable.h>
|
|
#include <tee.h>
|
|
#include <malloc.h>
|
|
#include <mm_communication.h>
|
|
|
|
#define OPTEE_PAGE_SIZE BIT(12)
|
|
extern struct efi_var_file __efi_runtime_data *efi_var_buf;
|
|
static efi_uintn_t max_buffer_size; /* comm + var + func + data */
|
|
static efi_uintn_t max_payload_size; /* func + data */
|
|
|
|
struct mm_connection {
|
|
struct udevice *tee;
|
|
u32 session;
|
|
};
|
|
|
|
/**
|
|
* get_connection() - Retrieve OP-TEE session for a specific UUID.
|
|
*
|
|
* @conn: session buffer to fill
|
|
* Return: status code
|
|
*/
|
|
static int get_connection(struct mm_connection *conn)
|
|
{
|
|
static const struct tee_optee_ta_uuid uuid = PTA_STMM_UUID;
|
|
struct udevice *tee = NULL;
|
|
struct tee_open_session_arg arg;
|
|
int rc;
|
|
|
|
tee = tee_find_device(tee, NULL, NULL, NULL);
|
|
if (!tee)
|
|
return -ENODEV;
|
|
|
|
memset(&arg, 0, sizeof(arg));
|
|
tee_optee_ta_uuid_to_octets(arg.uuid, &uuid);
|
|
rc = tee_open_session(tee, &arg, 0, NULL);
|
|
if (!rc) {
|
|
conn->tee = tee;
|
|
conn->session = arg.session;
|
|
}
|
|
|
|
return rc;
|
|
}
|
|
|
|
/**
|
|
* optee_mm_communicate() - Pass a buffer to StandaloneMM running in OP-TEE
|
|
*
|
|
* @comm_buf: locally allocted communcation buffer
|
|
* @dsize: buffer size
|
|
* Return: status code
|
|
*/
|
|
static efi_status_t optee_mm_communicate(void *comm_buf, ulong dsize)
|
|
{
|
|
ulong buf_size;
|
|
efi_status_t ret;
|
|
struct efi_mm_communicate_header *mm_hdr;
|
|
struct mm_connection conn = { NULL, 0 };
|
|
struct tee_invoke_arg arg;
|
|
struct tee_param param[2];
|
|
struct tee_shm *shm = NULL;
|
|
int rc;
|
|
|
|
if (!comm_buf)
|
|
return EFI_INVALID_PARAMETER;
|
|
|
|
mm_hdr = (struct efi_mm_communicate_header *)comm_buf;
|
|
buf_size = mm_hdr->message_len + sizeof(efi_guid_t) + sizeof(size_t);
|
|
|
|
if (dsize != buf_size)
|
|
return EFI_INVALID_PARAMETER;
|
|
|
|
rc = get_connection(&conn);
|
|
if (rc) {
|
|
log_err("Unable to open OP-TEE session (err=%d)\n", rc);
|
|
return EFI_UNSUPPORTED;
|
|
}
|
|
|
|
if (tee_shm_register(conn.tee, comm_buf, buf_size, 0, &shm)) {
|
|
log_err("Unable to register shared memory\n");
|
|
return EFI_UNSUPPORTED;
|
|
}
|
|
|
|
memset(&arg, 0, sizeof(arg));
|
|
arg.func = PTA_STMM_CMDID_COMMUNICATE;
|
|
arg.session = conn.session;
|
|
|
|
memset(param, 0, sizeof(param));
|
|
param[0].attr = TEE_PARAM_ATTR_TYPE_MEMREF_INOUT;
|
|
param[0].u.memref.size = buf_size;
|
|
param[0].u.memref.shm = shm;
|
|
param[1].attr = TEE_PARAM_ATTR_TYPE_VALUE_OUTPUT;
|
|
|
|
rc = tee_invoke_func(conn.tee, &arg, 2, param);
|
|
tee_shm_free(shm);
|
|
tee_close_session(conn.tee, conn.session);
|
|
if (rc || arg.ret != TEE_SUCCESS)
|
|
return EFI_DEVICE_ERROR;
|
|
|
|
switch (param[1].u.value.a) {
|
|
case ARM_SVC_SPM_RET_SUCCESS:
|
|
ret = EFI_SUCCESS;
|
|
break;
|
|
|
|
