mirror of
https://github.com/AsahiLinux/u-boot
synced 2024-11-27 23:21:01 +00:00
57f24f1073
These two functions play a big role in btrfs bootstrap. The following function is removed: - Seed device support Although in theory we can still support multiple devices, we don't have a facility in U-Boot to do device scan without opening them. Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: Marek Behún <marek.behun@nic.cz>
1173 lines
31 KiB
C
1173 lines
31 KiB
C
// SPDX-License-Identifier: GPL-2.0+
|
|
#include <stdlib.h>
|
|
#include <common.h>
|
|
#include <fs_internal.h>
|
|
#include "ctree.h"
|
|
#include "disk-io.h"
|
|
#include "volumes.h"
|
|
#include "extent-io.h"
|
|
|
|
const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = {
|
|
[BTRFS_RAID_RAID10] = {
|
|
.sub_stripes = 2,
|
|
.dev_stripes = 1,
|
|
.devs_max = 0, /* 0 == as many as possible */
|
|
.devs_min = 4,
|
|
.tolerated_failures = 1,
|
|
.devs_increment = 2,
|
|
.ncopies = 2,
|
|
.nparity = 0,
|
|
.raid_name = "raid10",
|
|
.bg_flag = BTRFS_BLOCK_GROUP_RAID10,
|
|
},
|
|
[BTRFS_RAID_RAID1] = {
|
|
.sub_stripes = 1,
|
|
.dev_stripes = 1,
|
|
.devs_max = 2,
|
|
.devs_min = 2,
|
|
.tolerated_failures = 1,
|
|
.devs_increment = 2,
|
|
.ncopies = 2,
|
|
.nparity = 0,
|
|
.raid_name = "raid1",
|
|
.bg_flag = BTRFS_BLOCK_GROUP_RAID1,
|
|
},
|
|
[BTRFS_RAID_RAID1C3] = {
|
|
.sub_stripes = 1,
|
|
.dev_stripes = 1,
|
|
.devs_max = 3,
|
|
.devs_min = 3,
|
|
.tolerated_failures = 2,
|
|
.devs_increment = 3,
|
|
.ncopies = 3,
|
|
.raid_name = "raid1c3",
|
|
.bg_flag = BTRFS_BLOCK_GROUP_RAID1C3,
|
|
},
|
|
[BTRFS_RAID_RAID1C4] = {
|
|
.sub_stripes = 1,
|
|
.dev_stripes = 1,
|
|
.devs_max = 4,
|
|
.devs_min = 4,
|
|
.tolerated_failures = 3,
|
|
.devs_increment = 4,
|
|
.ncopies = 4,
|
|
.raid_name = "raid1c4",
|
|
.bg_flag = BTRFS_BLOCK_GROUP_RAID1C4,
|
|
},
|
|
[BTRFS_RAID_DUP] = {
|
|
.sub_stripes = 1,
|
|
.dev_stripes = 2,
|
|
.devs_max = 1,
|
|
.devs_min = 1,
|
|
.tolerated_failures = 0,
|
|
.devs_increment = 1,
|
|
.ncopies = 2,
|
|
.nparity = 0,
|
|
.raid_name = "dup",
|
|
.bg_flag = BTRFS_BLOCK_GROUP_DUP,
|
|
},
|
|
[BTRFS_RAID_RAID0] = {
|
|
.sub_stripes = 1,
|
|
.dev_stripes = 1,
|
|
.devs_max = 0,
|
|
.devs_min = 2,
|
|
.tolerated_failures = 0,
|
|
.devs_increment = 1,
|
|
.ncopies = 1,
|
|
.nparity = 0,
|
|
.raid_name = "raid0",
|
|
.bg_flag = BTRFS_BLOCK_GROUP_RAID0,
|
|
},
|
|
[BTRFS_RAID_SINGLE] = {
|
|
.sub_stripes = 1,
|
|
.dev_stripes = 1,
|
|
.devs_max = 1,
|
|
.devs_min = 1,
|
|
.tolerated_failures = 0,
|
|
.devs_increment = 1,
|
|
.ncopies = 1,
|
|
.nparity = 0,
|
|
.raid_name = "single",
|
|
.bg_flag = 0,
|
|
},
|
|
[BTRFS_RAID_RAID5] = {
|
|
.sub_stripes = 1,
|
|
.dev_stripes = 1,
|
|
.devs_max = 0,
|
|
.devs_min = 2,
|
|
.tolerated_failures = 1,
|
|
.devs_increment = 1,
|
|
.ncopies = 1,
|
|
.nparity = 1,
|
|
.raid_name = "raid5",
|
|
.bg_flag = BTRFS_BLOCK_GROUP_RAID5,
|
|
},
|
|
[BTRFS_RAID_RAID6] = {
|
|
.sub_stripes = 1,
|
|
.dev_stripes = 1,
|
|
.devs_max = 0,
|
|
.devs_min = 3,
|
|
.tolerated_failures = 2,
|
|
.devs_increment = 1,
|
|
.ncopies = 1,
|
|
.nparity = 2,
|
|
.raid_name = "raid6",
|
|
.bg_flag = BTRFS_BLOCK_GROUP_RAID6,
|
|
},
|
|
};
|
|
|
|
struct stripe {
|
|
struct btrfs_device *dev;
|
|
u64 physical;
|
|
};
|
|
|
|
static inline int nr_parity_stripes(struct map_lookup *map)
|
|
{
|
|
if (map->type & BTRFS_BLOCK_GROUP_RAID5)
|
|
return 1;
|
|
else if (map->type & BTRFS_BLOCK_GROUP_RAID6)
|
|
return 2;
|
|
else
|
|
return 0;
|
|
}
|
|
|
|
static inline int nr_data_stripes(struct map_lookup *map)
|
|
{
|
|
return map->num_stripes - nr_parity_stripes(map);
|
|
}
|
|
|
|
#define is_parity_stripe(x) ( ((x) == BTRFS_RAID5_P_STRIPE) || ((x) == BTRFS_RAID6_Q_STRIPE) )
|
|
|
|
static LIST_HEAD(fs_uuids);
|
|
|
|
/*
|
|
* Find a device specified by @devid or @uuid in the list of @fs_devices, or
|
|
* return NULL.
