mirror of
https://github.com/AsahiLinux/u-boot
synced 2025-01-25 03:15:17 +00:00
7363cf0581
Support u-boot driver model. We still retain support legacy way of doing things if ELM_BASE is defined in <asm/arch/hardware.h> We could completely get rid of that if all platforms defining ELM_BASE get rid of that definition and enable CONFIG_SYS_NAND_SELF_INIT and are verified to work. Signed-off-by: Roger Quadros <rogerq@kernel.org> Signed-off-by: Michael Trimarchi <michael@amarulasolutions.com> Signed-off-by: Dario Binacchi <dario.binacchi@amarulasolutions.com> Reviewed-by: Tom Rini <trini@konsulko.com> Link: https://lore.kernel.org/all/20221220102203.52398-9-rogerq@kernel.org Link: https://lore.kernel.org/all/CABGWkvrvKiVA_yaDnHJcHEKwc+pEuLdz=i6HQEY0oJQvohCUsw@mail.gmail.com
1315 lines
37 KiB
C
1315 lines
37 KiB
C
// SPDX-License-Identifier: GPL-2.0+
|
|
/*
|
|
* (C) Copyright 2004-2008 Texas Instruments, <www.ti.com>
|
|
* Rohit Choraria <rohitkc@ti.com>
|
|
*/
|
|
|
|
#include <common.h>
|
|
#include <log.h>
|
|
#include <asm/io.h>
|
|
#include <dm/uclass.h>
|
|
#include <linux/errno.h>
|
|
|
|
#ifdef CONFIG_ARCH_OMAP2PLUS
|
|
#include <asm/arch/mem.h>
|
|
#endif
|
|
|
|
#include <linux/mtd/omap_gpmc.h>
|
|
#include <linux/mtd/nand_ecc.h>
|
|
#include <linux/mtd/rawnand.h>
|
|
#include <linux/bch.h>
|
|
#include <linux/compiler.h>
|
|
#include <nand.h>
|
|
|
|
#include "omap_elm.h"
|
|
|
|
#ifndef GPMC_MAX_CS
|
|
#define GPMC_MAX_CS 4
|
|
#endif
|
|
|
|
#define BADBLOCK_MARKER_LENGTH 2
|
|
#define SECTOR_BYTES 512
|
|
#define ECCSIZE0_SHIFT 12
|
|
#define ECCSIZE1_SHIFT 22
|
|
#define ECC1RESULTSIZE 0x1
|
|
#define ECCCLEAR (0x1 << 8)
|
|
#define ECCRESULTREG1 (0x1 << 0)
|
|
/* 4 bit padding to make byte aligned, 56 = 52 + 4 */
|
|
#define BCH4_BIT_PAD 4
|
|
|
|
#ifdef CONFIG_BCH
|
|
static u8 bch8_polynomial[] = {0xef, 0x51, 0x2e, 0x09, 0xed, 0x93, 0x9a, 0xc2,
|
|
0x97, 0x79, 0xe5, 0x24, 0xb5};
|
|
#endif
|
|
static uint8_t cs_next;
|
|
|
|
#if defined(CONFIG_NAND_OMAP_GPMC_WSCFG)
|
|
static const int8_t wscfg[CONFIG_SYS_MAX_NAND_DEVICE] =
|
|
{ CONFIG_NAND_OMAP_GPMC_WSCFG };
|
|
#else
|
|
/* wscfg is preset to zero since its a static variable */
|
|
static const int8_t wscfg[CONFIG_SYS_MAX_NAND_DEVICE];
|
|
#endif
|
|
|
|
/*
|
|
* Driver configurations
|
|
*/
|
|
struct omap_nand_info {
|
|
struct bch_control *control;
|
|
enum omap_ecc ecc_scheme;
|
|
uint8_t cs;
|
|
uint8_t ws; /* wait status pin (0,1) */
|
|
void __iomem *fifo;
|
|
};
|
|
|
|
/* We are wasting a bit of memory but al least we are safe */
|
|
static struct omap_nand_info omap_nand_info[GPMC_MAX_CS];
|
|
|
|
/*
|
|
* omap_nand_hwcontrol - Set the address pointers corretly for the
|
|
* following address/data/command operation
|
|
*/
|
|
static void omap_nand_hwcontrol(struct mtd_info *mtd, int32_t cmd,
|
|
uint32_t ctrl)
|
|
{
|
|
register struct nand_chip *this = mtd_to_nand(mtd);
|
|
struct omap_nand_info *info = nand_get_controller_data(this);
|
|
int cs = info->cs;
|
|
|
|
/*
|
|
* Point the IO_ADDR to DATA and ADDRESS registers instead
|
|
* of chip address
|
|
*/
|
|
switch (ctrl) {
|
|
case NAND_CTRL_CHANGE | NAND_CTRL_CLE:
|
|
this->IO_ADDR_W = (void __iomem *)&gpmc_cfg->cs[cs].nand_cmd;
|
|
break;
|
|
case NAND_CTRL_CHANGE | NAND_CTRL_ALE:
|
|
this->IO_ADDR_W = (void __iomem *)&gpmc_cfg->cs[cs].nand_adr;
|
|
break;
|
|
case NAND_CTRL_CHANGE | NAND_NCE:
|
|
this->IO_ADDR_W = (void __iomem *)&gpmc_cfg->cs[cs].nand_dat;
|
|
break;
|
|
}
|
|
|
|
if (cmd != NAND_CMD_NONE)
|
|
writeb(cmd, this->IO_ADDR_W);
|
|
}
|
|
|
|
/* Check wait pin as dev ready indicator */
|
|
static int omap_dev_ready(struct mtd_info *mtd)
|
|
{
|
|
register struct nand_chip *this = mtd_to_nand(mtd);
|
|
struct omap_nand_info *info = nand_get_controller_data(this);
|
|
return gpmc_cfg->status & (1 << (8 + info->ws));
|
|
}
|
|
|
|
/*
|
|
* gen_true_ecc - This function will generate true ECC value, which
|
|
* can be used when correcting data read from NAND flash memory core
|
|
*
|
|
* @ecc_buf: buffer to store ecc code
|
|
*
|
|
* @return: re-formatted ECC value
|
|
*/
|
|
static uint32_t gen_true_ecc(uint8_t *ecc_buf)
|
|
{
|
|
return ecc_buf[0] | (ecc_buf[1] << 16) | ((ecc_buf[2] & 0xF0) << 20) |
|
|
((ecc_buf[2] & 0x0F) << 8);
|
|
}
|
|
|
|
/*
|
|
* omap_correct_data - Compares the ecc read from nand spare area with ECC
|
|
* registers values and corrects one bit error if it has occurred
|
|
* Further details can be had from OMAP TRM and the following selected links:
|
|
* http://en.wikipedia.org/wiki/Hamming_code
|
|
* http://www.cs.utexas.edu/users/plaxton/c/337/05f/slides/ErrorCorrection-4.pdf
|
|
*
|
|
* @mtd: MTD device structure
|
|
* @dat: page data
|
|
* @read_ecc: ecc read from nand flash
|
|
* @calc_ecc: ecc read from ECC registers
|
|
*
|
|
* Return: 0 if data is OK or corrected, else returns -1
|
|
*/
|
|
static int __maybe_unused omap_correct_data(struct mtd_info *mtd, uint8_t *dat,
|
|
uint8_t *read_ecc, uint8_t *calc_ecc)
|
|
{
|
|
uint32_t orig_ecc, new_ecc, res, hm;
|
|
uint16_t parity_bits, byte;
|
|
uint8_t bit;
|
|
|
|
/* Regenerate the orginal ECC */
|
|
orig_ecc = gen_true_ecc(read_ecc);
|
|
new_ecc = gen_true_ecc(calc_ecc);
|
|
/* Get the XOR of real ecc */
|
|
res = orig_ecc ^ new_ecc;
|
|
if (res) {
|
|
/* Get the hamming width */
|
|
hm = hweight32(res);
|
|
/* Single bit errors can be corrected! */
|
|
if (hm == 12) {
|
|
/* Correctable data! */
|
|
parity_bits = res >> 16;
|
|
bit = (parity_bits & 0x7);
|
|
byte = (parity_bits >> 3) & 0x1FF;
|
|
/* Flip the bit to correct */
|
|
dat[byte] ^= (0x1 << bit);
|
|
} else if (hm == 1) {
|
|
printf("Error: Ecc is wrong\n");
|
|
/* ECC itself is corrupted */
|
|
return 2;
|
|
} else {
|
|
/*
|
|
* hm distance != parity pairs OR one, could mean 2 bit
|
|
* error OR potentially be on a blank page..