case ARM_SVC_SPM_RET_INVALID_PARAMS:
|
|
ret = EFI_INVALID_PARAMETER;
|
|
break;
|
|
|
|
case ARM_SVC_SPM_RET_DENIED:
|
|
ret = EFI_ACCESS_DENIED;
|
|
break;
|
|
|
|
case ARM_SVC_SPM_RET_NO_MEMORY:
|
|
ret = EFI_OUT_OF_RESOURCES;
|
|
break;
|
|
|
|
default:
|
|
ret = EFI_ACCESS_DENIED;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* mm_communicate() - Adjust the cmonnucation buffer to StandAlonneMM and send
|
|
* it to OP-TEE
|
|
*
|
|
* @comm_buf: locally allocted communcation buffer
|
|
* @dsize: buffer size
|
|
* Return: status code
|
|
*/
|
|
static efi_status_t mm_communicate(u8 *comm_buf, efi_uintn_t dsize)
|
|
{
|
|
efi_status_t ret;
|
|
struct efi_mm_communicate_header *mm_hdr;
|
|
struct smm_variable_communicate_header *var_hdr;
|
|
|
|
dsize += MM_COMMUNICATE_HEADER_SIZE + MM_VARIABLE_COMMUNICATE_SIZE;
|
|
mm_hdr = (struct efi_mm_communicate_header *)comm_buf;
|
|
var_hdr = (struct smm_variable_communicate_header *)mm_hdr->data;
|
|
|
|
ret = optee_mm_communicate(comm_buf, dsize);
|
|
if (ret != EFI_SUCCESS) {
|
|
log_err("%s failed!\n", __func__);
|
|
return ret;
|
|
}
|
|
|
|
return var_hdr->ret_status;
|
|
}
|
|
|
|
/**
|
|
* setup_mm_hdr() - Allocate a buffer for StandAloneMM and initialize the
|
|
* header data.
|
|
*
|
|
* @dptr: pointer address of the corresponding StandAloneMM
|
|
* function
|
|
* @payload_size: buffer size
|
|
* @func: standAloneMM function number
|
|
* @ret: EFI return code
|
|
* Return: buffer or NULL
|
|
*/
|
|
static u8 *setup_mm_hdr(void **dptr, efi_uintn_t payload_size,
|
|
efi_uintn_t func, efi_status_t *ret)
|
|
{
|
|
const efi_guid_t mm_var_guid = EFI_MM_VARIABLE_GUID;
|
|
struct efi_mm_communicate_header *mm_hdr;
|
|
struct smm_variable_communicate_header *var_hdr;
|
|
u8 *comm_buf;
|
|
|
|
/* In the init function we initialize max_buffer_size with
|
|
* get_max_payload(). So skip the test if max_buffer_size is initialized
|
|
* StandAloneMM will perform similar checks and drop the buffer if it's
|
|
* too long
|
|
*/
|
|
if (max_buffer_size && max_buffer_size <
|
|
(MM_COMMUNICATE_HEADER_SIZE +
|
|
MM_VARIABLE_COMMUNICATE_SIZE +
|
|
payload_size)) {
|
|
*ret = EFI_INVALID_PARAMETER;
|
|
return NULL;
|
|
}
|
|
|
|
comm_buf = calloc(1, MM_COMMUNICATE_HEADER_SIZE +
|
|
MM_VARIABLE_COMMUNICATE_SIZE +
|
|
payload_size);
|
|
if (!comm_buf) {
|
|
*ret = EFI_OUT_OF_RESOURCES;
|
|
return NULL;
|
|
}
|
|
|
|
mm_hdr = (struct efi_mm_communicate_header *)comm_buf;
|
|
guidcpy(&mm_hdr->header_guid, &mm_var_guid);
|
|
mm_hdr->message_len = MM_VARIABLE_COMMUNICATE_SIZE + payload_size;
|
|
|
|
var_hdr = (struct smm_variable_communicate_header *)mm_hdr->data;
|
|
var_hdr->function = func;
|
|
if (dptr)
|
|
*dptr = var_hdr->data;
|
|
*ret = EFI_SUCCESS;
|
|
|
|
return comm_buf;
|
|
}
|
|
|
|
/**
|
|
* get_max_payload() - Get variable payload size from StandAloneMM.