|
|
*
|
|
* If devid and uuid are both specified, the match must be exact, otherwise
|
|
* only devid is used.
|
|
*/
|
|
static struct btrfs_device *find_device(struct btrfs_fs_devices *fs_devices,
|
|
u64 devid, u8 *uuid)
|
|
{
|
|
struct list_head *head = &fs_devices->devices;
|
|
struct btrfs_device *dev;
|
|
|
|
list_for_each_entry(dev, head, dev_list) {
|
|
if (dev->devid == devid &&
|
|
(!uuid || !memcmp(dev->uuid, uuid, BTRFS_UUID_SIZE))) {
|
|
return dev;
|
|
}
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
static struct btrfs_fs_devices *find_fsid(u8 *fsid, u8 *metadata_uuid)
|
|
{
|
|
struct btrfs_fs_devices *fs_devices;
|
|
|
|
list_for_each_entry(fs_devices, &fs_uuids, list) {
|
|
if (metadata_uuid && (memcmp(fsid, fs_devices->fsid,
|
|
BTRFS_FSID_SIZE) == 0) &&
|
|
(memcmp(metadata_uuid, fs_devices->metadata_uuid,
|
|
BTRFS_FSID_SIZE) == 0)) {
|
|
return fs_devices;
|
|
} else if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0){
|
|
return fs_devices;
|
|
}
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
static int device_list_add(struct btrfs_super_block *disk_super,
|
|
u64 devid, struct blk_desc *desc,
|
|
struct disk_partition *part,
|
|
struct btrfs_fs_devices **fs_devices_ret)
|
|
{
|
|
struct btrfs_device *device;
|
|
struct btrfs_fs_devices *fs_devices;
|
|
u64 found_transid = btrfs_super_generation(disk_super);
|
|
bool metadata_uuid = (btrfs_super_incompat_flags(disk_super) &
|
|
BTRFS_FEATURE_INCOMPAT_METADATA_UUID);
|
|
|
|
if (metadata_uuid)
|
|
fs_devices = find_fsid(disk_super->fsid,
|
|
disk_super->metadata_uuid);
|
|
else
|
|
fs_devices = find_fsid(disk_super->fsid, NULL);
|
|
|
|
if (!fs_devices) {
|
|
fs_devices = kzalloc(sizeof(*fs_devices), GFP_NOFS);
|
|
if (!fs_devices)
|
|
return -ENOMEM;
|
|
INIT_LIST_HEAD(&fs_devices->devices);
|
|
list_add(&fs_devices->list, &fs_uuids);
|
|
memcpy(fs_devices->fsid, disk_super->fsid, BTRFS_FSID_SIZE);
|
|
if (metadata_uuid)
|
|
memcpy(fs_devices->metadata_uuid,
|
|
disk_super->metadata_uuid, BTRFS_FSID_SIZE);
|
|
else
|
|
memcpy(fs_devices->metadata_uuid, fs_devices->fsid,
|
|
BTRFS_FSID_SIZE);
|
|
|
|
fs_devices->latest_devid = devid;
|
|
fs_devices->latest_trans = found_transid;
|
|
fs_devices->lowest_devid = (u64)-1;
|
|
device = NULL;
|
|
} else {
|
|
device = find_device(fs_devices, devid,
|
|
disk_super->dev_item.uuid);
|
|
}
|
|
if (!device) {
|
|
device = kzalloc(sizeof(*device), GFP_NOFS);
|
|
if (!device) {
|
|
/* we can safely leave the fs_devices entry around */
|
|
return -ENOMEM;
|
|
}
|
|
device->devid = devid;
|
|
device->desc = desc;
|
|
device->part = part;
|
|
device->generation = found_transid;
|
|
memcpy(device->uuid, disk_super->dev_item.uuid,
|
|
BTRFS_UUID_SIZE);
|
|
device->total_devs = btrfs_super_num_devices(disk_super);
|
|
device->super_bytes_used = btrfs_super_bytes_used(disk_super);
|
|
device->total_bytes =
|
|
btrfs_stack_device_total_bytes(&disk_super->dev_item);
|
|
device->bytes_used =
|
|
btrfs_stack_device_bytes_used(&disk_super->dev_item);
|
|
list_add(&device->dev_list, &fs_devices->devices);
|
|
device->fs_devices = fs_devices;
|
|
} else if (!device->desc || !device->part) {
|
|
/*
|
|
* The existing device has newer generation, so this one could
|
|
* be a stale one, don't add it.