|
|
* orig_ecc: contains spare area data from nand flash.
|
|
* new_ecc: generated ecc while reading data area.
|
|
* Note: if the ecc = 0, all data bits from which it was
|
|
* generated are 0xFF.
|
|
* The 3 byte(24 bits) ecc is generated per 512byte
|
|
* chunk of a page. If orig_ecc(from spare area)
|
|
* is 0xFF && new_ecc(computed now from data area)=0x0,
|
|
* this means that data area is 0xFF and spare area is
|
|
* 0xFF. A sure sign of a erased page!
|
|
*/
|
|
if ((orig_ecc == 0x0FFF0FFF) && (new_ecc == 0x00000000))
|
|
return 0;
|
|
printf("Error: Bad compare! failed\n");
|
|
/* detected 2 bit error */
|
|
return -EBADMSG;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* omap_enable_hwecc - configures GPMC as per ECC scheme before read/write
|
|
* @mtd: MTD device structure
|
|
* @mode: Read/Write mode
|
|
*/
|
|
__maybe_unused
|
|
static void omap_enable_hwecc(struct mtd_info *mtd, int32_t mode)
|
|
{
|
|
struct nand_chip *nand = mtd_to_nand(mtd);
|
|
struct omap_nand_info *info = nand_get_controller_data(nand);
|
|
unsigned int dev_width = (nand->options & NAND_BUSWIDTH_16) ? 1 : 0;
|
|
u32 val;
|
|
|
|
/* Clear ecc and enable bits */
|
|
writel(ECCCLEAR | ECCRESULTREG1, &gpmc_cfg->ecc_control);
|
|
|
|
/* program ecc and result sizes */
|
|
val = ((((nand->ecc.size >> 1) - 1) << ECCSIZE1_SHIFT) |
|
|
ECC1RESULTSIZE);
|
|
writel(val, &gpmc_cfg->ecc_size_config);
|
|
|
|
switch (mode) {
|
|
case NAND_ECC_READ:
|
|
case NAND_ECC_WRITE:
|
|
writel(ECCCLEAR | ECCRESULTREG1, &gpmc_cfg->ecc_control);
|
|
break;
|
|
case NAND_ECC_READSYN:
|
|
writel(ECCCLEAR, &gpmc_cfg->ecc_control);
|
|
break;
|
|
default:
|
|
printf("%s: error: unrecognized Mode[%d]!\n", __func__, mode);
|
|
break;
|
|
}
|
|
|
|
/* (ECC 16 or 8 bit col) | ( CS ) | ECC Enable */
|
|
val = (dev_width << 7) | (info->cs << 1) | (0x1);
|
|
writel(val, &gpmc_cfg->ecc_config);
|
|
}
|
|
|
|
/*
|
|
* omap_calculate_ecc - Read ECC result
|
|
* @mtd: MTD structure
|
|
* @dat: unused
|
|
* @ecc_code: ecc_code buffer
|
|
* Using noninverted ECC can be considered ugly since writing a blank
|
|
* page ie. padding will clear the ECC bytes. This is no problem as
|
|
* long nobody is trying to write data on the seemingly unused page.
|
|
* Reading an erased page will produce an ECC mismatch between
|
|
* generated and read ECC bytes that has to be dealt with separately.
|
|
* E.g. if page is 0xFF (fresh erased), and if HW ECC engine within GPMC
|
|
* is used, the result of read will be 0x0 while the ECC offsets of the
|
|
* spare area will be 0xFF which will result in an ECC mismatch.
|
|
*/
|
|
static int omap_calculate_ecc(struct mtd_info *mtd, const uint8_t *dat,
|
|
uint8_t *ecc_code)
|
|
{
|
|
u32 val;
|
|
|
|
val = readl(&gpmc_cfg->ecc1_result);
|
|
ecc_code[0] = val & 0xFF;
|
|
ecc_code[1] = (val >> 16) & 0xFF;
|
|
ecc_code[2] = ((val >> 8) & 0x0F) | ((val >> 20) & 0xF0);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* GPMC ecc engine settings for read */
|
|
#define BCH_WRAPMODE_1 1 /* BCH wrap mode 1 */
|
|
#define BCH8R_ECC_SIZE0 0x1a /* ecc_size0 = 26 */
|
|
#define BCH8R_ECC_SIZE1 0x2 /* ecc_size1 = 2 */
|
|
#define BCH4R_ECC_SIZE0 0xd /* ecc_size0 = 13 */
|
|
#define BCH4R_ECC_SIZE1 0x3 /* ecc_size1 = 3 */
|
|
|
|
/* GPMC ecc engine settings for write */
|
|
#define BCH_WRAPMODE_6 6 /* BCH wrap mode 6 */
|
|
#define BCH_ECC_SIZE0 0x0 /* ecc_size0 = 0, no oob protection */
|
|
#define BCH_ECC_SIZE1 0x20 /* ecc_size1 = 32 */
|
|
|
|
/**
|
|
* omap_enable_hwecc_bch - Program GPMC to perform BCH ECC calculation
|
|
* @mtd: MTD device structure
|
|
* @mode: Read/Write mode
|
|
*
|
|
* When using BCH with SW correction (i.e. no ELM), sector size is set
|
|
* to 512 bytes and we use BCH_WRAPMODE_6 wrapping mode
|
|
* for both reading and writing with:
|
|
* eccsize0 = 0 (no additional protected byte in spare area)
|
|
* eccsize1 = 32 (skip 32 nibbles = 16 bytes per sector in spare area)
|
|
*/
|
|
static void __maybe_unused omap_enable_hwecc_bch(struct mtd_info *mtd,
|
|
int mode)
|
|
{
|
|
unsigned int bch_type;
|
|
unsigned int dev_width, nsectors;
|
|
struct nand_chip *chip = mtd_to_nand(mtd);
|
|
struct omap_nand_info *info = nand_get_controller_data(chip);
|
|
u32 val, wr_mode;
|
|
unsigned int ecc_size1, ecc_size0;
|
|
|
|
/* GPMC configurations for calculating ECC */
|
|
switch (info->ecc_scheme) {
|
|
case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW:
|
|
bch_type = 1;
|
|
nsectors = 1;
|
|
wr_mode = BCH_WRAPMODE_6;
|
|
ecc_size0 = BCH_ECC_SIZE0;
|
|
ecc_size1 = BCH_ECC_SIZE1;
|
|
break;
|
|
case OMAP_ECC_BCH8_CODE_HW:
|
|
bch_type = 1;
|
|
nsectors = chip->ecc.steps;