|
|
*
|
|
* @size: size of the variable in storage
|
|
* Return: status code
|
|
*/
|
|
efi_status_t EFIAPI get_max_payload(efi_uintn_t *size)
|
|
{
|
|
struct smm_variable_payload_size *var_payload = NULL;
|
|
efi_uintn_t payload_size;
|
|
u8 *comm_buf = NULL;
|
|
efi_status_t ret;
|
|
|
|
if (!size) {
|
|
ret = EFI_INVALID_PARAMETER;
|
|
goto out;
|
|
}
|
|
|
|
payload_size = sizeof(*var_payload);
|
|
comm_buf = setup_mm_hdr((void **)&var_payload, payload_size,
|
|
SMM_VARIABLE_FUNCTION_GET_PAYLOAD_SIZE, &ret);
|
|
if (!comm_buf)
|
|
goto out;
|
|
|
|
ret = mm_communicate(comm_buf, payload_size);
|
|
if (ret != EFI_SUCCESS)
|
|
goto out;
|
|
|
|
/* Make sure the buffer is big enough for storing variables */
|
|
if (var_payload->size < MM_VARIABLE_ACCESS_HEADER_SIZE + 0x20) {
|
|
ret = EFI_DEVICE_ERROR;
|
|
goto out;
|
|
}
|
|
*size = var_payload->size;
|
|
/*
|
|
* Although the max payload is configurable on StMM, we only share a
|
|
* single page from OP-TEE for the non-secure buffer used to communicate
|
|
* with StMM. Since OP-TEE will reject to map anything bigger than that,
|
|
* make sure we are in bounds.
|
|
*/
|
|
if (*size > OPTEE_PAGE_SIZE)
|
|
*size = OPTEE_PAGE_SIZE - MM_COMMUNICATE_HEADER_SIZE -
|
|
MM_VARIABLE_COMMUNICATE_SIZE;
|
|
/*
|
|
* There seems to be a bug in EDK2 miscalculating the boundaries and
|
|
* size checks, so deduct 2 more bytes to fulfill this requirement. Fix
|
|
* it up here to ensure backwards compatibility with older versions
|
|
* (cf. StandaloneMmPkg/Drivers/StandaloneMmCpu/AArch64/EventHandle.c.
|
|
* sizeof (EFI_MM_COMMUNICATE_HEADER) instead the size minus the
|
|
* flexible array member).
|
|
*
|
|
* size is guaranteed to be > 2 due to checks on the beginning.