|
|
*/
|
|
if (found_transid < device->generation) {
|
|
error(
|
|
"adding devid %llu gen %llu but found an existing device gen %llu",
|
|
device->devid, found_transid,
|
|
device->generation);
|
|
return -EEXIST;
|
|
} else {
|
|
device->desc = desc;
|
|
device->part = part;
|
|
}
|
|
}
|
|
|
|
|
|
if (found_transid > fs_devices->latest_trans) {
|
|
fs_devices->latest_devid = devid;
|
|
fs_devices->latest_trans = found_transid;
|
|
}
|
|
if (fs_devices->lowest_devid > devid) {
|
|
fs_devices->lowest_devid = devid;
|
|
}
|
|
*fs_devices_ret = fs_devices;
|
|
return 0;
|
|
}
|
|
|
|
int btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
|
|
{
|
|
struct btrfs_fs_devices *seed_devices;
|
|
struct btrfs_device *device;
|
|
int ret = 0;
|
|
|
|
again:
|
|
if (!fs_devices)
|
|
return 0;
|
|
while (!list_empty(&fs_devices->devices)) {
|
|
device = list_entry(fs_devices->devices.next,
|
|
struct btrfs_device, dev_list);
|
|
list_del(&device->dev_list);
|
|
/* free the memory */
|
|
free(device);
|
|
}
|
|
|
|
seed_devices = fs_devices->seed;
|
|
fs_devices->seed = NULL;
|
|
if (seed_devices) {
|
|
struct btrfs_fs_devices *orig;
|
|
|
|
orig = fs_devices;
|
|
fs_devices = seed_devices;
|
|
list_del(&orig->list);
|
|
free(orig);
|
|
goto again;
|
|
} else {
|
|
list_del(&fs_devices->list);
|
|
free(fs_devices);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
void btrfs_close_all_devices(void)
|
|
{
|
|
struct btrfs_fs_devices *fs_devices;
|
|
|
|
while (!list_empty(&fs_uuids)) {
|
|
fs_devices = list_entry(fs_uuids.next, struct btrfs_fs_devices,
|
|
list);
|
|
btrfs_close_devices(fs_devices);
|
|
}
|
|
}
|
|
|
|
int btrfs_open_devices(struct btrfs_fs_devices *fs_devices)
|
|
{
|
|
struct btrfs_device *device;
|
|
|
|
list_for_each_entry(device, &fs_devices->devices, dev_list) {
|
|
if (!device->desc || !device->part) {
|
|
printf("no device found for devid %llu, skip it \n",
|
|
device->devid);
|
|
continue;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
int btrfs_scan_one_device(struct blk_desc *desc, struct disk_partition *part,
|
|
struct btrfs_fs_devices **fs_devices_ret,
|
|
u64 *total_devs)
|
|
{
|
|
struct btrfs_super_block *disk_super;
|
|
char buf[BTRFS_SUPER_INFO_SIZE];
|
|
int ret;
|
|
u64 devid;
|
|
|
|
disk_super = (struct btrfs_super_block *)buf;
|
|
ret = btrfs_read_dev_super(desc, part, disk_super);
|
|
if (ret < 0)
|
|
return -EIO;
|
|
devid = btrfs_stack_device_id(&disk_super->dev_item);
|
|
if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_METADUMP)
|
|
*total_devs = 1;
|
|
else
|
|
*total_devs = btrfs_super_num_devices(disk_super);
|
|
|
|
ret = device_list_add(disk_super, devid, desc, part, fs_devices_ret);
|
|
|
|
return ret;
|
|
}
|
|
|
|
struct btrfs_device *btrfs_find_device(struct btrfs_fs_info *fs_info, u64 devid,
|
|
u8 *uuid, u8 *fsid)
|
|
{
|
|
struct btrfs_device *device;
|
|
struct btrfs_fs_devices *cur_devices;
|
|
|
|
cur_devices = fs_info->fs_devices;
|
|
while (cur_devices) {
|
|
if (!fsid ||
|
|
!memcmp(cur_devices->metadata_uuid, fsid, BTRFS_FSID_SIZE)) {
|
|
device = find_device(cur_devices, devid, uuid);
|
|
if (device)
|
|
return device;
|
|
}
|
|
cur_devices = cur_devices->seed;
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
static struct btrfs_device *fill_missing_device(u64 devid)
|
|
{
|
|
struct btrfs_device *device;
|
|
|
|
device = kzalloc(sizeof(*device), GFP_NOFS);
|
|
return device;
|
|
}
|
|
|
|
/*
|
|
* slot == -1: SYSTEM chunk
|
|
* return -EIO on error, otherwise return 0
|
|
*/
|
|
int btrfs_check_chunk_valid(struct btrfs_fs_info *fs_info,
|
|
struct extent_buffer *leaf,
|
|
struct btrfs_chunk *chunk,
|
|
int slot, u64 logical)
|
|
{
|
|
u64 length;
|
|
u64 stripe_len;
|
|
u16 num_stripes;
|
|
u16 sub_stripes;
|
|
u64 type;
|
|
u32 chunk_ondisk_size;
|
|
u32 sectorsize = fs_info->sectorsize;
|
|
|
|
/*
|
|
* Basic chunk item size check. Note that btrfs_chunk already contains
|
|
* one stripe, so no "==" check.
|
|
*/
|
|
if (slot >= 0 &&
|
|
btrfs_item_size_nr(leaf, slot) < sizeof(struct btrfs_chunk)) {
|
|
error("invalid chunk item size, have %u expect [%zu, %zu)",
|
|
btrfs_item_size_nr(leaf, slot),
|
|
sizeof(struct btrfs_chunk),
|
|
BTRFS_LEAF_DATA_SIZE(fs_info));
|
|
return -EUCLEAN;
|
|
}
|
|
length = btrfs_chunk_length(leaf, chunk);
|
|
stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
|
|
num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
|
|
sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
|
|
type = btrfs_chunk_type(leaf, chunk);
|
|
|
|
if (num_stripes == 0) {
|
|
error("invalid num_stripes, have %u expect non-zero",
|
|
num_stripes);
|
|
return -EUCLEAN;
|
|
}
|
|
if (slot >= 0 && btrfs_chunk_item_size(num_stripes) !=
|
|
btrfs_item_size_nr(leaf, slot)) {
|
|
error("invalid chunk item size, have %u expect %lu",
|
|
btrfs_item_size_nr(leaf, slot),
|
|
btrfs_chunk_item_size(num_stripes));
|
|
return -EUCLEAN;
|
|
}
|
|
|
|
/*
|
|
* These valid checks may be insufficient to cover every corner cases.
