u-boot/arch/arm/mach-sunxi/dram_sun50i_h6.c
Andre Przywara 770b85a418 sunxi: H6: move LPDDR3 timing definition into separate file
Currently the H6 DRAM driver only supports one kind of LPDDR3 DRAM.
Split the timing parameters for this LPDDR3 configuration  into a
separate file, to allow selecting an alternative later at compile time
(as the sunxi-dw driver does).

Signed-off-by: Andre Przywara <andre.przywara@arm.com>
Tested-by: Jernej Skrabec <jernej.skrabec@siol.net>
Reviewed-by: Jernej Skrabec <jernej.skrabec@siol.net>
Reviewed-by: Jagan Teki <jagan@amarulasolutions.com>
2019-07-16 17:09:31 +05:30

619 lines
18 KiB
C

/*
* sun50i H6 platform dram controller init
*
* (C) Copyright 2017 Icenowy Zheng <icenowy@aosc.io>
*
* SPDX-License-Identifier: GPL-2.0+
*/
#include <common.h>
#include <asm/io.h>
#include <asm/arch/clock.h>
#include <asm/arch/dram.h>
#include <asm/arch/cpu.h>
#include <linux/bitops.h>
#include <linux/kconfig.h>
/*
* The DRAM controller structure on H6 is similar to the ones on A23/A80:
* they all contains 3 parts, COM, CTL and PHY. (As a note on A33/A83T/H3/A64
* /H5/R40 CTL and PHY is composed).
*
* COM is allwinner-specific. On H6, the address mapping function is moved
* from COM to CTL (with the standard ADDRMAP registers on DesignWare memory
* controller).
*
* CTL (controller) and PHY is from DesignWare.
*
* The CTL part is a bit similar to the one on A23/A80 (because they all
* originate from DesignWare), but gets more registers added.
*
* The PHY part is quite new, not seen in any previous Allwinner SoCs, and
* not seen on other SoCs in U-Boot. The only SoC that is also known to have
* similar PHY is ZynqMP.
*/
static void mctl_sys_init(struct dram_para *para);
static void mctl_com_init(struct dram_para *para);
static void mctl_channel_init(struct dram_para *para);
static void mctl_core_init(struct dram_para *para)
{
mctl_sys_init(para);
mctl_com_init(para);
switch (para->type) {
case SUNXI_DRAM_TYPE_LPDDR3:
mctl_set_timing_params(para);
break;
default:
panic("Unsupported DRAM type!");
};
mctl_channel_init(para);
}
/* PHY initialisation */
static void mctl_phy_pir_init(u32 val)
{
struct sunxi_mctl_phy_reg * const mctl_phy =
(struct sunxi_mctl_phy_reg *)SUNXI_DRAM_PHY0_BASE;
writel(val, &mctl_phy->pir);
writel(val | BIT(0), &mctl_phy->pir); /* Start initialisation. */
mctl_await_completion(&mctl_phy->pgsr[0], BIT(0), BIT(0));
}
enum {
MBUS_PORT_CPU = 0,