|
|
*/
|
|
*size -= 2;
|
|
out:
|
|
free(comm_buf);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* StMM can store internal attributes and properties for variables, i.e enabling
|
|
* R/O variables
|
|
*/
|
|
static efi_status_t set_property_int(u16 *variable_name, efi_uintn_t name_size,
|
|
const efi_guid_t *vendor,
|
|
struct var_check_property *var_property)
|
|
{
|
|
struct smm_variable_var_check_property *smm_property;
|
|
efi_uintn_t payload_size;
|
|
u8 *comm_buf = NULL;
|
|
efi_status_t ret;
|
|
|
|
payload_size = sizeof(*smm_property) + name_size;
|
|
if (payload_size > max_payload_size) {
|
|
ret = EFI_INVALID_PARAMETER;
|
|
goto out;
|
|
}
|
|
comm_buf = setup_mm_hdr((void **)&smm_property, payload_size,
|
|
SMM_VARIABLE_FUNCTION_VAR_CHECK_VARIABLE_PROPERTY_SET,
|
|
&ret);
|
|
if (!comm_buf)
|
|
goto out;
|
|
|
|
guidcpy(&smm_property->guid, vendor);
|
|
smm_property->name_size = name_size;
|
|
memcpy(&smm_property->property, var_property,
|
|
sizeof(smm_property->property));
|
|
memcpy(smm_property->name, variable_name, name_size);
|
|
|
|
ret = mm_communicate(comm_buf, payload_size);
|
|
|
|
out:
|
|
free(comm_buf);
|
|
return ret;
|
|
}
|
|
|
|
static efi_status_t get_property_int(u16 *variable_name, efi_uintn_t name_size,
|
|
const efi_guid_t *vendor,
|
|
struct var_check_property *var_property)
|
|
{
|
|
struct smm_variable_var_check_property *smm_property;
|
|
efi_uintn_t payload_size;
|
|
u8 *comm_buf = NULL;
|
|
efi_status_t ret;
|
|
|
|
memset(var_property, 0, sizeof(*var_property));
|
|
payload_size = sizeof(*smm_property) + name_size;
|
|
if (payload_size > max_payload_size) {
|
|
ret = EFI_INVALID_PARAMETER;
|
|
goto out;
|
|
}
|
|
comm_buf = setup_mm_hdr((void **)&smm_property, payload_size,
|
|
SMM_VARIABLE_FUNCTION_VAR_CHECK_VARIABLE_PROPERTY_GET,
|
|
&ret);
|
|
if (!comm_buf)
|
|
goto out;
|
|
|
|
guidcpy(&smm_property->guid, vendor);
|
|
smm_property->name_size = name_size;
|
|
memcpy(smm_property->name, variable_name, name_size);
|
|
|
|
ret = mm_communicate(comm_buf, payload_size);
|
|
/*
|
|
* Currently only R/O property is supported in StMM.
|
|
* Variables that are not set to R/O will not set the property in StMM
|
|
* and the call will return EFI_NOT_FOUND. We are setting the
|
|
* properties to 0x0 so checking against that is enough for the
|
|
* EFI_NOT_FOUND case.
|
|
*/
|
|
if (ret == EFI_NOT_FOUND)
|
|
ret = EFI_SUCCESS;
|
|
if (ret != EFI_SUCCESS)
|
|
goto out;
|
|
memcpy(var_property, &smm_property->property, sizeof(*var_property));
|
|
|
|
out:
|
|
free(comm_buf);
|
|
return ret;
|
|
}
|
|
|
|
efi_status_t efi_get_variable_int(u16 *variable_name, const efi_guid_t *vendor,
|
|
u32 *attributes, efi_uintn_t *data_size,
|
|
void *data, u64 *timep)