|
|
*/
|
|
if (!IS_ALIGNED(logical, sectorsize)) {
|
|
error("invalid chunk logical %llu", logical);
|
|
return -EIO;
|
|
}
|
|
if (btrfs_chunk_sector_size(leaf, chunk) != sectorsize) {
|
|
error("invalid chunk sectorsize %llu",
|
|
(unsigned long long)btrfs_chunk_sector_size(leaf, chunk));
|
|
return -EIO;
|
|
}
|
|
if (!length || !IS_ALIGNED(length, sectorsize)) {
|
|
error("invalid chunk length %llu", length);
|
|
return -EIO;
|
|
}
|
|
if (stripe_len != BTRFS_STRIPE_LEN) {
|
|
error("invalid chunk stripe length: %llu", stripe_len);
|
|
return -EIO;
|
|
}
|
|
/* Check on chunk item type */
|
|
if (slot == -1 && (type & BTRFS_BLOCK_GROUP_SYSTEM) == 0) {
|
|
error("invalid chunk type %llu", type);
|
|
return -EIO;
|
|
}
|
|
if (type & ~(BTRFS_BLOCK_GROUP_TYPE_MASK |
|
|
BTRFS_BLOCK_GROUP_PROFILE_MASK)) {
|
|
error("unrecognized chunk type: %llu",
|
|
~(BTRFS_BLOCK_GROUP_TYPE_MASK |
|
|
BTRFS_BLOCK_GROUP_PROFILE_MASK) & type);
|
|
return -EIO;
|
|
}
|
|
if (!(type & BTRFS_BLOCK_GROUP_TYPE_MASK)) {
|
|
error("missing chunk type flag: %llu", type);
|
|
return -EIO;
|
|
}
|
|
if (!(is_power_of_2(type & BTRFS_BLOCK_GROUP_PROFILE_MASK) ||
|
|
(type & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0)) {
|
|
error("conflicting chunk type detected: %llu", type);
|
|
return -EIO;
|
|
}
|
|
if ((type & BTRFS_BLOCK_GROUP_PROFILE_MASK) &&
|
|
!is_power_of_2(type & BTRFS_BLOCK_GROUP_PROFILE_MASK)) {
|
|
error("conflicting chunk profile detected: %llu", type);
|
|
return -EIO;
|
|
}
|
|
|
|
chunk_ondisk_size = btrfs_chunk_item_size(num_stripes);
|
|
/*
|
|
* Btrfs_chunk contains at least one stripe, and for sys_chunk
|
|
* it can't exceed the system chunk array size
|
|
* For normal chunk, it should match its chunk item size.
|
|
*/
|
|
if (num_stripes < 1 ||
|
|
(slot == -1 && chunk_ondisk_size > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) ||
|
|
(slot >= 0 && chunk_ondisk_size > btrfs_item_size_nr(leaf, slot))) {
|
|
error("invalid num_stripes: %u", num_stripes);
|
|
return -EIO;
|
|
}
|
|
/*
|
|
* Device number check against profile
|
|
*/
|
|
if ((type & BTRFS_BLOCK_GROUP_RAID10 && (sub_stripes != 2 ||
|
|
!IS_ALIGNED(num_stripes, sub_stripes))) ||
|
|
(type & BTRFS_BLOCK_GROUP_RAID1 && num_stripes < 1) ||
|
|
(type & BTRFS_BLOCK_GROUP_RAID1C3 && num_stripes < 3) ||
|
|
(type & BTRFS_BLOCK_GROUP_RAID1C4 && num_stripes < 4) ||
|
|
(type & BTRFS_BLOCK_GROUP_RAID5 && num_stripes < 2) ||
|
|
(type & BTRFS_BLOCK_GROUP_RAID6 && num_stripes < 3) ||
|
|
(type & BTRFS_BLOCK_GROUP_DUP && num_stripes > 2) ||
|
|
((type & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 &&
|
|
num_stripes != 1)) {
|
|
error("Invalid num_stripes:sub_stripes %u:%u for profile %llu",
|
|
num_stripes, sub_stripes,
|
|
type & BTRFS_BLOCK_GROUP_PROFILE_MASK);
|
|
return -EIO;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Slot is used to verify the chunk item is valid
|
|
*
|
|
* For sys chunk in superblock, pass -1 to indicate sys chunk.
|
|
*/
|
|
static int read_one_chunk(struct btrfs_fs_info *fs_info, struct btrfs_key *key,
|
|
struct extent_buffer *leaf,
|
|
struct btrfs_chunk *chunk, int slot)
|
|
{
|
|
struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
|
|
struct map_lookup *map;
|
|
struct cache_extent *ce;
|
|
u64 logical;
|
|
u64 length;
|
|
u64 devid;
|
|
u8 uuid[BTRFS_UUID_SIZE];
|
|
int num_stripes;
|
|
int ret;
|
|
int i;
|
|
|
|
logical = key->offset;
|
|
length = btrfs_chunk_length(leaf, chunk);
|
|
num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
|
|
/* Validation check */
|
|
ret = btrfs_check_chunk_valid(fs_info, leaf, chunk, slot, logical);
|
|
if (ret) {
|
|
error("%s checksums match, but it has an invalid chunk, %s",
|
|
(slot == -1) ? "Superblock" : "Metadata",
|
|
(slot == -1) ? "try btrfsck --repair -s <superblock> ie, 0,1,2" : "");
|
|
return ret;
|
|
}
|
|
|
|
ce = search_cache_extent(&map_tree->cache_tree, logical);
|
|
|
|
/* already mapped? */
|
|
if (ce && ce->start <= logical && ce->start + ce->size > logical) {
|
|
return 0;
|
|
}
|
|
|
|
map = kmalloc(btrfs_map_lookup_size(num_stripes), GFP_NOFS);
|
|
if (!map)
|
|
return -ENOMEM;
|
|
|
|
map->ce.start = logical;
|
|
map->ce.size = length;
|
|
map->num_stripes = num_stripes;
|
|
map->io_width = btrfs_chunk_io_width(leaf, chunk);
|
|
map->io_align = btrfs_chunk_io_align(leaf, chunk);
|
|
map->sector_size = btrfs_chunk_sector_size(leaf, chunk);
|
|
map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
|
|
map->type = btrfs_chunk_type(leaf, chunk);
|
|
map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
|
|
|
|
for (i = 0; i < num_stripes; i++) {
|
|
map->stripes[i].physical =
|
|
btrfs_stripe_offset_nr(leaf, chunk, i);
|
|
devid = btrfs_stripe_devid_nr(leaf, chunk, i);
|
|
read_extent_buffer(leaf, uuid, (unsigned long)
|
|
btrfs_stripe_dev_uuid_nr(chunk, i),
|
|
BTRFS_UUID_SIZE);
|
|
map->stripes[i].dev = btrfs_find_device(fs_info, devid, uuid,
|
|
NULL);
|
|
if (!map->stripes[i].dev) {
|
|
map->stripes[i].dev = fill_missing_device(devid);
|
|
printf("warning, device %llu is missing\n",
|
|
(unsigned long long)devid);
|
|
list_add(&map->stripes[i].dev->dev_list,
|
|
&fs_info->fs_devices->devices);