MBUS_PORT_GPU = 1,
MBUS_PORT_MAHB = 2,
MBUS_PORT_DMA = 3,
MBUS_PORT_VE = 4,
MBUS_PORT_CE = 5,
MBUS_PORT_TSC0 = 6,
MBUS_PORT_NDFC0 = 8,
MBUS_PORT_CSI0 = 11,
MBUS_PORT_DI0 = 14,
MBUS_PORT_DI1 = 15,
MBUS_PORT_DE300 = 16,
MBUS_PORT_IOMMU = 25,
MBUS_PORT_VE2 = 26,
MBUS_PORT_USB3 = 37,
MBUS_PORT_PCIE = 38,
MBUS_PORT_VP9 = 39,
MBUS_PORT_HDCP2 = 40,
};
enum {
MBUS_QOS_LOWEST = 0,
MBUS_QOS_LOW,
MBUS_QOS_HIGH,
MBUS_QOS_HIGHEST
};
inline void mbus_configure_port(u8 port,
bool bwlimit,
bool priority,
u8 qos,
u8 waittime,
u8 acs,
u16 bwl0,
u16 bwl1,
u16 bwl2)
{
struct sunxi_mctl_com_reg * const mctl_com =
(struct sunxi_mctl_com_reg *)SUNXI_DRAM_COM_BASE;
const u32 cfg0 = ( (bwlimit ? (1 << 0) : 0)
| (priority ? (1 << 1) : 0)
| ((qos & 0x3) << 2)
| ((waittime & 0xf) << 4)
| ((acs & 0xff) << 8)
| (bwl0 << 16) );
const u32 cfg1 = ((u32)bwl2 << 16) | (bwl1 & 0xffff);
debug("MBUS port %d cfg0 %08x cfg1 %08x\n", port, cfg0, cfg1);
writel(cfg0, &mctl_com->master[port].cfg0);
writel(cfg1, &mctl_com->master[port].cfg1);
}
#define MBUS_CONF(port, bwlimit, qos, acs, bwl0, bwl1, bwl2) \
mbus_configure_port(MBUS_PORT_ ## port, bwlimit, false, \
MBUS_QOS_ ## qos, 0, acs, bwl0, bwl1, bwl2)
static void mctl_set_master_priority(void)
{
struct sunxi_mctl_com_reg * const mctl_com =
(struct sunxi_mctl_com_reg *)SUNXI_DRAM_COM_BASE;
/* enable bandwidth limit windows and set windows size 1us */
writel(399, &mctl_com->tmr);
writel(BIT(16), &mctl_com->bwcr);
MBUS_CONF( CPU, true, HIGHEST, 0, 256, 128, 100);
MBUS_CONF( GPU, true, HIGH, 0, 1536, 1400, 256);
MBUS_CONF( MAHB, true, HIGHEST, 0, 512, 256, 96);
MBUS_CONF( DMA, true, HIGH, 0, 256, 100, 80);
MBUS_CONF( VE, true, HIGH, 2, 8192, 5500, 5000);
MBUS_CONF( CE, true, HIGH, 2, 100, 64, 32);
MBUS_CONF( TSC0, true, HIGH, 2, 100, 64, 32);
MBUS_CONF(NDFC0, true, HIGH, 0, 256, 128, 64);
MBUS_CONF( CSI0, true, HIGH, 0, 256, 128, 100);
MBUS_CONF( DI0, true, HIGH, 0, 1024, 256, 64);
MBUS_CONF(DE300, true, HIGHEST, 6, 8192, 2800, 2400);
MBUS_CONF(IOMMU, true, HIGHEST, 0, 100, 64, 32);
MBUS_CONF( VE2, true, HIGH, 2, 8192, 5500, 5000);
MBUS_CONF( USB3, true, HIGH, 0, 256, 128, 64);
MBUS_CONF( PCIE, true, HIGH, 2, 100, 64, 32);
MBUS_CONF( VP9, true, HIGH, 2, 8192, 5500, 5000);
MBUS_CONF(HDCP2, true, HIGH, 2, 100, 64, 32);
}
static void mctl_sys_init(struct dram_para *para)
{
struct sunxi_ccm_reg * const ccm =
(struct sunxi_ccm_reg *)SUNXI_CCM_BASE;
struct sunxi_mctl_com_reg * const mctl_com =