|
|
{
|
|
struct var_check_property var_property;
|
|
struct smm_variable_access *var_acc;
|
|
efi_uintn_t payload_size;
|
|
efi_uintn_t name_size;
|
|
efi_uintn_t tmp_dsize;
|
|
u8 *comm_buf = NULL;
|
|
efi_status_t ret;
|
|
|
|
if (!variable_name || !vendor || !data_size) {
|
|
ret = EFI_INVALID_PARAMETER;
|
|
goto out;
|
|
}
|
|
|
|
/* Check payload size */
|
|
name_size = u16_strsize(variable_name);
|
|
if (name_size > max_payload_size - MM_VARIABLE_ACCESS_HEADER_SIZE) {
|
|
ret = EFI_INVALID_PARAMETER;
|
|
goto out;
|
|
}
|
|
|
|
/* Trim output buffer size */
|
|
tmp_dsize = *data_size;
|
|
if (name_size + tmp_dsize >
|
|
max_payload_size - MM_VARIABLE_ACCESS_HEADER_SIZE) {
|
|
tmp_dsize = max_payload_size -
|
|
MM_VARIABLE_ACCESS_HEADER_SIZE -
|
|
name_size;
|
|
}
|
|
|
|
/* Get communication buffer and initialize header */
|
|
payload_size = MM_VARIABLE_ACCESS_HEADER_SIZE + name_size + tmp_dsize;
|
|
comm_buf = setup_mm_hdr((void **)&var_acc, payload_size,
|
|
SMM_VARIABLE_FUNCTION_GET_VARIABLE, &ret);
|
|
if (!comm_buf)
|
|
goto out;
|
|
|
|
/* Fill in contents */
|
|
guidcpy(&var_acc->guid, vendor);
|
|
var_acc->data_size = tmp_dsize;
|
|
var_acc->name_size = name_size;
|
|
var_acc->attr = attributes ? *attributes : 0;
|
|
memcpy(var_acc->name, variable_name, name_size);
|
|
|
|
/* Communicate */
|
|
ret = mm_communicate(comm_buf, payload_size);
|
|
if (ret == EFI_SUCCESS || ret == EFI_BUFFER_TOO_SMALL) {
|
|
/* Update with reported data size for trimmed case */
|
|
*data_size = var_acc->data_size;
|
|
}
|
|
if (ret != EFI_SUCCESS)
|
|
goto out;
|
|
|
|
ret = get_property_int(variable_name, name_size, vendor, &var_property);
|
|
if (ret != EFI_SUCCESS)
|
|
goto out;
|
|
|
|
if (attributes) {
|
|
*attributes = var_acc->attr;
|
|
if (var_property.property & VAR_CHECK_VARIABLE_PROPERTY_READ_ONLY)
|
|
*attributes |= EFI_VARIABLE_READ_ONLY;
|
|
}
|
|
|
|
if (data)
|
|
memcpy(data, (u8 *)var_acc->name + var_acc->name_size,
|
|
var_acc->data_size);
|
|
else
|
|
ret = EFI_INVALID_PARAMETER;
|
|
|
|
out:
|
|
free(comm_buf);
|
|
return ret;
|
|
}
|
|
|
|
efi_status_t efi_get_next_variable_name_int(efi_uintn_t *variable_name_size,
|
|
u16 *variable_name,
|
|
efi_guid_t *guid)
|
|
{
|
|
struct smm_variable_getnext *var_getnext;
|
|
efi_uintn_t payload_size;
|
|
efi_uintn_t out_name_size;
|
|
efi_uintn_t in_name_size;
|
|
u8 *comm_buf = NULL;
|
|
efi_status_t ret;
|
|
|
|
if (!variable_name_size || !variable_name || !guid) {
|
|
ret = EFI_INVALID_PARAMETER;
|
|
goto out;
|
|
}
|
|
|
|
out_name_size = *variable_name_size;
|
|
in_name_size = u16_strsize(variable_name);
|
|
|
|
if (out_name_size < in_name_size) {
|
|
ret = EFI_INVALID_PARAMETER;
|
|
goto out;
|
|
}
|
|
|
|