|
|
if (mode == NAND_ECC_READ) {
|
|
wr_mode = BCH_WRAPMODE_1;
|
|
ecc_size0 = BCH8R_ECC_SIZE0;
|
|
ecc_size1 = BCH8R_ECC_SIZE1;
|
|
} else {
|
|
wr_mode = BCH_WRAPMODE_6;
|
|
ecc_size0 = BCH_ECC_SIZE0;
|
|
ecc_size1 = BCH_ECC_SIZE1;
|
|
}
|
|
break;
|
|
case OMAP_ECC_BCH16_CODE_HW:
|
|
bch_type = 0x2;
|
|
nsectors = chip->ecc.steps;
|
|
if (mode == NAND_ECC_READ) {
|
|
wr_mode = 0x01;
|
|
ecc_size0 = 52; /* ECC bits in nibbles per sector */
|
|
ecc_size1 = 0; /* non-ECC bits in nibbles per sector */
|
|
} else {
|
|
wr_mode = 0x01;
|
|
ecc_size0 = 0; /* extra bits in nibbles per sector */
|
|
ecc_size1 = 52; /* OOB bits in nibbles per sector */
|
|
}
|
|
break;
|
|
default:
|
|
return;
|
|
}
|
|
|
|
writel(ECCRESULTREG1, &gpmc_cfg->ecc_control);
|
|
|
|
/* Configure ecc size for BCH */
|
|
val = (ecc_size1 << ECCSIZE1_SHIFT) | (ecc_size0 << ECCSIZE0_SHIFT);
|
|
writel(val, &gpmc_cfg->ecc_size_config);
|
|
|
|
dev_width = (chip->options & NAND_BUSWIDTH_16) ? 1 : 0;
|
|
|
|
/* BCH configuration */
|
|
val = ((1 << 16) | /* enable BCH */
|
|
(bch_type << 12) | /* BCH4/BCH8/BCH16 */
|
|
(wr_mode << 8) | /* wrap mode */
|
|
(dev_width << 7) | /* bus width */
|
|
(((nsectors - 1) & 0x7) << 4) | /* number of sectors */
|
|
(info->cs << 1) | /* ECC CS */
|
|
(0x1)); /* enable ECC */
|
|
|
|
writel(val, &gpmc_cfg->ecc_config);
|
|
|
|
/* Clear ecc and enable bits */
|
|
writel(ECCCLEAR | ECCRESULTREG1, &gpmc_cfg->ecc_control);
|
|
}
|
|
|
|
/**
|
|
* _omap_calculate_ecc_bch - Generate BCH ECC bytes for one sector
|
|
* @mtd: MTD device structure
|
|
* @dat: The pointer to data on which ecc is computed
|
|
* @ecc_code: The ecc_code buffer
|
|
* @sector: The sector number (for a multi sector page)
|
|
*
|
|
* Support calculating of BCH4/8/16 ECC vectors for one sector
|
|
* within a page. Sector number is in @sector.
|
|
*/
|
|
static int _omap_calculate_ecc_bch(struct mtd_info *mtd, const u8 *dat,
|
|
u8 *ecc_code, int sector)
|
|
{
|
|
struct nand_chip *chip = mtd_to_nand(mtd);
|
|
struct omap_nand_info *info = nand_get_controller_data(chip);
|
|
const uint32_t *ptr;
|
|
uint32_t val = 0;
|
|
int8_t i = 0, j;
|
|
|
|
switch (info->ecc_scheme) {
|
|
#ifdef CONFIG_BCH
|
|
case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW:
|
|
#endif
|
|
case OMAP_ECC_BCH8_CODE_HW:
|
|
ptr = &gpmc_cfg->bch_result_0_3[sector].bch_result_x[3];
|
|
val = readl(ptr);
|
|
ecc_code[i++] = (val >> 0) & 0xFF;
|
|
ptr--;
|
|
for (j = 0; j < 3; j++) {
|
|
val = readl(ptr);
|
|
ecc_code[i++] = (val >> 24) & 0xFF;
|
|
ecc_code[i++] = (val >> 16) & 0xFF;
|
|
ecc_code[i++] = (val >> 8) & 0xFF;
|
|
ecc_code[i++] = (val >> 0) & 0xFF;
|
|
ptr--;
|
|
}
|
|
|
|
break;
|
|
case OMAP_ECC_BCH16_CODE_HW:
|
|
val = readl(&gpmc_cfg->bch_result_4_6[sector].bch_result_x[2]);
|
|
ecc_code[i++] = (val >> 8) & 0xFF;
|
|
ecc_code[i++] = (val >> 0) & 0xFF;
|
|
val = readl(&gpmc_cfg->bch_result_4_6[sector].bch_result_x[1]);
|
|
ecc_code[i++] = (val >> 24) & 0xFF;
|
|
ecc_code[i++] = (val >> 16) & 0xFF;
|
|
ecc_code[i++] = (val >> 8) & 0xFF;
|
|
ecc_code[i++] = (val >> 0) & 0xFF;
|
|
val = readl(&gpmc_cfg->bch_result_4_6[sector].bch_result_x[0]);
|
|
ecc_code[i++] = (val >> 24) & 0xFF;
|
|
ecc_code[i++] = (val >> 16) & 0xFF;
|
|
ecc_code[i++] = (val >> 8) & 0xFF;
|
|
ecc_code[i++] = (val >> 0) & 0xFF;
|
|
for (j = 3; j >= 0; j--) {
|
|
val = readl(&gpmc_cfg->bch_result_0_3[sector].bch_result_x[j]
|
|
);
|
|
ecc_code[i++] = (val >> 24) & 0xFF;
|
|
ecc_code[i++] = (val >> 16) & 0xFF;
|
|
ecc_code[i++] = (val >> 8) & 0xFF;
|
|
ecc_code[i++] = (val >> 0) & 0xFF;
|
|
}
|
|
break;
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
/* ECC scheme specific syndrome customizations */
|
|
switch (info->ecc_scheme) {
|
|
#ifdef CONFIG_BCH
|
|
case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW:
|
|
/* Add constant polynomial to remainder, so that
|
|
* ECC of blank pages results in 0x0 on reading back
|
|
*/
|
|
for (i = 0; i < chip->ecc.bytes; i++)
|
|
ecc_code[i] ^= bch8_polynomial[i];
|
|
break;
|
|
#endif
|
|
case OMAP_ECC_BCH8_CODE_HW:
|
|
/* Set 14th ECC byte as 0x0 for ROM compatibility */
|
|
ecc_code[chip->ecc.bytes - 1] = 0x0;
|
|
break;
|
|
case OMAP_ECC_BCH16_CODE_HW:
|
|
break;
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* omap_calculate_ecc_bch - ECC generator for 1 sector
|
|
* @mtd: MTD device structure
|
|
* @dat: The pointer to data on which ecc is computed
|
|
* @ecc_code: The ecc_code buffer
|
|
*
|
|
* Support calculating of BCH4/8/16 ECC vectors for one sector. This is used
|
|
* when SW based correction is required as ECC is required for one sector
|
|
* at a time.