(struct sunxi_mctl_com_reg *)SUNXI_DRAM_COM_BASE;
struct sunxi_mctl_ctl_reg * const mctl_ctl =
(struct sunxi_mctl_ctl_reg *)SUNXI_DRAM_CTL0_BASE;
/* Put all DRAM-related blocks to reset state */
clrbits_le32(&ccm->mbus_cfg, MBUS_ENABLE | MBUS_RESET);
clrbits_le32(&ccm->dram_gate_reset, BIT(0));
udelay(5);
writel(0, &ccm->dram_gate_reset);
clrbits_le32(&ccm->pll5_cfg, CCM_PLL5_CTRL_EN);
clrbits_le32(&ccm->dram_clk_cfg, DRAM_MOD_RESET);
udelay(5);
/* Set PLL5 rate to doubled DRAM clock rate */
writel(CCM_PLL5_CTRL_EN | CCM_PLL5_LOCK_EN |
CCM_PLL5_CTRL_N(para->clk * 2 / 24 - 1), &ccm->pll5_cfg);
mctl_await_completion(&ccm->pll5_cfg, CCM_PLL5_LOCK, CCM_PLL5_LOCK);
/* Configure DRAM mod clock */
writel(DRAM_CLK_SRC_PLL5, &ccm->dram_clk_cfg);
setbits_le32(&ccm->dram_clk_cfg, DRAM_CLK_UPDATE);
writel(BIT(RESET_SHIFT), &ccm->dram_gate_reset);
udelay(5);
setbits_le32(&ccm->dram_gate_reset, BIT(0));
/* Disable all channels */
writel(0, &mctl_com->maer0);
writel(0, &mctl_com->maer1);
writel(0, &mctl_com->maer2);
/* Configure MBUS and enable DRAM mod reset */
setbits_le32(&ccm->mbus_cfg, MBUS_RESET);
setbits_le32(&ccm->mbus_cfg, MBUS_ENABLE);
setbits_le32(&ccm->dram_clk_cfg, DRAM_MOD_RESET);
udelay(5);
/* Unknown hack from the BSP, which enables access of mctl_ctl regs */
writel(0x8000, &mctl_ctl->unk_0x00c);
}
static void mctl_set_addrmap(struct dram_para *para)
{
struct sunxi_mctl_ctl_reg * const mctl_ctl =
(struct sunxi_mctl_ctl_reg *)SUNXI_DRAM_CTL0_BASE;
u8 cols = para->cols;
u8 rows = para->rows;
u8 ranks = para->ranks;
/* Ranks */
if (ranks == 2)
mctl_ctl->addrmap[0] = rows + cols - 3;
else
mctl_ctl->addrmap[0] = 0x1F;
/* Banks, hardcoded to 8 banks now */
mctl_ctl->addrmap[1] = (cols - 2) | (cols - 2) << 8 | (cols - 2) << 16;
/* Columns */
mctl_ctl->addrmap[2] = 0;
switch (cols) {
case 8:
mctl_ctl->addrmap[3] = 0x1F1F0000;
mctl_ctl->addrmap[4] = 0x1F1F;
break;
case 9:
mctl_ctl->addrmap[3] = 0x1F000000;
mctl_ctl->addrmap[4] = 0x1F1F;
break;
case 10:
mctl_ctl->addrmap[3] = 0;
mctl_ctl->addrmap[4] = 0x1F1F;
break;
case 11:
mctl_ctl->addrmap[3] = 0;
mctl_ctl->addrmap[4] = 0x1F00;
break;
case 12:
mctl_ctl->addrmap[3] = 0;
mctl_ctl->addrmap[4] = 0;
break;
default:
panic("Unsupported DRAM configuration: column number invalid\n");
}
/* Rows */
mctl_ctl->addrmap[5] = (cols - 3) | ((cols - 3) << 8) | ((cols - 3) << 16) | ((cols - 3) << 24);
switch (rows) {
case 13:
mctl_ctl->addrmap[6] = (cols - 3) | 0x0F0F0F00;