if (in_name_size > max_payload_size - MM_VARIABLE_GET_NEXT_HEADER_SIZE) {
|
|
ret = EFI_INVALID_PARAMETER;
|
|
goto out;
|
|
}
|
|
|
|
/* Trim output buffer size */
|
|
if (out_name_size > max_payload_size - MM_VARIABLE_GET_NEXT_HEADER_SIZE)
|
|
out_name_size = max_payload_size - MM_VARIABLE_GET_NEXT_HEADER_SIZE;
|
|
|
|
payload_size = MM_VARIABLE_GET_NEXT_HEADER_SIZE + out_name_size;
|
|
comm_buf = setup_mm_hdr((void **)&var_getnext, payload_size,
|
|
SMM_VARIABLE_FUNCTION_GET_NEXT_VARIABLE_NAME,
|
|
&ret);
|
|
if (!comm_buf)
|
|
goto out;
|
|
|
|
/* Fill in contents */
|
|
guidcpy(&var_getnext->guid, guid);
|
|
var_getnext->name_size = out_name_size;
|
|
memcpy(var_getnext->name, variable_name, in_name_size);
|
|
memset((u8 *)var_getnext->name + in_name_size, 0x0,
|
|
out_name_size - in_name_size);
|
|
|
|
/* Communicate */
|
|
ret = mm_communicate(comm_buf, payload_size);
|
|
if (ret == EFI_SUCCESS || ret == EFI_BUFFER_TOO_SMALL) {
|
|
/* Update with reported data size for trimmed case */
|
|
*variable_name_size = var_getnext->name_size;
|
|
}
|
|
if (ret != EFI_SUCCESS)
|
|
goto out;
|
|
|
|
guidcpy(guid, &var_getnext->guid);
|
|
memcpy(variable_name, var_getnext->name, var_getnext->name_size);
|
|
|
|
out:
|
|
free(comm_buf);
|
|
return ret;
|
|
}
|
|
|
|
efi_status_t efi_set_variable_int(u16 *variable_name, const efi_guid_t *vendor,
|
|
u32 attributes, efi_uintn_t data_size,
|
|
const void *data, bool ro_check)
|
|
{
|
|
efi_status_t ret, alt_ret = EFI_SUCCESS;
|
|
struct var_check_property var_property;
|
|
struct smm_variable_access *var_acc;
|
|
efi_uintn_t payload_size;
|
|
efi_uintn_t name_size;
|
|
u8 *comm_buf = NULL;
|
|
bool ro;
|
|
|
|
if (!variable_name || variable_name[0] == 0 || !vendor) {
|
|
ret = EFI_INVALID_PARAMETER;
|
|
goto out;
|
|
}
|
|
if (data_size > 0 && !data) {
|
|
ret = EFI_INVALID_PARAMETER;
|
|
goto out;
|
|
}
|
|
/* Check payload size */
|
|
name_size = u16_strsize(variable_name);
|
|
payload_size = MM_VARIABLE_ACCESS_HEADER_SIZE + name_size + data_size;
|
|
if (payload_size > max_payload_size) {
|
|
ret = EFI_INVALID_PARAMETER;
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* Allocate the buffer early, before switching to RW (if needed)
|
|
* so we won't need to account for any failures in reading/setting
|
|
* the properties, if the allocation fails
|
|
*/
|
|
comm_buf = setup_mm_hdr((void **)&var_acc, payload_size,
|
|
SMM_VARIABLE_FUNCTION_SET_VARIABLE, &ret);
|
|
if (!comm_buf)
|
|
goto out;
|
|
|
|
ro = !!(attributes & EFI_VARIABLE_READ_ONLY);
|
|
attributes &= EFI_VARIABLE_MASK;
|
|
|
|
/*
|
|
* The API has the ability to override RO flags. If no RO check was
|
|
* requested switch the variable to RW for the duration of this call
|
|
*/
|