|
|
*/
|
|
static int __maybe_unused omap_calculate_ecc_bch(struct mtd_info *mtd,
|
|
const u_char *dat, u_char *ecc_calc)
|
|
{
|
|
return _omap_calculate_ecc_bch(mtd, dat, ecc_calc, 0);
|
|
}
|
|
|
|
static inline void omap_nand_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
|
|
{
|
|
struct nand_chip *chip = mtd_to_nand(mtd);
|
|
struct omap_nand_info *info = nand_get_controller_data(chip);
|
|
u32 alignment = ((uintptr_t)buf | len) & 3;
|
|
|
|
if (alignment & 1)
|
|
readsb(info->fifo, buf, len);
|
|
else if (alignment & 3)
|
|
readsw(info->fifo, buf, len >> 1);
|
|
else
|
|
readsl(info->fifo, buf, len >> 2);
|
|
}
|
|
|
|
#ifdef CONFIG_NAND_OMAP_GPMC_PREFETCH
|
|
|
|
#define PREFETCH_CONFIG1_CS_SHIFT 24
|
|
#define PREFETCH_FIFOTHRESHOLD_MAX 0x40
|
|
#define PREFETCH_FIFOTHRESHOLD(val) ((val) << 8)
|
|
#define PREFETCH_STATUS_COUNT(val) (val & 0x00003fff)
|
|
#define PREFETCH_STATUS_FIFO_CNT(val) ((val >> 24) & 0x7F)
|
|
#define ENABLE_PREFETCH (1 << 7)
|
|
|
|
/**
|
|
* omap_prefetch_enable - configures and starts prefetch transfer
|
|
* @fifo_th: fifo threshold to be used for read/ write
|
|
* @count: number of bytes to be transferred
|
|
* @is_write: prefetch read(0) or write post(1) mode
|
|
* @cs: chip select to use
|
|
*/
|
|
static int omap_prefetch_enable(int fifo_th, unsigned int count, int is_write, int cs)
|
|
{
|
|
uint32_t val;
|
|
|
|
if (fifo_th > PREFETCH_FIFOTHRESHOLD_MAX)
|
|
return -EINVAL;
|
|
|
|
if (readl(&gpmc_cfg->prefetch_control))
|
|
return -EBUSY;
|
|
|
|
/* Set the amount of bytes to be prefetched */
|
|
writel(count, &gpmc_cfg->prefetch_config2);
|
|
|
|
val = (cs << PREFETCH_CONFIG1_CS_SHIFT) | (is_write & 1) |
|
|
PREFETCH_FIFOTHRESHOLD(fifo_th) | ENABLE_PREFETCH;
|
|
writel(val, &gpmc_cfg->prefetch_config1);
|
|
|
|
/* Start the prefetch engine */
|
|
writel(1, &gpmc_cfg->prefetch_control);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* omap_prefetch_reset - disables and stops the prefetch engine
|
|
*/
|
|
static void omap_prefetch_reset(void)
|
|
{
|
|
writel(0, &gpmc_cfg->prefetch_control);
|
|
writel(0, &gpmc_cfg->prefetch_config1);
|
|
}
|
|
|
|
static int __read_prefetch_aligned(struct nand_chip *chip, uint32_t *buf, int len)
|
|
{
|
|
int ret;
|
|
uint32_t cnt;
|
|
struct omap_nand_info *info = nand_get_controller_data(chip);
|
|
|
|
ret = omap_prefetch_enable(PREFETCH_FIFOTHRESHOLD_MAX, len, 0, info->cs);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
do {
|
|
int i;
|
|
|
|
cnt = readl(&gpmc_cfg->prefetch_status);
|
|
cnt = PREFETCH_STATUS_FIFO_CNT(cnt);
|
|
|
|
for (i = 0; i < cnt / 4; i++) {
|
|
*buf++ = readl(info->fifo);
|
|
len -= 4;
|
|
}
|
|
} while (len);
|
|
|
|
omap_prefetch_reset();
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void omap_nand_read_prefetch(struct mtd_info *mtd, uint8_t *buf, int len)
|
|
{
|
|
int ret;
|
|
uintptr_t head, tail;
|
|
struct nand_chip *chip = mtd_to_nand(mtd);
|
|
|
|
/*
|
|
* If the destination buffer is unaligned, start with reading
|
|
* the overlap byte-wise.
|
|
*/
|
|
head = ((uintptr_t)buf) % 4;
|
|
if (head) {
|
|
omap_nand_read_buf(mtd, buf, head);
|
|
buf += head;
|
|
len -= head;
|
|
}
|
|
|
|
/*
|
|
* Only transfer multiples of 4 bytes in a pre-fetched fashion.
|
|
* If there's a residue, care for it byte-wise afterwards.
|
|
*/
|
|
tail = len % 4;
|
|
|
|
ret = __read_prefetch_aligned(chip, (uint32_t *)buf, len - tail);
|
|
if (ret < 0) {
|
|
/* fallback in case the prefetch engine is busy */
|
|
omap_nand_read_buf(mtd, buf, len);
|
|
} else if (tail) {
|
|
buf += len - tail;
|
|
omap_nand_read_buf(mtd, buf, tail);
|
|
}
|
|
}
|
|
#endif /* CONFIG_NAND_OMAP_GPMC_PREFETCH */
|
|
|
|
#ifdef CONFIG_NAND_OMAP_ELM
|
|
|
|
/**
|
|
* omap_calculate_ecc_bch_multi - Generate ECC for multiple sectors
|
|
* @mtd: MTD device structure
|
|
* @dat: The pointer to data on which ecc is computed
|
|
* @ecc_code: The ecc_code buffer
|
|
*
|
|
* Support calculating of BCH4/8/16 ecc vectors for the entire page in one go.
|
|
*/
|
|
static int omap_calculate_ecc_bch_multi(struct mtd_info *mtd,
|
|
const u_char *dat, u_char *ecc_calc)
|
|
{
|
|
struct nand_chip *chip = mtd_to_nand(mtd);
|
|
int eccbytes = chip->ecc.bytes;
|
|
unsigned long nsectors;
|
|
int i, ret;
|
|
|
|
nsectors = ((readl(&gpmc_cfg->ecc_config) >> 4) & 0x7) + 1;
|
|
for (i = 0; i < nsectors; i++) {
|
|
ret = _omap_calculate_ecc_bch(mtd, dat, ecc_calc, i);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ecc_calc += eccbytes;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* omap_reverse_list - re-orders list elements in reverse order [internal]
|
|
* @list: pointer to start of list
|
|
* @length: length of list
|
|
*/
|
|
static void omap_reverse_list(u8 *list, unsigned int length)
|
|
{
|
|
unsigned int i, j;
|
|
unsigned int half_length = length / 2;
|
|
u8 tmp;
|
|
for (i = 0, j = length - 1; i < half_length; i++, j--) {
|
|
tmp = list[i];
|
|
list[i] = list[j];
|
|
list[j] = tmp;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* omap_correct_data_bch - Compares the ecc read from nand spare area
|
|
* with ECC registers values and corrects one bit error if it has occurred
|
|
*
|
|
* @mtd: MTD device structure
|
|
* @dat: page data
|
|
* @read_ecc: ecc read from nand flash (ignored)
|
|
* @calc_ecc: ecc read from ECC registers
|
|
*
|
|
* Return: 0 if data is OK or corrected, else returns -1
|
|
*/
|
|
static int omap_correct_data_bch(struct mtd_info *mtd, uint8_t *dat,
|
|
uint8_t *read_ecc, uint8_t *calc_ecc)
|
|
{
|
|
struct nand_chip *chip = mtd_to_nand(mtd);
|
|
struct omap_nand_info *info = nand_get_controller_data(chip);
|
|
struct nand_ecc_ctrl *ecc = &chip->ecc;
|
|
uint32_t error_count = 0, error_max;
|
|
uint32_t error_loc[ELM_MAX_ERROR_COUNT];
|
|
enum bch_level bch_type;
|
|
uint32_t i, ecc_flag = 0;
|
|
uint8_t count;
|
|
uint32_t byte_pos, bit_pos;
|
|
int err = 0;
|
|
|
|
/* check calculated ecc */
|
|
for (i = 0; i < ecc->bytes && !ecc_flag; i++) {
|
|
if (calc_ecc[i] != 0x00)
|
|
goto not_ecc_match;
|
|
}
|
|
return 0;
|
|
not_ecc_match:
|
|
|
|
/* check for whether it's an erased-page */
|
|
for (i = 0; i < ecc->bytes; i++) {
|
|
if (read_ecc[i] != 0xff)
|
|
goto not_erased;
|
|
}
|
|
for (i = 0; i < SECTOR_BYTES; i++) {
|
|
if (dat[i] != 0xff)
|
|
goto not_erased;
|
|
}
|
|
return 0;
|
|
not_erased:
|
|
|
|
/*
|
|
* Check for whether it's an erased page with a correctable
|
|
* number of bitflips. Erased pages have all 1's in the data,
|
|
* so we just compute the number of 0 bits in the data and
|
|
* see if it's under the correction threshold.