mctl_ctl->addrmap[7] = 0x0F0F;
break;
case 14:
mctl_ctl->addrmap[6] = (cols - 3) | ((cols - 3) << 8) | 0x0F0F0000;
mctl_ctl->addrmap[7] = 0x0F0F;
break;
case 15:
mctl_ctl->addrmap[6] = (cols - 3) | ((cols - 3) << 8) | ((cols - 3) << 16) | 0x0F000000;
mctl_ctl->addrmap[7] = 0x0F0F;
break;
case 16:
mctl_ctl->addrmap[6] = (cols - 3) | ((cols - 3) << 8) | ((cols - 3) << 16) | ((cols - 3) << 24);
mctl_ctl->addrmap[7] = 0x0F0F;
break;
case 17:
mctl_ctl->addrmap[6] = (cols - 3) | ((cols - 3) << 8) | ((cols - 3) << 16) | ((cols - 3) << 24);
mctl_ctl->addrmap[7] = (cols - 3) | 0x0F00;
break;
case 18:
mctl_ctl->addrmap[6] = (cols - 3) | ((cols - 3) << 8) | ((cols - 3) << 16) | ((cols - 3) << 24);
mctl_ctl->addrmap[7] = (cols - 3) | ((cols - 3) << 8);
break;
default:
panic("Unsupported DRAM configuration: row number invalid\n");
}
/* Bank groups, DDR4 only */
mctl_ctl->addrmap[8] = 0x3F3F;
}
static void mctl_com_init(struct dram_para *para)
{
struct sunxi_mctl_com_reg * const mctl_com =
(struct sunxi_mctl_com_reg *)SUNXI_DRAM_COM_BASE;
struct sunxi_mctl_ctl_reg * const mctl_ctl =
(struct sunxi_mctl_ctl_reg *)SUNXI_DRAM_CTL0_BASE;
struct sunxi_mctl_phy_reg * const mctl_phy =
(struct sunxi_mctl_phy_reg *)SUNXI_DRAM_PHY0_BASE;
u32 reg_val, tmp;
mctl_set_addrmap(para);
setbits_le32(&mctl_com->cr, BIT(31));
/*
* This address is magic; it's in SID memory area, but there's no
* known definition of it.
* On my Pine H64 board it has content 7.
*/
if (readl(0x03006100) == 7)
clrbits_le32(&mctl_com->cr, BIT(27));
else if (readl(0x03006100) == 3)
setbits_le32(&mctl_com->cr, BIT(27));
if (para->clk > 408)
reg_val = 0xf00;
else if (para->clk > 246)
reg_val = 0x1f00;
else
reg_val = 0x3f00;
clrsetbits_le32(&mctl_com->unk_0x008, 0x3f00, reg_val);
/* TODO: half DQ, non-LPDDR3 types */
writel(MSTR_DEVICETYPE_LPDDR3 | MSTR_BUSWIDTH_FULL |
MSTR_BURST_LENGTH(8) | MSTR_ACTIVE_RANKS(para->ranks) |
0x80000000, &mctl_ctl->mstr);
writel(DCR_LPDDR3 | DCR_DDR8BANK | 0x400, &mctl_phy->dcr);
if (para->ranks == 2)
writel(0x0303, &mctl_ctl->odtmap);
else
writel(0x0201, &mctl_ctl->odtmap);
/* TODO: non-LPDDR3 types */
tmp = para->clk * 7 / 2000;
reg_val = 0x0400;
reg_val |= (tmp + 7) << 24;
reg_val |= (((para->clk < 400) ? 3 : 4) - tmp) << 16;
writel(reg_val, &mctl_ctl->odtcfg);
/* TODO: half DQ */
}
static void mctl_bit_delay_set(struct dram_para *para)
{
struct sunxi_mctl_phy_reg * const mctl_phy =