|
ret = get_property_int(variable_name, name_size, vendor,
|
|
&var_property);
|
|
if (ret != EFI_SUCCESS)
|
|
goto out;
|
|
|
|
if (var_property.property & VAR_CHECK_VARIABLE_PROPERTY_READ_ONLY) {
|
|
/* Bypass r/o check */
|
|
if (!ro_check) {
|
|
var_property.property &= ~VAR_CHECK_VARIABLE_PROPERTY_READ_ONLY;
|
|
ret = set_property_int(variable_name, name_size, vendor, &var_property);
|
|
if (ret != EFI_SUCCESS)
|
|
goto out;
|
|
} else {
|
|
ret = EFI_WRITE_PROTECTED;
|
|
goto out;
|
|
}
|
|
}
|
|
|
|
/* Fill in contents */
|
|
guidcpy(&var_acc->guid, vendor);
|
|
var_acc->data_size = data_size;
|
|
var_acc->name_size = name_size;
|
|
var_acc->attr = attributes;
|
|
memcpy(var_acc->name, variable_name, name_size);
|
|
memcpy((u8 *)var_acc->name + name_size, data, data_size);
|
|
|
|
/* Communicate */
|
|
ret = mm_communicate(comm_buf, payload_size);
|
|
if (ret != EFI_SUCCESS)
|
|
alt_ret = ret;
|
|
|
|
if (ro && !(var_property.property & VAR_CHECK_VARIABLE_PROPERTY_READ_ONLY)) {
|
|
var_property.revision = VAR_CHECK_VARIABLE_PROPERTY_REVISION;
|
|
var_property.property |= VAR_CHECK_VARIABLE_PROPERTY_READ_ONLY;
|
|
var_property.attributes = attributes;
|
|
var_property.minsize = 1;
|
|
var_property.maxsize = var_acc->data_size;
|
|
ret = set_property_int(variable_name, name_size, vendor, &var_property);
|
|
}
|
|
|
|
if (alt_ret != EFI_SUCCESS)
|
|
goto out;
|
|
|
|
if (!u16_strcmp(variable_name, L"PK"))
|
|
alt_ret = efi_init_secure_state();
|
|
out:
|
|
free(comm_buf);
|
|
return alt_ret == EFI_SUCCESS ? ret : alt_ret;
|
|
}
|
|
|
|
efi_status_t efi_query_variable_info_int(u32 attributes,
|
|
u64 *max_variable_storage_size,
|
|
u64 *remain_variable_storage_size,
|
|
u64 *max_variable_size)
|
|
{
|
|
struct smm_variable_query_info *mm_query_info;
|
|
efi_uintn_t payload_size;
|
|
efi_status_t ret;
|
|
u8 *comm_buf;
|
|
|
|
payload_size = sizeof(*mm_query_info);
|
|
comm_buf = setup_mm_hdr((void **)&mm_query_info, payload_size,
|
|
SMM_VARIABLE_FUNCTION_QUERY_VARIABLE_INFO,
|
|
&ret);
|
|
if (!comm_buf)
|
|
goto out;
|
|
|
|
mm_query_info->attr = attributes;
|
|
ret = mm_communicate(comm_buf, payload_size);
|
|
if (ret != EFI_SUCCESS)
|
|
goto out;
|
|
*max_variable_storage_size = mm_query_info->max_variable_storage;
|
|
*remain_variable_storage_size =
|
|
mm_query_info->remaining_variable_storage;
|
|
*max_variable_size = mm_query_info->max_variable_size;
|
|
|
|
out:
|
|
free(comm_buf);
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* efi_query_variable_info() - get information about EFI variables
|
|
*
|
|
* This function implements the QueryVariableInfo() runtime service.
|
|
*
|
|
* See the Unified Extensible Firmware Interface (UEFI) specification for
|
|
* details.