|
|
*
|
|
* NOTE: The check for a perfect erased page above is faster for
|
|
* the more common case, even though it's logically redundant.
|
|
*/
|
|
for (i = 0; i < ecc->bytes; i++)
|
|
error_count += hweight8(~read_ecc[i]);
|
|
|
|
for (i = 0; i < SECTOR_BYTES; i++)
|
|
error_count += hweight8(~dat[i]);
|
|
|
|
if (error_count <= ecc->strength) {
|
|
memset(read_ecc, 0xFF, ecc->bytes);
|
|
memset(dat, 0xFF, SECTOR_BYTES);
|
|
debug("nand: %u bit-flip(s) corrected in erased page\n",
|
|
error_count);
|
|
return error_count;
|
|
}
|
|
|
|
/*
|
|
* while reading ECC result we read it in big endian.
|
|
* Hence while loading to ELM we have rotate to get the right endian.
|
|
*/
|
|
switch (info->ecc_scheme) {
|
|
case OMAP_ECC_BCH8_CODE_HW:
|
|
bch_type = BCH_8_BIT;
|
|
omap_reverse_list(calc_ecc, ecc->bytes - 1);
|
|
break;
|
|
case OMAP_ECC_BCH16_CODE_HW:
|
|
bch_type = BCH_16_BIT;
|
|
omap_reverse_list(calc_ecc, ecc->bytes);
|
|
break;
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
/* use elm module to check for errors */
|
|
elm_config(bch_type);
|
|
error_count = 0;
|
|
err = elm_check_error(calc_ecc, bch_type, &error_count, error_loc);
|
|
if (err)
|
|
return err;
|
|
|
|
/* correct bch error */
|
|
for (count = 0; count < error_count; count++) {
|
|
switch (info->ecc_scheme) {
|
|
case OMAP_ECC_BCH8_CODE_HW:
|
|
/* 14th byte in ECC is reserved to match ROM layout */
|
|
error_max = SECTOR_BYTES + (ecc->bytes - 1);
|
|
break;
|
|
case OMAP_ECC_BCH16_CODE_HW:
|
|
error_max = SECTOR_BYTES + ecc->bytes;
|
|
break;
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
byte_pos = error_max - (error_loc[count] / 8) - 1;
|
|
bit_pos = error_loc[count] % 8;
|
|
if (byte_pos < SECTOR_BYTES) {
|
|
dat[byte_pos] ^= 1 << bit_pos;
|
|
debug("nand: bit-flip corrected @data=%d\n", byte_pos);
|
|
} else if (byte_pos < error_max) {
|
|
read_ecc[byte_pos - SECTOR_BYTES] ^= 1 << bit_pos;
|
|
debug("nand: bit-flip corrected @oob=%d\n", byte_pos -
|
|
SECTOR_BYTES);
|
|
} else {
|
|
err = -EBADMSG;
|
|
printf("nand: error: invalid bit-flip location\n");
|
|
}
|
|
}
|
|
return (err) ? err : error_count;
|
|
}
|
|
|
|
/**
|
|
* omap_read_page_bch - hardware ecc based page read function
|
|
* @mtd: mtd info structure
|
|
* @chip: nand chip info structure
|
|
* @buf: buffer to store read data
|
|
* @oob_required: caller expects OOB data read to chip->oob_poi
|
|
* @page: page number to read
|
|
*
|
|
*/
|
|
static int omap_read_page_bch(struct mtd_info *mtd, struct nand_chip *chip,
|
|
uint8_t *buf, int oob_required, int page)
|
|
{
|
|
int i, eccsize = chip->ecc.size;
|
|
int eccbytes = chip->ecc.bytes;
|
|
int ecctotal = chip->ecc.total;
|
|
int eccsteps = chip->ecc.steps;
|
|
uint8_t *p = buf;
|
|
uint8_t *ecc_calc = chip->buffers->ecccalc;
|
|
uint8_t *ecc_code = chip->buffers->ecccode;
|
|
uint32_t *eccpos = chip->ecc.layout->eccpos;
|
|
uint8_t *oob = chip->oob_poi;
|
|
uint32_t oob_pos;
|
|
|
|
/* oob area start */
|
|
oob_pos = (eccsize * eccsteps) + chip->ecc.layout->eccpos[0];
|
|
oob += chip->ecc.layout->eccpos[0];
|
|
|
|
/* Enable ECC engine */
|
|
chip->ecc.hwctl(mtd, NAND_ECC_READ);
|
|
|
|
/* read entire page */
|
|
chip->cmdfunc(mtd, NAND_CMD_RNDOUT, 0, -1);
|
|
chip->read_buf(mtd, buf, mtd->writesize);
|
|
|
|
/* read all ecc bytes from oob area */
|
|
chip->cmdfunc(mtd, NAND_CMD_RNDOUT, oob_pos, -1);
|
|
chip->read_buf(mtd, oob, ecctotal);
|
|
|
|
/* Calculate ecc bytes */
|
|
omap_calculate_ecc_bch_multi(mtd, buf, ecc_calc);
|
|
|
|
for (i = 0; i < chip->ecc.total; i++)
|
|
ecc_code[i] = chip->oob_poi[eccpos[i]];
|
|
|
|
/* error detect & correct */
|
|
eccsteps = chip->ecc.steps;
|
|
p = buf;
|
|
|
|
for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
|
|
int stat;
|
|
stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
|
|
if (stat < 0)
|
|
mtd->ecc_stats.failed++;
|
|
else
|
|
mtd->ecc_stats.corrected += stat;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
#endif /* CONFIG_NAND_OMAP_ELM */
|
|
|
|
/*
|
|
* OMAP3 BCH8 support (with BCH library)
|
|
*/
|
|
#ifdef CONFIG_BCH
|
|
/**
|
|
* omap_correct_data_bch_sw - Decode received data and correct errors
|
|
* @mtd: MTD device structure
|
|
* @data: page data
|
|
* @read_ecc: ecc read from nand flash
|
|
* @calc_ecc: ecc read from HW ECC registers
|
|
*/
|
|
static int omap_correct_data_bch_sw(struct mtd_info *mtd, u_char *data,
|
|
u_char *read_ecc, u_char *calc_ecc)
|
|
{
|
|
int i, count;
|
|
/* cannot correct more than 8 errors */
|
|
unsigned int errloc[8];
|
|
struct nand_chip *chip = mtd_to_nand(mtd);
|
|
struct omap_nand_info *info = nand_get_controller_data(chip);
|
|
|
|
count = decode_bch(info->control, NULL, SECTOR_BYTES,
|
|
read_ecc, calc_ecc, NULL, errloc);
|
|
if (count > 0) {
|
|
/* correct errors */
|
|
for (i = 0; i < count; i++) {
|
|
/* correct data only, not ecc bytes */
|
|
if (errloc[i] < SECTOR_BYTES << 3)
|
|
data[errloc[i] >> 3] ^= 1 << (errloc[i] & 7);
|
|
debug("corrected bitflip %u\n", errloc[i]);
|
|
#ifdef DEBUG
|
|
puts("read_ecc: ");
|
|
/*
|
|
* BCH8 have 13 bytes of ECC; BCH4 needs adoption
|
|
* here!
