u-boot/include/bootflow.h
Simon Glass 7638c85190 bootstd: Include the device tree in the bootflow
Some bootmeths provide a way to load a device tree as well as the base
OS image. Add a way to store this in the bootflow. Update the
'bootflow info' command to show this information.

Note that the device tree is not allocated, but instead is stored at
an address provided by an environment variable. This may need to be
adjusted at some point, but for now it works well and fits in with the
existing distro-boot scripts.

Signed-off-by: Simon Glass <sjg@chromium.org>
2023-01-23 18:11:40 -05:00

380 lines
12 KiB
C

/* SPDX-License-Identifier: GPL-2.0+ */
/*
* Copyright 2021 Google LLC
* Written by Simon Glass <sjg@chromium.org>
*/
#ifndef __bootflow_h
#define __bootflow_h
#include <dm/ofnode_decl.h>
#include <linux/list.h>
struct bootstd_priv;
struct expo;
/**
* enum bootflow_state_t - states that a particular bootflow can be in
*
* Only bootflows in state BOOTFLOWST_READY can be used to boot.
*
* See bootflow_state[] for the names for each of these
*/
enum bootflow_state_t {
BOOTFLOWST_BASE, /**< Nothing known yet */
BOOTFLOWST_MEDIA, /**< Media exists */
BOOTFLOWST_PART, /**< Partition exists */
BOOTFLOWST_FS, /**< Filesystem exists */
BOOTFLOWST_FILE, /**< Bootflow file exists */
BOOTFLOWST_READY, /**< Bootflow file loaded */
BOOTFLOWST_COUNT
};
/**
* struct bootflow - information about a bootflow
*
* This is connected into two separate linked lists:
*
* bm_sibling - links all bootflows in the same bootdev
* glob_sibling - links all bootflows in all bootdevs
*
* @bm_node: Points to siblings in the same bootdev
* @glob_node: Points to siblings in the global list (all bootdev)
* @dev: Bootdevice device which produced this bootflow
* @blk: Block device which contains this bootflow, NULL if this is a network
* device
* @part: Partition number (0 for whole device)
* @fs_type: Filesystem type (FS_TYPE...) if this is fixed by the media, else 0.
* For example, the sandbox host-filesystem bootdev sets this to
* FS_TYPE_SANDBOX
* @method: Bootmethod device used to perform the boot and read files
* @name: Name of bootflow (allocated)
* @state: Current state (enum bootflow_state_t)
* @subdir: Subdirectory to fetch files from (with trailing /), or NULL if none
* @fname: Filename of bootflow file (allocated)
* @logo: Logo to display for this bootflow (BMP format)
* @logo_size: Size of the logo in bytes
* @buf: Bootflow file contents (allocated)
* @size: Size of bootflow file in bytes
* @err: Error number received (0 if OK)
* @os_name: Name of the OS / distro being booted, or NULL if not known
* (allocated)
* @fdt_fname: Filename of FDT file
* @fdt_size: Size of FDT file
* @fdt_addr: Address of loaded fdt
*/
struct bootflow {
struct list_head bm_node;
struct list_head glob_node;
struct udevice *dev;
struct udevice *blk;
int part;
int fs_type;
struct udevice *method;
char *name;
enum bootflow_state_t state;
char *subdir;
char *fname;
void *logo;
uint logo_size;
char *buf;
int size;
int err;
char *os_name;
char *fdt_fname;
int fdt_size;
ulong fdt_addr;
};
/**
* enum bootflow_flags_t - flags for the bootflow iterator
*
* @BOOTFLOWF_FIXED: Only used fixed/internal media
* @BOOTFLOWF_SHOW: Show each bootdev before scanning it
* @BOOTFLOWF_ALL: Return bootflows with errors as well
* @BOOTFLOWF_SINGLE_DEV: Just scan one bootmeth
* @BOOTFLOWF_SKIP_GLOBAL: Don't scan global bootmeths
*/
enum bootflow_flags_t {
BOOTFLOWF_FIXED = 1 << 0,
BOOTFLOWF_SHOW = 1 << 1,
BOOTFLOWF_ALL = 1 << 2,
BOOTFLOWF_SINGLE_DEV = 1 << 3,
BOOTFLOWF_SKIP_GLOBAL = 1 << 4,
};
/**
* struct bootflow_iter - state for iterating through bootflows
*
* This starts at with the first bootdev/partition/bootmeth and can be used to
* iterate through all of them.