|
|
}
|
|
|
|
}
|
|
ret = insert_cache_extent(&map_tree->cache_tree, &map->ce);
|
|
if (ret < 0) {
|
|
errno = -ret;
|
|
error("failed to add chunk map start=%llu len=%llu: %d (%m)",
|
|
map->ce.start, map->ce.size, ret);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int fill_device_from_item(struct extent_buffer *leaf,
|
|
struct btrfs_dev_item *dev_item,
|
|
struct btrfs_device *device)
|
|
{
|
|
unsigned long ptr;
|
|
|
|
device->devid = btrfs_device_id(leaf, dev_item);
|
|
device->total_bytes = btrfs_device_total_bytes(leaf, dev_item);
|
|
device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
|
|
device->type = btrfs_device_type(leaf, dev_item);
|
|
device->io_align = btrfs_device_io_align(leaf, dev_item);
|
|
device->io_width = btrfs_device_io_width(leaf, dev_item);
|
|
device->sector_size = btrfs_device_sector_size(leaf, dev_item);
|
|
|
|
ptr = (unsigned long)btrfs_device_uuid(dev_item);
|
|
read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int read_one_dev(struct btrfs_fs_info *fs_info,
|
|
struct extent_buffer *leaf,
|
|
struct btrfs_dev_item *dev_item)
|
|
{
|
|
struct btrfs_device *device;
|
|
u64 devid;
|
|
int ret = 0;
|
|
u8 fs_uuid[BTRFS_UUID_SIZE];
|
|
u8 dev_uuid[BTRFS_UUID_SIZE];
|
|
|
|
devid = btrfs_device_id(leaf, dev_item);
|
|
read_extent_buffer(leaf, dev_uuid,
|
|
(unsigned long)btrfs_device_uuid(dev_item),
|
|
BTRFS_UUID_SIZE);
|
|
read_extent_buffer(leaf, fs_uuid,
|
|
(unsigned long)btrfs_device_fsid(dev_item),
|
|
BTRFS_FSID_SIZE);
|
|
|
|
if (memcmp(fs_uuid, fs_info->fs_devices->fsid, BTRFS_UUID_SIZE)) {
|
|
error("Seed device is not yet supported\n");
|
|
return -ENOTSUPP;
|
|
}
|
|
|
|
device = btrfs_find_device(fs_info, devid, dev_uuid, fs_uuid);
|
|
if (!device) {
|
|
device = kzalloc(sizeof(*device), GFP_NOFS);
|
|
if (!device)
|
|
return -ENOMEM;
|
|
list_add(&device->dev_list,
|
|
&fs_info->fs_devices->devices);
|
|
}
|
|
|
|
fill_device_from_item(leaf, dev_item, device);
|
|
fs_info->fs_devices->total_rw_bytes +=
|
|
btrfs_device_total_bytes(leaf, dev_item);
|
|
return ret;
|
|
}
|
|
|
|
int btrfs_read_sys_array(struct btrfs_fs_info *fs_info)
|
|
{
|
|
struct btrfs_super_block *super_copy = fs_info->super_copy;
|
|
struct extent_buffer *sb;
|
|
struct btrfs_disk_key *disk_key;
|
|
struct btrfs_chunk *chunk;
|
|
u8 *array_ptr;
|
|
unsigned long sb_array_offset;
|
|
int ret = 0;
|
|
u32 num_stripes;
|
|
u32 array_size;
|
|
u32 len = 0;
|
|
u32 cur_offset;
|
|
struct btrfs_key key;
|
|
|
|
if (fs_info->nodesize < BTRFS_SUPER_INFO_SIZE) {
|
|
printf("ERROR: nodesize %u too small to read superblock\n",
|
|
fs_info->nodesize);
|
|
return -EINVAL;
|
|
}
|
|
sb = alloc_dummy_extent_buffer(fs_info, BTRFS_SUPER_INFO_OFFSET,
|
|
BTRFS_SUPER_INFO_SIZE);
|
|
if (!sb)
|
|
return -ENOMEM;
|
|
btrfs_set_buffer_uptodate(sb);
|
|
write_extent_buffer(sb, super_copy, 0, sizeof(*super_copy));
|
|
array_size = btrfs_super_sys_array_size(super_copy);
|
|
|
|
array_ptr = super_copy->sys_chunk_array;
|
|
sb_array_offset = offsetof(struct btrfs_super_block, sys_chunk_array);
|
|
cur_offset = 0;
|
|
|
|
while (cur_offset < array_size) {
|
|
disk_key = (struct btrfs_disk_key *)array_ptr;
|
|
len = sizeof(*disk_key);
|
|
if (cur_offset + len > array_size)
|
|
goto out_short_read;
|
|
|
|
btrfs_disk_key_to_cpu(&key, disk_key);
|
|
|
|
array_ptr += len;
|
|
sb_array_offset += len;
|
|
cur_offset += len;
|
|
|
|
if (key.type == BTRFS_CHUNK_ITEM_KEY) {
|
|
chunk = (struct btrfs_chunk *)sb_array_offset;
|
|
/*
|
|
* At least one btrfs_chunk with one stripe must be
|
|
* present, exact stripe count check comes afterwards
|
|
*/
|
|
len = btrfs_chunk_item_size(1);
|
|
if (cur_offset + len > array_size)
|
|
goto out_short_read;
|
|
|
|
num_stripes = btrfs_chunk_num_stripes(sb, chunk);
|
|
if (!num_stripes) {
|
|
printk(
|
|
"ERROR: invalid number of stripes %u in sys_array at offset %u\n",
|
|
num_stripes, cur_offset);
|
|
ret = -EIO;
|
|
break;
|
|
}
|
|
|
|
len = btrfs_chunk_item_size(num_stripes);
|
|
if (cur_offset + len > array_size)
|
|
goto out_short_read;
|
|
|
|
ret = read_one_chunk(fs_info, &key, sb, chunk, -1);
|
|
if (ret)
|
|
break;
|
|
} else {
|
|
printk(
|
|
"ERROR: unexpected item type %u in sys_array at offset %u\n",
|
|
(u32)key.type, cur_offset);
|
|
ret = -EIO;
|
|
break;
|
|
}
|
|
array_ptr += len;
|
|
sb_array_offset += len;
|
|
cur_offset += len;
|
|
}
|
|
free_extent_buffer(sb);
|
|
return ret;
|
|
|
|
out_short_read:
|
|
printk("ERROR: sys_array too short to read %u bytes at offset %u\n",
|
|
len, cur_offset);
|
|
free_extent_buffer(sb);
|
|
return -EIO;
|
|
}
|
|
|
|
int btrfs_read_chunk_tree(struct btrfs_fs_info *fs_info)
|
|
{
|
|
struct btrfs_path *path;
|
|
struct extent_buffer *leaf;
|
|
struct btrfs_key key;
|
|
struct btrfs_key found_key;
|
|
struct btrfs_root *root = fs_info->chunk_root;
|
|
int ret;
|
|
int slot;
|
|
|
|
path = btrfs_alloc_path();
|
|
if (!path)
|
|
return -ENOMEM;
|
|
|
|
/*
|
|
* Read all device items, and then all the chunk items. All
|
|
* device items are found before any chunk item (their object id
|
|
* is smaller than the lowest possible object id for a chunk
|
|
* item - BTRFS_FIRST_CHUNK_TREE_OBJECTID).