|
|
*/
|
|
for (i = 0; i < 13; i++)
|
|
printf("%02x ", read_ecc[i]);
|
|
puts("\n");
|
|
puts("calc_ecc: ");
|
|
for (i = 0; i < 13; i++)
|
|
printf("%02x ", calc_ecc[i]);
|
|
puts("\n");
|
|
#endif
|
|
}
|
|
} else if (count < 0) {
|
|
puts("ecc unrecoverable error\n");
|
|
}
|
|
return count;
|
|
}
|
|
|
|
/**
|
|
* omap_free_bch - Release BCH ecc resources
|
|
* @mtd: MTD device structure
|
|
*/
|
|
static void __maybe_unused omap_free_bch(struct mtd_info *mtd)
|
|
{
|
|
struct nand_chip *chip = mtd_to_nand(mtd);
|
|
struct omap_nand_info *info = nand_get_controller_data(chip);
|
|
|
|
if (info->control) {
|
|
free_bch(info->control);
|
|
info->control = NULL;
|
|
}
|
|
}
|
|
#endif /* CONFIG_BCH */
|
|
|
|
/**
|
|
* omap_select_ecc_scheme - configures driver for particular ecc-scheme
|
|
* @nand: NAND chip device structure
|
|
* @ecc_scheme: ecc scheme to configure
|
|
* @pagesize: number of main-area bytes per page of NAND device
|
|
* @oobsize: number of OOB/spare bytes per page of NAND device
|
|
*/
|
|
static int omap_select_ecc_scheme(struct nand_chip *nand,
|
|
enum omap_ecc ecc_scheme, unsigned int pagesize, unsigned int oobsize) {
|
|
struct omap_nand_info *info = nand_get_controller_data(nand);
|
|
struct nand_ecclayout *ecclayout = nand->ecc.layout;
|
|
int eccsteps = pagesize / SECTOR_BYTES;
|
|
int i;
|
|
|
|
switch (ecc_scheme) {
|
|
case OMAP_ECC_HAM1_CODE_SW:
|
|
debug("nand: selected OMAP_ECC_HAM1_CODE_SW\n");
|
|
/* For this ecc-scheme, ecc.bytes, ecc.layout, ... are
|
|
* initialized in nand_scan_tail(), so just set ecc.mode */
|
|
info->control = NULL;
|
|
nand->ecc.mode = NAND_ECC_SOFT;
|
|
nand->ecc.layout = NULL;
|
|
nand->ecc.size = 0;
|
|
break;
|
|
|
|
case OMAP_ECC_HAM1_CODE_HW:
|
|
debug("nand: selected OMAP_ECC_HAM1_CODE_HW\n");
|
|
/* check ecc-scheme requirements before updating ecc info */
|
|
if ((3 * eccsteps) + BADBLOCK_MARKER_LENGTH > oobsize) {
|
|
printf("nand: error: insufficient OOB: require=%d\n", (
|
|
(3 * eccsteps) + BADBLOCK_MARKER_LENGTH));
|
|
return -EINVAL;
|
|
}
|
|
info->control = NULL;
|
|
/* populate ecc specific fields */
|
|
memset(&nand->ecc, 0, sizeof(struct nand_ecc_ctrl));
|
|
nand->ecc.mode = NAND_ECC_HW;
|
|
nand->ecc.strength = 1;
|
|
nand->ecc.size = SECTOR_BYTES;
|
|
nand->ecc.bytes = 3;
|
|
nand->ecc.hwctl = omap_enable_hwecc;
|
|
nand->ecc.correct = omap_correct_data;
|
|
nand->ecc.calculate = omap_calculate_ecc;
|
|
/* define ecc-layout */
|
|
ecclayout->eccbytes = nand->ecc.bytes * eccsteps;
|
|
for (i = 0; i < ecclayout->eccbytes; i++) {
|
|
if (nand->options & NAND_BUSWIDTH_16)
|
|
ecclayout->eccpos[i] = i + 2;
|
|
else
|
|
ecclayout->eccpos[i] = i + 1;
|
|
}
|
|
ecclayout->oobfree[0].offset = i + BADBLOCK_MARKER_LENGTH;
|
|
ecclayout->oobfree[0].length = oobsize - ecclayout->eccbytes -
|
|
BADBLOCK_MARKER_LENGTH;
|
|
break;
|
|
|
|
case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW:
|
|
#ifdef CONFIG_BCH
|
|
debug("nand: selected OMAP_ECC_BCH8_CODE_HW_DETECTION_SW\n");
|
|
/* check ecc-scheme requirements before updating ecc info */
|
|
if ((13 * eccsteps) + BADBLOCK_MARKER_LENGTH > oobsize) {
|
|
printf("nand: error: insufficient OOB: require=%d\n", (
|
|
(13 * eccsteps) + BADBLOCK_MARKER_LENGTH));
|
|
return -EINVAL;
|
|
}
|
|
/* check if BCH S/W library can be used for error detection */
|
|
info->control = init_bch(13, 8, 0x201b);
|
|
if (!info->control) {
|
|
printf("nand: error: could not init_bch()\n");
|
|
return -ENODEV;
|
|
}
|
|
/* populate ecc specific fields */
|
|
memset(&nand->ecc, 0, sizeof(struct nand_ecc_ctrl));
|
|
nand->ecc.mode = NAND_ECC_HW;
|
|
nand->ecc.strength = 8;
|
|
nand->ecc.size = SECTOR_BYTES;
|
|
nand->ecc.bytes = 13;
|
|
nand->ecc.hwctl = omap_enable_hwecc_bch;
|
|
nand->ecc.correct = omap_correct_data_bch_sw;
|
|
nand->ecc.calculate = omap_calculate_ecc_bch;
|
|
/* define ecc-layout */
|
|
ecclayout->eccbytes = nand->ecc.bytes * eccsteps;
|
|
ecclayout->eccpos[0] = BADBLOCK_MARKER_LENGTH;
|
|
for (i = 1; i < ecclayout->eccbytes; i++) {
|
|
if (i % nand->ecc.bytes)
|
|
ecclayout->eccpos[i] =
|
|
ecclayout->eccpos[i - 1] + 1;
|
|
else
|
|
ecclayout->eccpos[i] =
|
|
ecclayout->eccpos[i - 1] + 2;
|
|
}
|
|
ecclayout->oobfree[0].offset = i + BADBLOCK_MARKER_LENGTH;
|
|
ecclayout->oobfree[0].length = oobsize - ecclayout->eccbytes -
|
|
BADBLOCK_MARKER_LENGTH;
|
|
break;
|
|
#else
|
|
printf("nand: error: CONFIG_BCH required for ECC\n");
|
|
return -EINVAL;
|
|
#endif
|
|
|
|
case OMAP_ECC_BCH8_CODE_HW:
|
|
#ifdef CONFIG_NAND_OMAP_ELM
|
|
debug("nand: selected OMAP_ECC_BCH8_CODE_HW\n");
|
|
/* check ecc-scheme requirements before updating ecc info */
|
|
if ((14 * eccsteps) + BADBLOCK_MARKER_LENGTH > oobsize) {
|
|
printf("nand: error: insufficient OOB: require=%d\n", (
|
|
(14 * eccsteps) + BADBLOCK_MARKER_LENGTH));
|
|
return -EINVAL;
|
|
}
|
|
/* intialize ELM for ECC error detection */
|
|
elm_init();
|
|
info->control = NULL;
|
|
/* populate ecc specific fields */
|
|
memset(&nand->ecc, 0, sizeof(struct nand_ecc_ctrl));
|
|
nand->ecc.mode = NAND_ECC_HW;
|
|
nand->ecc.strength = 8;
|
|
nand->ecc.size = SECTOR_BYTES;
|
|
nand->ecc.bytes = 14;
|
|
nand->ecc.hwctl = omap_enable_hwecc_bch;
|
|