(struct sunxi_mctl_phy_reg *)SUNXI_DRAM_PHY0_BASE;
int i, j;
u32 val;
for (i = 0; i < 4; i++) {
val = readl(&mctl_phy->dx[i].bdlr0);
for (j = 0; j < 4; j++)
val += para->dx_write_delays[i][j] << (j * 8);
writel(val, &mctl_phy->dx[i].bdlr0);
val = readl(&mctl_phy->dx[i].bdlr1);
for (j = 0; j < 4; j++)
val += para->dx_write_delays[i][j + 4] << (j * 8);
writel(val, &mctl_phy->dx[i].bdlr1);
val = readl(&mctl_phy->dx[i].bdlr2);
for (j = 0; j < 4; j++)
val += para->dx_write_delays[i][j + 8] << (j * 8);
writel(val, &mctl_phy->dx[i].bdlr2);
}
clrbits_le32(&mctl_phy->pgcr[0], BIT(26));
for (i = 0; i < 4; i++) {
val = readl(&mctl_phy->dx[i].bdlr3);
for (j = 0; j < 4; j++)
val += para->dx_read_delays[i][j] << (j * 8);
writel(val, &mctl_phy->dx[i].bdlr3);
val = readl(&mctl_phy->dx[i].bdlr4);
for (j = 0; j < 4; j++)
val += para->dx_read_delays[i][j + 4] << (j * 8);
writel(val, &mctl_phy->dx[i].bdlr4);
val = readl(&mctl_phy->dx[i].bdlr5);
for (j = 0; j < 4; j++)
val += para->dx_read_delays[i][j + 8] << (j * 8);
writel(val, &mctl_phy->dx[i].bdlr5);
val = readl(&mctl_phy->dx[i].bdlr6);
val += (para->dx_read_delays[i][12] << 8) |
(para->dx_read_delays[i][13] << 16);
writel(val, &mctl_phy->dx[i].bdlr6);
}
setbits_le32(&mctl_phy->pgcr[0], BIT(26));
udelay(1);
for (i = 1; i < 14; i++) {
val = readl(&mctl_phy->acbdlr[i]);
val += 0x0a0a0a0a;
writel(val, &mctl_phy->acbdlr[i]);
}
}
static void mctl_channel_init(struct dram_para *para)
{
struct sunxi_mctl_com_reg * const mctl_com =
(struct sunxi_mctl_com_reg *)SUNXI_DRAM_COM_BASE;
struct sunxi_mctl_ctl_reg * const mctl_ctl =
(struct sunxi_mctl_ctl_reg *)SUNXI_DRAM_CTL0_BASE;
struct sunxi_mctl_phy_reg * const mctl_phy =
(struct sunxi_mctl_phy_reg *)SUNXI_DRAM_PHY0_BASE;
int i;
u32 val;
setbits_le32(&mctl_ctl->dfiupd[0], BIT(31) | BIT(30));
setbits_le32(&mctl_ctl->zqctl[0], BIT(31) | BIT(30));
writel(0x2f05, &mctl_ctl->sched[0]);
setbits_le32(&mctl_ctl->rfshctl3, BIT(0));
setbits_le32(&mctl_ctl->dfimisc, BIT(0));
setbits_le32(&mctl_ctl->unk_0x00c, BIT(8));
clrsetbits_le32(&mctl_phy->pgcr[1], 0x180, 0xc0);
/* TODO: non-LPDDR3 types */
clrsetbits_le32(&mctl_phy->pgcr[2], GENMASK(17, 0), ns_to_t(7800));
clrbits_le32(&mctl_phy->pgcr[6], BIT(0));
clrsetbits_le32(&mctl_phy->dxccr, 0xee0, 0x220);
/* TODO: VT compensation */
clrsetbits_le32(&mctl_phy->dsgcr, BIT(0), 0x440060);
clrbits_le32(&mctl_phy->vtcr[1], BIT(1));
for (i = 0; i < 4; i++)
clrsetbits_le32(&mctl_phy->dx[i].gcr[0], 0xe00, 0x800);