|
|
*/
|
|
key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
|
|
key.offset = 0;
|
|
key.type = 0;
|
|
ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
|
|
if (ret < 0)
|
|
goto error;
|
|
while(1) {
|
|
leaf = path->nodes[0];
|
|
slot = path->slots[0];
|
|
if (slot >= btrfs_header_nritems(leaf)) {
|
|
ret = btrfs_next_leaf(root, path);
|
|
if (ret == 0)
|
|
continue;
|
|
if (ret < 0)
|
|
goto error;
|
|
break;
|
|
}
|
|
btrfs_item_key_to_cpu(leaf, &found_key, slot);
|
|
if (found_key.type == BTRFS_DEV_ITEM_KEY) {
|
|
struct btrfs_dev_item *dev_item;
|
|
dev_item = btrfs_item_ptr(leaf, slot,
|
|
struct btrfs_dev_item);
|
|
ret = read_one_dev(fs_info, leaf, dev_item);
|
|
if (ret < 0)
|
|
goto error;
|
|
} else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
|
|
struct btrfs_chunk *chunk;
|
|
chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
|
|
ret = read_one_chunk(fs_info, &found_key, leaf, chunk,
|
|
slot);
|
|
if (ret < 0)
|
|
goto error;
|
|
}
|
|
path->slots[0]++;
|
|
}
|
|
|
|
ret = 0;
|
|
error:
|
|
btrfs_free_path(path);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Get stripe length from chunk item and its stripe items
|
|
*
|
|
* Caller should only call this function after validating the chunk item
|
|
* by using btrfs_check_chunk_valid().
|
|
*/
|
|
u64 btrfs_stripe_length(struct btrfs_fs_info *fs_info,
|
|
struct extent_buffer *leaf,
|
|
struct btrfs_chunk *chunk)
|
|
{
|
|
u64 stripe_len;
|
|
u64 chunk_len;
|
|
u32 num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
|
|
u64 profile = btrfs_chunk_type(leaf, chunk) &
|
|
BTRFS_BLOCK_GROUP_PROFILE_MASK;
|
|
|
|
chunk_len = btrfs_chunk_length(leaf, chunk);
|
|
|
|
switch (profile) {
|
|
case 0: /* Single profile */
|
|
case BTRFS_BLOCK_GROUP_RAID1:
|
|
case BTRFS_BLOCK_GROUP_RAID1C3:
|
|
case BTRFS_BLOCK_GROUP_RAID1C4:
|
|
case BTRFS_BLOCK_GROUP_DUP:
|
|
stripe_len = chunk_len;
|
|
break;
|
|
case BTRFS_BLOCK_GROUP_RAID0:
|
|
stripe_len = chunk_len / num_stripes;
|
|
break;
|
|
case BTRFS_BLOCK_GROUP_RAID5:
|
|
stripe_len = chunk_len / (num_stripes - 1);
|
|
break;
|
|
case BTRFS_BLOCK_GROUP_RAID6:
|
|
stripe_len = chunk_len / (num_stripes - 2);
|
|
break;
|
|
case BTRFS_BLOCK_GROUP_RAID10:
|
|
stripe_len = chunk_len / (num_stripes /
|
|
btrfs_chunk_sub_stripes(leaf, chunk));
|
|
break;
|
|
default:
|
|
/* Invalid chunk profile found */
|
|
BUG_ON(1);
|
|
}
|
|
return stripe_len;
|
|
}
|
|
|
|
int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
|
|
{
|
|
struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
|
|
struct cache_extent *ce;
|
|
struct map_lookup *map;
|
|
int ret;
|
|
|
|
ce = search_cache_extent(&map_tree->cache_tree, logical);
|
|
if (!ce) {
|
|
fprintf(stderr, "No mapping for %llu-%llu\n",
|
|
(unsigned long long)logical,
|
|
(unsigned long long)logical+len);
|
|
return 1;
|
|
}
|
|
if (ce->start > logical || ce->start + ce->size < logical) {
|
|
fprintf(stderr, "Invalid mapping for %llu-%llu, got "
|
|
"%llu-%llu\n", (unsigned long long)logical,
|
|
(unsigned long long)logical+len,
|
|
(unsigned long long)ce->start,
|
|
(unsigned long long)ce->start + ce->size);
|
|
return 1;
|
|
}
|
|
map = container_of(ce, struct map_lookup, ce);
|
|
|
|
if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
|
|
BTRFS_BLOCK_GROUP_RAID1C3 | BTRFS_BLOCK_GROUP_RAID1C4))
|
|
ret = map->num_stripes;
|
|
else if (map->type & BTRFS_BLOCK_GROUP_RAID10)
|
|
ret = map->sub_stripes;
|
|
else if (map->type & BTRFS_BLOCK_GROUP_RAID5)
|
|
ret = 2;
|
|
else if (map->type & BTRFS_BLOCK_GROUP_RAID6)
|
|
ret = 3;
|
|
else
|
|
ret = 1;
|
|
return ret;
|
|
}
|
|
|
|
int btrfs_next_bg(struct btrfs_fs_info *fs_info, u64 *logical,
|
|
u64 *size, u64 type)
|
|
{
|
|
struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
|
|
struct cache_extent *ce;
|
|
struct map_lookup *map;
|
|
u64 cur = *logical;
|
|
|
|
ce = search_cache_extent(&map_tree->cache_tree, cur);
|
|
|
|
while (ce) {
|
|
/*
|
|
* only jump to next bg if our cur is not 0
|
|
* As the initial logical for btrfs_next_bg() is 0, and
|
|
* if we jump to next bg, we skipped a valid bg.