*
* Iteration starts with the bootdev. The first partition (0, i.e. whole device)
* is scanned first. For partition 0, it iterates through all the available
* bootmeths to see which one(s) can provide a bootflow. Then it moves to
* parition 1 (if there is one) and the process continues. Once all partitions
* are examined, it moves to the next bootdev.
*
* Initially @max_part is 0, meaning that only the whole device (@part=0) can be
* used. During scanning, if a partition table is found, then @max_part is
* updated to a larger value, no less than the number of available partitions.
* This ensures that iteration works through all partitions on the bootdev.
*
* @flags: Flags to use (see enum bootflow_flags_t). If BOOTFLOWF_GLOBAL_FIRST is
* enabled then the global bootmeths are being scanned, otherwise we have
* moved onto the bootdevs
* @dev: Current bootdev, NULL if none
* @part: Current partition number (0 for whole device)
* @method: Current bootmeth
* @max_part: Maximum hardware partition number in @dev, 0 if there is no
* partition table
* @first_bootable: First bootable partition, or 0 if none
* @err: Error obtained from checking the last iteration. This is used to skip
* forward (e.g. to skip the current partition because it is not valid)
* -ESHUTDOWN: try next bootdev
* @num_devs: Number of bootdevs in @dev_order
* @cur_dev: Current bootdev number, an index into @dev_order[]
* @dev_order: List of bootdevs to scan, in order of priority. The scan starts
* with the first one on the list
* @num_methods: Number of bootmeth devices in @method_order
* @cur_method: Current method number, an index into @method_order
* @first_glob_method: First global method, if any, else -1
* @method_order: List of bootmeth devices to use, in order. The normal methods
* appear first, then the global ones, if any
* @doing_global: true if we are iterating through the global bootmeths (which
* happens before the normal ones)
*/
struct bootflow_iter {
int flags;
struct udevice *dev;
int part;
struct udevice *method;
int max_part;
int first_bootable;
int err;
int num_devs;
int cur_dev;
struct udevice **dev_order;
int num_methods;
int cur_method;
int first_glob_method;
struct udevice **method_order;
bool doing_global;
};
/**
* bootflow_init() - Set up a bootflow struct
*
* The bootflow is zeroed and set to state BOOTFLOWST_BASE
*
* @bflow: Struct to set up
* @bootdev: Bootdev to use
* @meth: Bootmeth to use
*/
void bootflow_init(struct bootflow *bflow, struct udevice *bootdev,
struct udevice *meth);
/**
* bootflow_iter_init() - Reset a bootflow iterator
*
* This sets everything to the starting point, ready for use.
*
* @iter: Place to store private info (inited by this call)
* @flags: Flags to use (see enum bootflow_flags_t)
*/
void bootflow_iter_init(struct bootflow_iter *iter, int flags);
/**
* bootflow_iter_uninit() - Free memory used by an interator
*
* @iter: Iterator to free
*/
void bootflow_iter_uninit(struct bootflow_iter *iter);
/**
* bootflow_iter_drop_bootmeth() - Remove a bootmeth from an iterator
*
* Update the iterator so that the bootmeth will not be used again while this
* iterator is in use
*
* @iter: Iterator to update
* @bmeth: Boot method to remove
*/
int bootflow_iter_drop_bootmeth(struct bootflow_iter *iter,
const struct udevice *bmeth);
/**
* bootflow_scan_bootdev() - find the first bootflow in a bootdev
*
* If @flags includes BOOTFLOWF_ALL then bootflows with errors are returned too
*
* @dev: Boot device to scan, NULL to work through all of them until it
* finds one that can supply a bootflow
* @iter: Place to store private info (inited by this call)
* @flags: Flags for iterator (enum bootflow_flags_t)
* @bflow: Place to put the bootflow if found
* Return: 0 if found, -ENODEV if no device, other -ve on other error
* (iteration can continue)
*/
int bootflow_scan_bootdev(struct udevice *dev, struct bootflow_iter *iter,
int flags, struct bootflow *bflow);
/**
* bootflow_scan_first() - find the first bootflow
*
* This works through the available bootdev devices until it finds one that
* can supply a bootflow. It then returns that
*
* If @flags includes BOOTFLOWF_ALL then bootflows with errors are returned too
*
* @iter: Place to store private info (inited by this call), with
* @flags: Flags for bootdev (enum bootflow_flags_t)
* @bflow: Place to put the bootflow if found
* Return: 0 if found, -ENODEV if no device, other -ve on other error (iteration