for (i = 0; i < 4; i++)
clrsetbits_le32(&mctl_phy->dx[i].gcr[2], 0xffff, 0x5555);
for (i = 0; i < 4; i++)
clrsetbits_le32(&mctl_phy->dx[i].gcr[3], 0x3030, 0x1010);
udelay(100);
if (para->ranks == 2)
setbits_le32(&mctl_phy->dtcr[1], 0x30000);
else
clrsetbits_le32(&mctl_phy->dtcr[1], 0x30000, 0x10000);
clrbits_le32(&mctl_phy->dtcr[1], BIT(1));
if (para->ranks == 2) {
writel(0x00010001, &mctl_phy->rankidr);
writel(0x20000, &mctl_phy->odtcr);
} else {
writel(0x0, &mctl_phy->rankidr);
writel(0x10000, &mctl_phy->odtcr);
}
/* TODO: non-LPDDR3 types */
clrsetbits_le32(&mctl_phy->dtcr[0], 0xF0000000, 0x10000040);
if (para->clk <= 792) {
if (para->clk <= 672) {
if (para->clk <= 600)
val = 0x300;
else
val = 0x400;
} else {
val = 0x500;
}
} else {
val = 0x600;
}
/* FIXME: NOT REVIEWED YET */
clrsetbits_le32(&mctl_phy->zq[0].zqcr, 0x700, val);
clrsetbits_le32(&mctl_phy->zq[0].zqpr[0], 0xff,
CONFIG_DRAM_ZQ & 0xff);
clrbits_le32(&mctl_phy->zq[0].zqor[0], 0xfffff);
setbits_le32(&mctl_phy->zq[0].zqor[0], (CONFIG_DRAM_ZQ >> 8) & 0xff);
setbits_le32(&mctl_phy->zq[0].zqor[0], (CONFIG_DRAM_ZQ & 0xf00) - 0x100);
setbits_le32(&mctl_phy->zq[0].zqor[0], (CONFIG_DRAM_ZQ & 0xff00) << 4);
clrbits_le32(&mctl_phy->zq[1].zqpr[0], 0xfffff);
setbits_le32(&mctl_phy->zq[1].zqpr[0], (CONFIG_DRAM_ZQ >> 16) & 0xff);
setbits_le32(&mctl_phy->zq[1].zqpr[0], ((CONFIG_DRAM_ZQ >> 8) & 0xf00) - 0x100);
setbits_le32(&mctl_phy->zq[1].zqpr[0], (CONFIG_DRAM_ZQ & 0xff0000) >> 4);
if (para->type == SUNXI_DRAM_TYPE_LPDDR3) {
for (i = 1; i < 14; i++)
writel(0x06060606, &mctl_phy->acbdlr[i]);
}
/* TODO: non-LPDDR3 types */
mctl_phy_pir_init(PIR_ZCAL | PIR_DCAL | PIR_PHYRST | PIR_DRAMINIT |
PIR_QSGATE | PIR_RDDSKW | PIR_WRDSKW | PIR_RDEYE |
PIR_WREYE);
/* TODO: non-LPDDR3 types */
for (i = 0; i < 4; i++)
writel(0x00000909, &mctl_phy->dx[i].gcr[5]);
for (i = 0; i < 4; i++) {
if (IS_ENABLED(CONFIG_DRAM_ODT_EN))
val = 0x0;
else
val = 0xaaaa;
clrsetbits_le32(&mctl_phy->dx[i].gcr[2], 0xffff, val);
if (IS_ENABLED(CONFIG_DRAM_ODT_EN))
val = 0x0;
else
val = 0x2020;
clrsetbits_le32(&mctl_phy->dx[i].gcr[3], 0x3030, val);
}
mctl_bit_delay_set(para);
udelay(1);
setbits_le32(&mctl_phy->pgcr[6], BIT(0));
clrbits_le32(&mctl_phy->pgcr[6], 0xfff8);
for (i = 0; i < 4; i++)
clrbits_le32(&mctl_phy->dx[i].gcr[3], ~0x3ffff);
udelay(10);
if (readl(&mctl_phy->pgsr[0]) & 0x400000)
{
/*
* Detect single rank.
* TODO: also detect half DQ.