|
|
*
|
|
* @attributes: bitmask to select variables to be
|
|
* queried
|
|
* @maximum_variable_storage_size: maximum size of storage area for the
|
|
* selected variable types
|
|
* @remaining_variable_storage_size: remaining size of storage are for the
|
|
* selected variable types
|
|
* @maximum_variable_size: maximum size of a variable of the
|
|
* selected type
|
|
* Return: status code
|
|
*/
|
|
efi_status_t EFIAPI __efi_runtime
|
|
efi_query_variable_info_runtime(u32 attributes, u64 *max_variable_storage_size,
|
|
u64 *remain_variable_storage_size,
|
|
u64 *max_variable_size)
|
|
{
|
|
return EFI_UNSUPPORTED;
|
|
}
|
|
|
|
/**
|
|
* efi_set_variable_runtime() - runtime implementation of SetVariable()
|
|
*
|
|
* @variable_name: name of the variable
|
|
* @guid: vendor GUID
|
|
* @attributes: attributes of the variable
|
|
* @data_size: size of the buffer with the variable value
|
|
* @data: buffer with the variable value
|
|
* Return: status code
|
|
*/
|
|
static efi_status_t __efi_runtime EFIAPI
|
|
efi_set_variable_runtime(u16 *variable_name, const efi_guid_t *guid,
|
|
u32 attributes, efi_uintn_t data_size,
|
|
const void *data)
|
|
{
|
|
return EFI_UNSUPPORTED;
|
|
}
|
|
|
|
/**
|
|
* efi_variables_boot_exit_notify() - notify ExitBootServices() is called
|
|
*/
|
|
void efi_variables_boot_exit_notify(void)
|
|
{
|
|
efi_status_t ret;
|
|
u8 *comm_buf;
|
|
loff_t len;
|
|
struct efi_var_file *var_buf;
|
|
|
|
comm_buf = setup_mm_hdr(NULL, 0,
|
|
SMM_VARIABLE_FUNCTION_EXIT_BOOT_SERVICE, &ret);
|
|
if (comm_buf)
|
|
ret = mm_communicate(comm_buf, 0);
|
|
else
|
|
ret = EFI_NOT_FOUND;
|
|
|
|
if (ret != EFI_SUCCESS)
|
|
log_err("Unable to notify StMM for ExitBootServices\n");
|
|
free(comm_buf);
|
|
|
|
/*
|
|
* Populate the list for runtime variables.
|
|
* asking EFI_VARIABLE_RUNTIME_ACCESS is redundant, since
|
|
* efi_var_mem_notify_exit_boot_services will clean those, but that's fine
|
|
*/
|
|
ret = efi_var_collect(&var_buf, &len, EFI_VARIABLE_RUNTIME_ACCESS);
|
|
if (ret != EFI_SUCCESS)
|
|
log_err("Can't populate EFI variables. No runtime variables will be available\n");
|
|
else
|
|
memcpy(efi_var_buf, var_buf, len);
|
|
free(var_buf);
|
|
|
|
/* Update runtime service table */
|
|
efi_runtime_services.query_variable_info =
|
|
efi_query_variable_info_runtime;
|
|
efi_runtime_services.get_variable = efi_get_variable_runtime;
|
|
efi_runtime_services.get_next_variable_name =
|
|
efi_get_next_variable_name_runtime;
|
|
efi_runtime_services.set_variable = efi_set_variable_runtime;
|
|
efi_update_table_header_crc32(&efi_runtime_services.hdr);
|
|
}
|
|
|
|
/**
|
|
* efi_init_variables() - initialize variable services
|
|
*
|
|
* Return: status code
|
|
*/
|
|
efi_status_t efi_init_variables(void)
|
|
{
|
|
efi_status_t ret;
|
|
|
|
/* Create a cached copy of the variables that will be enabled on ExitBootServices() */
|
|
ret = efi_var_mem_init();
|
|
if (ret != EFI_SUCCESS)
|
|
return ret;
|
|
|
|
ret = get_max_payload(&max_payload_size);
|
|
if (ret != EFI_SUCCESS)
|
|
return ret;
|
|
|
|
max_buffer_size = MM_COMMUNICATE_HEADER_SIZE +
|
|
MM_VARIABLE_COMMUNICATE_SIZE +
|
|
max_payload_size;
|
|
|
|
ret = efi_init_secure_state();
|
|
if (ret != EFI_SUCCESS)
|
|
return ret;
|
|
|
|
return EFI_SUCCESS;
|
|
}
|