* can continue)
*/
int bootflow_scan_first(struct bootflow_iter *iter, int flags,
struct bootflow *bflow);
/**
* bootflow_scan_next() - find the next bootflow
*
* This works through the available bootdev devices until it finds one that
* can supply a bootflow. It then returns that bootflow
*
* @iter: Private info (as set up by bootflow_scan_first())
* @bflow: Place to put the bootflow if found
* Return: 0 if found, -ENODEV if no device, -ESHUTDOWN if no more bootflows,
* other -ve on other error (iteration can continue)
*/
int bootflow_scan_next(struct bootflow_iter *iter, struct bootflow *bflow);
/**
* bootflow_first_glob() - Get the first bootflow from the global list
*
* Returns the first bootflow in the global list, no matter what bootflow it is
* attached to
*
* @bflowp: Returns a pointer to the bootflow
* Return: 0 if found, -ENOENT if there are no bootflows
*/
int bootflow_first_glob(struct bootflow **bflowp);
/**
* bootflow_next_glob() - Get the next bootflow from the global list
*
* Returns the next bootflow in the global list, no matter what bootflow it is
* attached to
*
* @bflowp: On entry, the last bootflow returned , e.g. from
* bootflow_first_glob()
* Return: 0 if found, -ENOENT if there are no more bootflows
*/
int bootflow_next_glob(struct bootflow **bflowp);
/**
* bootflow_free() - Free memory used by a bootflow
*
* This frees fields within @bflow, but not the @bflow pointer itself
*/
void bootflow_free(struct bootflow *bflow);
/**
* bootflow_boot() - boot a bootflow
*
* @bflow: Bootflow to boot
* Return: -EPROTO if bootflow has not been loaded, -ENOSYS if the bootflow
* type is not supported, -EFAULT if the boot returned without an error
* when we are expecting it to boot, -ENOTSUPP if trying method resulted in
* finding out that is not actually supported for this boot and should not
* be tried again unless something changes
*/
int bootflow_boot(struct bootflow *bflow);
/**
* bootflow_run_boot() - Try to boot a bootflow
*
* @iter: Current iteration (or NULL if none). Used to disable a bootmeth if the
* boot returns -ENOTSUPP
* @bflow: Bootflow to boot
* Return: result of trying to boot
*/
int bootflow_run_boot(struct bootflow_iter *iter, struct bootflow *bflow);
/**
* bootflow_state_get_name() - Get the name of a bootflow state
*
* @state: State to check
* Return: name, or "?" if invalid
*/
const char *bootflow_state_get_name(enum bootflow_state_t state);
/**
* bootflow_remove() - Remove a bootflow and free its memory
*
* This updates the linked lists containing the bootflow then frees it.
*
* @bflow: Bootflow to remove
*/
void bootflow_remove(struct bootflow *bflow);
/**
* bootflow_iter_check_blk() - Check that a bootflow uses a block device
*
* This checks the bootdev in the bootflow to make sure it uses a block device
*
* Return: 0 if OK, -ENOTSUPP if some other device is used (e.g. ethernet)
*/
int bootflow_iter_check_blk(const struct bootflow_iter *iter);
/**
* bootflow_iter_check_net() - Check that a bootflow uses a network device
*
* This checks the bootdev in the bootflow to make sure it uses a network
* device
*
* Return: 0 if OK, -ENOTSUPP if some other device is used (e.g. MMC)
*/
int bootflow_iter_check_net(const struct bootflow_iter *iter);
/**
* bootflow_iter_check_system() - Check that a bootflow uses the bootstd device
*
* This checks the bootdev in the bootflow to make sure it uses the bootstd
* device
*
* Return: 0 if OK, -ENOTSUPP if some other device is used (e.g. MMC)
*/
int bootflow_iter_check_system(const struct bootflow_iter *iter);
/**
* bootflow_menu_new() - Create a new bootflow menu
*
* @expp: Returns the expo created
* Returns 0 on success, -ve on error
*/
int bootflow_menu_new(struct expo **expp);
/**
* bootflow_menu_apply_theme() - Apply a theme to a bootmenu
*
* @exp: Expo to update
* @node: Node containing the theme information
* Returns 0 on success, -ve on error
*/
int bootflow_menu_apply_theme(struct expo *exp, ofnode node);
/**
* bootflow_menu_run() - Create and run a menu of available bootflows
*
* @std: Bootstd information
* @text_mode: Uses a text-based menu suitable for a serial port
* @bflowp: Returns chosen bootflow (set to NULL if nothing is chosen)
* @return 0 if an option was chosen, -EAGAIN if nothing was chosen, -ve on
* error
*/
int bootflow_menu_run(struct bootstd_priv *std, bool text_mode,
struct bootflow **bflowp);
#endif