*/
if ((readl(&mctl_phy->dx[0].rsr[0]) & 0x3) == 2 &&
(readl(&mctl_phy->dx[1].rsr[0]) & 0x3) == 2 &&
(readl(&mctl_phy->dx[2].rsr[0]) & 0x3) == 2 &&
(readl(&mctl_phy->dx[3].rsr[0]) & 0x3) == 2) {
para->ranks = 1;
/* Restart DRAM initialization from scratch. */
mctl_core_init(para);
return;
}
else {
panic("This DRAM setup is currently not supported.\n");
}
}
if (readl(&mctl_phy->pgsr[0]) & 0xff00000) {
/* Oops! There's something wrong! */
debug("PLL = %x\n", readl(0x3001010));
debug("DRAM PHY PGSR0 = %x\n", readl(&mctl_phy->pgsr[0]));
for (i = 0; i < 4; i++)
debug("DRAM PHY DX%dRSR0 = %x\n", i, readl(&mctl_phy->dx[i].rsr[0]));
panic("Error while initializing DRAM PHY!\n");
}
clrsetbits_le32(&mctl_phy->dsgcr, 0xc0, 0x40);
clrbits_le32(&mctl_phy->pgcr[1], 0x40);
clrbits_le32(&mctl_ctl->dfimisc, BIT(0));
writel(1, &mctl_ctl->swctl);
mctl_await_completion(&mctl_ctl->swstat, 1, 1);
clrbits_le32(&mctl_ctl->rfshctl3, BIT(0));
setbits_le32(&mctl_com->unk_0x014, BIT(31));
writel(0xffffffff, &mctl_com->maer0);
writel(0x7ff, &mctl_com->maer1);
writel(0xffff, &mctl_com->maer2);
}
static void mctl_auto_detect_dram_size(struct dram_para *para)
{
/* TODO: non-LPDDR3, half DQ */
/*
* Detect rank number by the code in mctl_channel_init. Furtherly
* when DQ detection is available it will also be executed there.
*/
mctl_core_init(para);
/* detect row address bits */
para->cols = 8;
para->rows = 18;
mctl_core_init(para);
for (para->rows = 13; para->rows < 18; para->rows++) {
/* 8 banks, 8 bit per byte and 32 bit width */
if (mctl_mem_matches((1 << (para->rows + para->cols + 5))))
break;
}
/* detect column address bits */
para->cols = 11;
mctl_core_init(para);
for (para->cols = 8; para->cols < 11; para->cols++) {
/* 8 bits per byte and 32 bit width */
if (mctl_mem_matches(1 << (para->cols + 2)))
break;
}
}
unsigned long mctl_calc_size(struct dram_para *para)
{
/* TODO: non-LPDDR3, half DQ */
/* 8 banks, 32-bit (4 byte) data width */
return (1ULL << (para->cols + para->rows + 3)) * 4 * para->ranks;
}
#define SUN50I_H6_DX_WRITE_DELAYS \
{{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, \
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, \
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 4, 0 }, \
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }}
#define SUN50I_H6_DX_READ_DELAYS \
{{ 4, 4, 4, 4, 4, 4, 4, 4, 4, 0, 0, 0, 0, 0 }, \
{ 4, 4, 4, 4, 4, 4, 4, 4, 4, 0, 0, 0, 0, 0 }, \
{ 4, 4, 4, 4, 4, 4, 4, 4, 4, 0, 0, 0, 0, 0 }, \
{ 4, 4, 4, 4, 4, 4, 4, 4, 4, 0, 0, 0, 0, 0 }}
unsigned long sunxi_dram_init(void)
{
struct sunxi_mctl_com_reg * const mctl_com =
(struct sunxi_mctl_com_reg *)SUNXI_DRAM_COM_BASE;
struct dram_para para = {
.clk = CONFIG_DRAM_CLK,
#ifdef CONFIG_SUNXI_DRAM_H6_LPDDR3
.type = SUNXI_DRAM_TYPE_LPDDR3,
.ranks = 2,
.cols = 11,
.rows = 14,
.dx_read_delays = SUN50I_H6_DX_READ_DELAYS,
.dx_write_delays = SUN50I_H6_DX_WRITE_DELAYS,
#endif
};
unsigned long size;
/* RES_CAL_CTRL_REG in BSP U-boot*/
setbits_le32(0x7010310, BIT(8));
clrbits_le32(0x7010318, 0x3f);
mctl_auto_detect_dram_size(&para);
mctl_core_init(&para);
size = mctl_calc_size(&para);
clrsetbits_le32(&mctl_com->cr, 0xf0, (size >> (10 + 10 + 4)) & 0xf0);
mctl_set_master_priority();
return size;
};