nand->ecc.correct = omap_correct_data_bch;
|
|
nand->ecc.calculate = omap_calculate_ecc_bch;
|
|
nand->ecc.read_page = omap_read_page_bch;
|
|
/* define ecc-layout */
|
|
ecclayout->eccbytes = nand->ecc.bytes * eccsteps;
|
|
for (i = 0; i < ecclayout->eccbytes; i++)
|
|
ecclayout->eccpos[i] = i + BADBLOCK_MARKER_LENGTH;
|
|
ecclayout->oobfree[0].offset = i + BADBLOCK_MARKER_LENGTH;
|
|
ecclayout->oobfree[0].length = oobsize - ecclayout->eccbytes -
|
|
BADBLOCK_MARKER_LENGTH;
|
|
break;
|
|
#else
|
|
printf("nand: error: CONFIG_NAND_OMAP_ELM required for ECC\n");
|
|
return -EINVAL;
|
|
#endif
|
|
|
|
case OMAP_ECC_BCH16_CODE_HW:
|
|
#ifdef CONFIG_NAND_OMAP_ELM
|
|
debug("nand: using OMAP_ECC_BCH16_CODE_HW\n");
|
|
/* check ecc-scheme requirements before updating ecc info */
|
|
if ((26 * eccsteps) + BADBLOCK_MARKER_LENGTH > oobsize) {
|
|
printf("nand: error: insufficient OOB: require=%d\n", (
|
|
(26 * eccsteps) + BADBLOCK_MARKER_LENGTH));
|
|
return -EINVAL;
|
|
}
|
|
/* intialize ELM for ECC error detection */
|
|
elm_init();
|
|
/* populate ecc specific fields */
|
|
nand->ecc.mode = NAND_ECC_HW;
|
|
nand->ecc.size = SECTOR_BYTES;
|
|
nand->ecc.bytes = 26;
|
|
nand->ecc.strength = 16;
|
|
nand->ecc.hwctl = omap_enable_hwecc_bch;
|
|
nand->ecc.correct = omap_correct_data_bch;
|
|
nand->ecc.calculate = omap_calculate_ecc_bch;
|
|
nand->ecc.read_page = omap_read_page_bch;
|
|
/* define ecc-layout */
|
|
ecclayout->eccbytes = nand->ecc.bytes * eccsteps;
|
|
for (i = 0; i < ecclayout->eccbytes; i++)
|
|
ecclayout->eccpos[i] = i + BADBLOCK_MARKER_LENGTH;
|
|
ecclayout->oobfree[0].offset = i + BADBLOCK_MARKER_LENGTH;
|
|
ecclayout->oobfree[0].length = oobsize - nand->ecc.bytes -
|
|
BADBLOCK_MARKER_LENGTH;
|
|
break;
|
|
#else
|
|
printf("nand: error: CONFIG_NAND_OMAP_ELM required for ECC\n");
|
|
return -EINVAL;
|
|
#endif
|
|
default:
|
|
debug("nand: error: ecc scheme not enabled or supported\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* nand_scan_tail() sets ham1 sw ecc; hw ecc layout is set by driver */
|
|
if (ecc_scheme != OMAP_ECC_HAM1_CODE_SW)
|
|
nand->ecc.layout = ecclayout;
|
|
|
|
info->ecc_scheme = ecc_scheme;
|
|
return 0;
|
|
}
|
|
|
|
#ifndef CONFIG_SPL_BUILD
|
|
/*
|
|
* omap_nand_switch_ecc - switch the ECC operation between different engines
|
|
* (h/w and s/w) and different algorithms (hamming and BCHx)
|
|
*
|
|
* @hardware - true if one of the HW engines should be used
|
|
* @eccstrength - the number of bits that could be corrected
|
|
* (1 - hamming, 4 - BCH4, 8 - BCH8, 16 - BCH16)
|
|
*/
|
|
int __maybe_unused omap_nand_switch_ecc(uint32_t hardware, uint32_t eccstrength)
|
|
{
|
|
struct nand_chip *nand;
|
|
struct mtd_info *mtd = get_nand_dev_by_index(nand_curr_device);
|
|
int err = 0;
|
|
|
|
if (!mtd) {
|
|
printf("nand: error: no NAND devices found\n");
|
|
return -ENODEV;
|
|
}
|
|
|
|
nand = mtd_to_nand(mtd);
|
|
nand->options |= NAND_OWN_BUFFERS;
|
|
nand->options &= ~NAND_SUBPAGE_READ;
|
|
/* Setup the ecc configurations again */
|
|
if (hardware) {
|
|
if (eccstrength == 1) {
|
|
err = omap_select_ecc_scheme(nand,
|
|
OMAP_ECC_HAM1_CODE_HW,
|
|
mtd->writesize, mtd->oobsize);
|
|
} else if (eccstrength == 8) {
|
|
err = omap_select_ecc_scheme(nand,
|
|
OMAP_ECC_BCH8_CODE_HW,
|
|
mtd->writesize, mtd->oobsize);
|
|
} else if (eccstrength == 16) {
|
|
err = omap_select_ecc_scheme(nand,
|
|
OMAP_ECC_BCH16_CODE_HW,
|
|
mtd->writesize, mtd->oobsize);
|
|
} else {
|
|
printf("nand: error: unsupported ECC scheme\n");
|
|
return -EINVAL;
|
|
}
|
|
} else {
|
|
if (eccstrength == 1) {
|
|
err = omap_select_ecc_scheme(nand,
|
|
OMAP_ECC_HAM1_CODE_SW,
|
|
mtd->writesize, mtd->oobsize);
|
|
} else if (eccstrength == 8) {
|
|
err = omap_select_ecc_scheme(nand,
|
|
OMAP_ECC_BCH8_CODE_HW_DETECTION_SW,
|
|
mtd->writesize, mtd->oobsize);
|
|
} else {
|
|
printf("nand: error: unsupported ECC scheme\n");
|
|
return -EINVAL;
|
|
}
|
|
}
|
|
|
|
/* Update NAND handling after ECC mode switch */
|
|
if (!err)
|
|
err = nand_scan_tail(mtd);
|
|
return err;
|
|
}
|
|
#endif /* CONFIG_SPL_BUILD */
|
|
|
|
/*
|
|
* Board-specific NAND initialization. The following members of the
|
|
* argument are board-specific:
|
|
* - IO_ADDR_R: address to read the 8 I/O lines of the flash device
|
|
* - IO_ADDR_W: address to write the 8 I/O lines of the flash device
|
|
* - cmd_ctrl: hardwarespecific function for accesing control-lines
|
|
* - waitfunc: hardwarespecific function for accesing device ready/busy line
|
|
* - ecc.hwctl: function to enable (reset) hardware ecc generator
|
|
* - ecc.mode: mode of ecc, see defines
|
|
* - chip_delay: chip dependent delay for transfering data from array to
|
|
* read regs (tR)
|
|
* - options: various chip options. They can partly be set to inform
|
|
* nand_scan about special functionality. See the defines for further
|
|
* explanation
|
|
*/
|
|
int gpmc_nand_init(struct nand_chip *nand)
|
|
{
|
|
int32_t gpmc_config = 0;
|
|
int cs = cs_next++;
|
|
int err = 0;
|
|
struct omap_nand_info *info;
|
|
|
|
/*
|
|
* xloader/Uboot's gpmc configuration would have configured GPMC for
|
|
* nand type of memory. The following logic scans and latches on to the
|
|
* first CS with NAND type memory.