|
|
*/
|
|
if (cur) {
|
|
ce = next_cache_extent(ce);
|
|
if (!ce)
|
|
return -ENOENT;
|
|
}
|
|
|
|
cur = ce->start;
|
|
map = container_of(ce, struct map_lookup, ce);
|
|
if (map->type & type) {
|
|
*logical = ce->start;
|
|
*size = ce->size;
|
|
return 0;
|
|
}
|
|
if (!cur)
|
|
ce = next_cache_extent(ce);
|
|
}
|
|
|
|
return -ENOENT;
|
|
}
|
|
|
|
static inline int parity_smaller(u64 a, u64 b)
|
|
{
|
|
return a > b;
|
|
}
|
|
|
|
/* Bubble-sort the stripe set to put the parity/syndrome stripes last */
|
|
static void sort_parity_stripes(struct btrfs_multi_bio *bbio, u64 *raid_map)
|
|
{
|
|
struct btrfs_bio_stripe s;
|
|
int i;
|
|
u64 l;
|
|
int again = 1;
|
|
|
|
while (again) {
|
|
again = 0;
|
|
for (i = 0; i < bbio->num_stripes - 1; i++) {
|
|
if (parity_smaller(raid_map[i], raid_map[i+1])) {
|
|
s = bbio->stripes[i];
|
|
l = raid_map[i];
|
|
bbio->stripes[i] = bbio->stripes[i+1];
|
|
raid_map[i] = raid_map[i+1];
|
|
bbio->stripes[i+1] = s;
|
|
raid_map[i+1] = l;
|
|
again = 1;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
int __btrfs_map_block(struct btrfs_fs_info *fs_info, int rw,
|
|
u64 logical, u64 *length, u64 *type,
|
|
struct btrfs_multi_bio **multi_ret, int mirror_num,
|
|
u64 **raid_map_ret)
|
|
{
|
|
struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
|
|
struct cache_extent *ce;
|
|
struct map_lookup *map;
|
|
u64 offset;
|
|
u64 stripe_offset;
|
|
u64 *raid_map = NULL;
|
|
int stripe_nr;
|
|
int stripes_allocated = 8;
|
|
int stripes_required = 1;
|
|
int stripe_index;
|
|
int i;
|
|
struct btrfs_multi_bio *multi = NULL;
|
|
|
|
if (multi_ret && rw == READ) {
|
|
stripes_allocated = 1;
|
|
}
|
|
again:
|
|
ce = search_cache_extent(&map_tree->cache_tree, logical);
|
|
if (!ce) {
|
|
kfree(multi);
|
|
*length = (u64)-1;
|
|
return -ENOENT;
|
|
}
|
|
if (ce->start > logical) {
|
|
kfree(multi);
|
|
*length = ce->start - logical;
|
|
return -ENOENT;
|
|
}
|
|
|
|
if (multi_ret) {
|
|
multi = kzalloc(btrfs_multi_bio_size(stripes_allocated),
|
|
GFP_NOFS);
|
|
if (!multi)
|
|
return -ENOMEM;
|
|
}
|
|
map = container_of(ce, struct map_lookup, ce);
|
|
offset = logical - ce->start;
|
|
|
|
if (rw == WRITE) {
|
|
if (map->type & (BTRFS_BLOCK_GROUP_RAID1 |
|
|
BTRFS_BLOCK_GROUP_RAID1C3 |
|
|
BTRFS_BLOCK_GROUP_RAID1C4 |
|
|
BTRFS_BLOCK_GROUP_DUP)) {
|
|
stripes_required = map->num_stripes;
|
|
} else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
|
|
stripes_required = map->sub_stripes;
|
|
}
|
|
}
|
|
if (map->type & (BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6)
|
|
&& multi_ret && ((rw & WRITE) || mirror_num > 1) && raid_map_ret) {
|
|
/* RAID[56] write or recovery. Return all stripes */
|
|
stripes_required = map->num_stripes;
|
|
|
|
/* Only allocate the map if we've already got a large enough multi_ret */
|
|
if (stripes_allocated >= stripes_required) {
|
|
raid_map = kmalloc(sizeof(u64) * map->num_stripes, GFP_NOFS);
|
|
if (!raid_map) {
|
|
kfree(multi);
|
|
return -ENOMEM;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* if our multi bio struct is too small, back off and try again */
|
|
if (multi_ret && stripes_allocated < stripes_required) {
|
|
stripes_allocated = stripes_required;
|
|
kfree(multi);
|
|
multi = NULL;
|
|
goto again;
|
|
}
|
|
stripe_nr = offset;
|
|
/*
|
|
* stripe_nr counts the total number of stripes we have to stride
|
|
* to get to this block
|
|
*/
|
|
stripe_nr = stripe_nr / map->stripe_len;
|
|
|
|
stripe_offset = stripe_nr * map->stripe_len;
|
|
BUG_ON(offset < stripe_offset);
|
|
|
|
/* stripe_offset is the offset of this block in its stripe*/
|
|
stripe_offset = offset - stripe_offset;
|
|
|
|
if (map->type & (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID1 |
|
|
BTRFS_BLOCK_GROUP_RAID1C3 | BTRFS_BLOCK_GROUP_RAID1C4 |
|
|
BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6 |
|
|
BTRFS_BLOCK_GROUP_RAID10 |
|
|
BTRFS_BLOCK_GROUP_DUP)) {
|
|