|
|
* TBD: need to make this logic generic to handle multiple CS NAND
|
|
* devices.
|
|
*/
|
|
while (cs < GPMC_MAX_CS) {
|
|
/* Check if NAND type is set */
|
|
if ((readl(&gpmc_cfg->cs[cs].config1) & 0xC00) == 0x800) {
|
|
/* Found it!! */
|
|
break;
|
|
}
|
|
cs++;
|
|
}
|
|
if (cs >= GPMC_MAX_CS) {
|
|
printf("nand: error: Unable to find NAND settings in "
|
|
"GPMC Configuration - quitting\n");
|
|
return -ENODEV;
|
|
}
|
|
|
|
gpmc_config = readl(&gpmc_cfg->config);
|
|
/* Disable Write protect */
|
|
gpmc_config |= 0x10;
|
|
writel(gpmc_config, &gpmc_cfg->config);
|
|
|
|
nand->IO_ADDR_R = (void __iomem *)&gpmc_cfg->cs[cs].nand_dat;
|
|
nand->IO_ADDR_W = (void __iomem *)&gpmc_cfg->cs[cs].nand_cmd;
|
|
|
|
info = &omap_nand_info[cs];
|
|
info->control = NULL;
|
|
info->cs = cs;
|
|
info->ws = wscfg[cs];
|
|
info->fifo = (void __iomem *)CFG_SYS_NAND_BASE;
|
|
nand_set_controller_data(nand, &omap_nand_info[cs]);
|
|
nand->cmd_ctrl = omap_nand_hwcontrol;
|
|
nand->options |= NAND_NO_PADDING | NAND_CACHEPRG;
|
|
nand->chip_delay = 100;
|
|
nand->ecc.layout = kzalloc(sizeof(*nand->ecc.layout), GFP_KERNEL);
|
|
if (!nand->ecc.layout)
|
|
return -ENOMEM;
|
|
|
|
/* configure driver and controller based on NAND device bus-width */
|
|
gpmc_config = readl(&gpmc_cfg->cs[cs].config1);
|
|
#if defined(CONFIG_SYS_NAND_BUSWIDTH_16BIT)
|
|
nand->options |= NAND_BUSWIDTH_16;
|
|
writel(gpmc_config | (0x1 << 12), &gpmc_cfg->cs[cs].config1);
|
|
#else
|
|
nand->options &= ~NAND_BUSWIDTH_16;
|
|
writel(gpmc_config & ~(0x1 << 12), &gpmc_cfg->cs[cs].config1);
|
|
#endif
|
|
/* select ECC scheme */
|
|
#if defined(CONFIG_NAND_OMAP_ECCSCHEME)
|
|
err = omap_select_ecc_scheme(nand, CONFIG_NAND_OMAP_ECCSCHEME,
|
|
CONFIG_SYS_NAND_PAGE_SIZE, CONFIG_SYS_NAND_OOBSIZE);
|
|
#else
|
|
/* pagesize and oobsize are not required to configure sw ecc-scheme */
|
|
err = omap_select_ecc_scheme(nand, OMAP_ECC_HAM1_CODE_SW,
|
|
0, 0);
|
|
#endif
|
|
if (err)
|
|
return err;
|
|
|
|
#ifdef CONFIG_NAND_OMAP_GPMC_PREFETCH
|
|
nand->read_buf = omap_nand_read_prefetch;
|
|
#else
|
|
nand->read_buf = omap_nand_read_buf;
|
|
#endif
|
|
|
|
nand->dev_ready = omap_dev_ready;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* First NAND chip for SPL use only */
|
|
static __maybe_unused struct nand_chip *nand_chip;
|
|
|
|
#if CONFIG_IS_ENABLED(SYS_NAND_SELF_INIT)
|
|
|
|
static int gpmc_nand_probe(struct udevice *dev)
|
|
{
|
|
struct nand_chip *nand = dev_get_priv(dev);
|
|
struct mtd_info *mtd = nand_to_mtd(nand);
|
|
int ret;
|
|
|
|
gpmc_nand_init(nand);
|
|
|
|
ret = nand_scan(mtd, CONFIG_SYS_NAND_MAX_CHIPS);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = nand_register(0, mtd);
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (!nand_chip)
|
|
nand_chip = nand;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static const struct udevice_id gpmc_nand_ids[] = {
|
|
{ .compatible = "ti,am64-nand" },
|
|
{ .compatible = "ti,omap2-nand" },
|
|
{ }
|
|
};
|
|
|
|
U_BOOT_DRIVER(gpmc_nand) = {
|
|
.name = "gpmc-nand",
|
|
.id = UCLASS_MTD,
|
|
.of_match = gpmc_nand_ids,
|
|
.probe = gpmc_nand_probe,
|
|
.priv_auto = sizeof(struct nand_chip),
|
|
};
|
|
|
|
void board_nand_init(void)
|
|
{
|
|
struct udevice *dev;
|
|
int ret;
|
|
|
|
#ifdef CONFIG_NAND_OMAP_ELM
|
|
ret = uclass_get_device_by_driver(UCLASS_MTD,
|
|
DM_DRIVER_GET(gpmc_elm), &dev);
|
|
if (ret && ret != -ENODEV) {
|
|
pr_err("%s: Failed to get ELM device: %d\n", __func__, ret);
|
|
return;
|
|
}
|
|
#endif
|
|
|
|
ret = uclass_get_device_by_driver(UCLASS_MTD,
|
|
DM_DRIVER_GET(gpmc_nand), &dev);
|
|
if (ret && ret != -ENODEV)
|
|
pr_err("%s: Failed to get GPMC device: %d\n", __func__, ret);
|
|
}
|
|
|
|
#else
|
|
|
|
int board_nand_init(struct nand_chip *nand)
|
|
{
|
|
return gpmc_nand_init(nand);
|
|
}
|
|
|
|
#endif /* CONFIG_SYS_NAND_SELF_INIT */
|
|
|
|
#if defined(CONFIG_SPL_NAND_INIT)
|
|
|
|
/* nand_init() is provided by nand.c */
|
|
|
|
/* Unselect after operation */
|
|
void nand_deselect(void)
|
|
{
|
|
struct mtd_info *mtd = nand_to_mtd(nand_chip);
|
|
|
|
if (nand_chip->select_chip)
|
|
nand_chip->select_chip(mtd, -1);
|
|
}
|
|
|
|
static int nand_is_bad_block(int block)
|
|
{
|
|
struct mtd_info *mtd = nand_to_mtd(nand_chip);
|
|
|
|
loff_t ofs = block * CONFIG_SYS_NAND_BLOCK_SIZE;
|
|
|
|
return nand_chip->block_bad(mtd, ofs);
|
|
}
|
|
|
|
static int nand_read_page(int block, int page, uchar *dst)
|
|
{
|
|
int page_addr = block * CONFIG_SYS_NAND_PAGE_COUNT + page;
|
|
loff_t ofs = page_addr * CONFIG_SYS_NAND_PAGE_SIZE;
|
|
int ret;
|
|
size_t len = CONFIG_SYS_NAND_PAGE_SIZE;
|
|
struct mtd_info *mtd = nand_to_mtd(nand_chip);
|
|
|
|
ret = nand_read(mtd, ofs, &len, dst);
|
|
if (ret)
|
|
printf("nand_read failed %d\n", ret);
|
|
|
|
return ret;
|
|
}
|
|
|
|
#include "nand_spl_loaders.c"
|
|
#endif /* CONFIG_SPL_NAND_INIT */
|