/* we limit the length of each bio to what fits in a stripe */
|
|
*length = min_t(u64, ce->size - offset,
|
|
map->stripe_len - stripe_offset);
|
|
} else {
|
|
*length = ce->size - offset;
|
|
}
|
|
|
|
if (!multi_ret)
|
|
goto out;
|
|
|
|
multi->num_stripes = 1;
|
|
stripe_index = 0;
|
|
if (map->type & (BTRFS_BLOCK_GROUP_RAID1 |
|
|
BTRFS_BLOCK_GROUP_RAID1C3 |
|
|
BTRFS_BLOCK_GROUP_RAID1C4)) {
|
|
if (rw == WRITE)
|
|
multi->num_stripes = map->num_stripes;
|
|
else if (mirror_num)
|
|
stripe_index = mirror_num - 1;
|
|
else
|
|
stripe_index = stripe_nr % map->num_stripes;
|
|
} else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
|
|
int factor = map->num_stripes / map->sub_stripes;
|
|
|
|
stripe_index = stripe_nr % factor;
|
|
stripe_index *= map->sub_stripes;
|
|
|
|
if (rw == WRITE)
|
|
multi->num_stripes = map->sub_stripes;
|
|
else if (mirror_num)
|
|
stripe_index += mirror_num - 1;
|
|
|
|
stripe_nr = stripe_nr / factor;
|
|
} else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
|
|
if (rw == WRITE)
|
|
multi->num_stripes = map->num_stripes;
|
|
else if (mirror_num)
|
|
stripe_index = mirror_num - 1;
|
|
} else if (map->type & (BTRFS_BLOCK_GROUP_RAID5 |
|
|
BTRFS_BLOCK_GROUP_RAID6)) {
|
|
|
|
if (raid_map) {
|
|
int rot;
|
|
u64 tmp;
|
|
u64 raid56_full_stripe_start;
|
|
u64 full_stripe_len = nr_data_stripes(map) * map->stripe_len;
|
|
|
|
/*
|
|
* align the start of our data stripe in the logical
|
|
* address space
|
|
*/
|
|
raid56_full_stripe_start = offset / full_stripe_len;
|
|
raid56_full_stripe_start *= full_stripe_len;
|
|
|
|
/* get the data stripe number */
|
|
stripe_nr = raid56_full_stripe_start / map->stripe_len;
|
|
stripe_nr = stripe_nr / nr_data_stripes(map);
|
|
|
|
/* Work out the disk rotation on this stripe-set */
|
|
rot = stripe_nr % map->num_stripes;
|
|
|
|
/* Fill in the logical address of each stripe */
|
|
tmp = stripe_nr * nr_data_stripes(map);
|
|
|
|
for (i = 0; i < nr_data_stripes(map); i++)
|
|
raid_map[(i+rot) % map->num_stripes] =
|
|
ce->start + (tmp + i) * map->stripe_len;
|
|
|
|
raid_map[(i+rot) % map->num_stripes] = BTRFS_RAID5_P_STRIPE;
|
|
if (map->type & BTRFS_BLOCK_GROUP_RAID6)
|
|
raid_map[(i+rot+1) % map->num_stripes] = BTRFS_RAID6_Q_STRIPE;
|
|
|
|
*length = map->stripe_len;
|
|
stripe_index = 0;
|
|
stripe_offset = 0;
|
|
multi->num_stripes = map->num_stripes;
|
|
} else {
|
|
stripe_index = stripe_nr % nr_data_stripes(map);
|
|
stripe_nr = stripe_nr / nr_data_stripes(map);
|
|
|
|
/*
|
|
* Mirror #0 or #1 means the original data block.
|
|
* Mirror #2 is RAID5 parity block.
|
|
* Mirror #3 is RAID6 Q block.
|
|
*/
|
|
if (mirror_num > 1)
|
|
stripe_index = nr_data_stripes(map) + mirror_num - 2;
|
|
|
|
/* We distribute the parity blocks across stripes */
|
|
stripe_index = (stripe_nr + stripe_index) % map->num_stripes;
|
|
}
|
|
} else {
|
|
/*
|
|
* after this do_div call, stripe_nr is the number of stripes
|
|
* on this device we have to walk to find the data, and
|
|
* stripe_index is the number of our device in the stripe array
|
|
*/
|
|
stripe_index = stripe_nr % map->num_stripes;
|
|
stripe_nr = stripe_nr / map->num_stripes;
|
|
}
|
|
BUG_ON(stripe_index >= map->num_stripes);
|
|
|
|
for (i = 0; i < multi->num_stripes; i++) {
|
|
multi->stripes[i].physical =
|
|
map->stripes[stripe_index].physical + stripe_offset +
|
|
stripe_nr * map->stripe_len;
|
|
multi->stripes[i].dev = map->stripes[stripe_index].dev;
|
|
stripe_index++;
|
|
}
|
|
*multi_ret = multi;
|
|
|
|
if (type)
|
|
*type = map->type;
|
|
|
|
if (raid_map) {
|
|
sort_parity_stripes(multi, raid_map);
|
|
*raid_map_ret = raid_map;
|
|
}
|
|
out:
|
|
return 0;
|
|
}
|
|
|
|
int btrfs_map_block(struct btrfs_fs_info *fs_info, int rw,
|
|
u64 logical, u64 *length,
|
|
struct btrfs_multi_bio **multi_ret, int mirror_num,
|
|
u64 **raid_map_ret)
|
|
{
|
|
return __btrfs_map_block(fs_info, rw, logical, length, NULL,
|
|
multi_ret, mirror_num, raid_map_ret);
|
|
}
|