u-boot/drivers/ddr/fsl/main.c
York Sun e32d59a2fa driver/ddr/fsl: Add sync of refresh
Add sync of refresh for multiple DDR controllers. DDRC initialization
needs to complete first. Code is re-ordered to keep refresh close.

Signed-off-by: York Sun <yorksun@freescale.com>
2015-02-24 13:09:42 -08:00

858 lines
25 KiB
C

/*
* Copyright 2008-2014 Freescale Semiconductor, Inc.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* Version 2 as published by the Free Software Foundation.
*/
/*
* Generic driver for Freescale DDR/DDR2/DDR3 memory controller.
* Based on code from spd_sdram.c
* Author: James Yang [at freescale.com]
*/
#include <common.h>
#include <i2c.h>
#include <fsl_ddr_sdram.h>
#include <fsl_ddr.h>
/*
* CONFIG_SYS_FSL_DDR_SDRAM_BASE_PHY is the physical address from the view
* of DDR controllers. It is the same as CONFIG_SYS_DDR_SDRAM_BASE for
* all Power SoCs. But it could be different for ARM SoCs. For example,
* fsl_lsch3 has a mapping mechanism to map DDR memory to ranges (in order) of
* 0x00_8000_0000 ~ 0x00_ffff_ffff
* 0x80_8000_0000 ~ 0xff_ffff_ffff
*/
#ifndef CONFIG_SYS_FSL_DDR_SDRAM_BASE_PHY
#define CONFIG_SYS_FSL_DDR_SDRAM_BASE_PHY CONFIG_SYS_DDR_SDRAM_BASE
#endif
#ifdef CONFIG_PPC
#include <asm/fsl_law.h>
void fsl_ddr_set_lawbar(
const common_timing_params_t *memctl_common_params,
unsigned int memctl_interleaved,
unsigned int ctrl_num);
#endif
void fsl_ddr_set_intl3r(const unsigned int granule_size);
#if defined(SPD_EEPROM_ADDRESS) || \
defined(SPD_EEPROM_ADDRESS1) || defined(SPD_EEPROM_ADDRESS2) || \
defined(SPD_EEPROM_ADDRESS3) || defined(SPD_EEPROM_ADDRESS4)
#if (CONFIG_NUM_DDR_CONTROLLERS == 1) && (CONFIG_DIMM_SLOTS_PER_CTLR == 1)
u8 spd_i2c_addr[CONFIG_NUM_DDR_CONTROLLERS][CONFIG_DIMM_SLOTS_PER_CTLR] = {
[0][0] = SPD_EEPROM_ADDRESS,
};
#elif (CONFIG_NUM_DDR_CONTROLLERS == 1) && (CONFIG_DIMM_SLOTS_PER_CTLR == 2)
u8 spd_i2c_addr[CONFIG_NUM_DDR_CONTROLLERS][CONFIG_DIMM_SLOTS_PER_CTLR] = {
[0][0] = SPD_EEPROM_ADDRESS1, /* controller 1 */
[0][1] = SPD_EEPROM_ADDRESS2, /* controller 1 */
};
#elif (CONFIG_NUM_DDR_CONTROLLERS == 2) && (CONFIG_DIMM_SLOTS_PER_CTLR == 1)
u8 spd_i2c_addr[CONFIG_NUM_DDR_CONTROLLERS][CONFIG_DIMM_SLOTS_PER_CTLR] = {
[0][0] = SPD_EEPROM_ADDRESS1, /* controller 1 */
[1][0] = SPD_EEPROM_ADDRESS2, /* controller 2 */
};
#elif (CONFIG_NUM_DDR_CONTROLLERS == 2) && (CONFIG_DIMM_SLOTS_PER_CTLR == 2)
u8 spd_i2c_addr[CONFIG_NUM_DDR_CONTROLLERS][CONFIG_DIMM_SLOTS_PER_CTLR] = {
[0][0] = SPD_EEPROM_ADDRESS1, /* controller 1 */
[0][1] = SPD_EEPROM_ADDRESS2, /* controller 1 */
[1][0] = SPD_EEPROM_ADDRESS3, /* controller 2 */
[1][1] = SPD_EEPROM_ADDRESS4, /* controller 2 */
};
#elif (CONFIG_NUM_DDR_CONTROLLERS == 3) && (CONFIG_DIMM_SLOTS_PER_CTLR == 1)
u8 spd_i2c_addr[CONFIG_NUM_DDR_CONTROLLERS][CONFIG_DIMM_SLOTS_PER_CTLR] = {
[0][0] = SPD_EEPROM_ADDRESS1, /* controller 1 */
[1][0] = SPD_EEPROM_ADDRESS2, /* controller 2 */
[2][0] = SPD_EEPROM_ADDRESS3, /* controller 3 */
};
#elif (CONFIG_NUM_DDR_CONTROLLERS == 3) && (CONFIG_DIMM_SLOTS_PER_CTLR == 2)
u8 spd_i2c_addr[CONFIG_NUM_DDR_CONTROLLERS][CONFIG_DIMM_SLOTS_PER_CTLR] = {
[0][0] = SPD_EEPROM_ADDRESS1, /* controller 1 */
[0][1] = SPD_EEPROM_ADDRESS2, /* controller 1 */
[1][0] = SPD_EEPROM_ADDRESS3, /* controller 2 */
[1][1] = SPD_EEPROM_ADDRESS4, /* controller 2 */
[2][0] = SPD_EEPROM_ADDRESS5, /* controller 3 */
[2][1] = SPD_EEPROM_ADDRESS6, /* controller 3 */
};
#endif
#define SPD_SPA0_ADDRESS 0x36
#define SPD_SPA1_ADDRESS 0x37
static void __get_spd(generic_spd_eeprom_t *spd, u8 i2c_address)
{
int ret;
#ifdef CONFIG_SYS_FSL_DDR4
uint8_t dummy = 0;
#endif
i2c_set_bus_num(CONFIG_SYS_SPD_BUS_NUM);
#ifdef CONFIG_SYS_FSL_DDR4
/*
* DDR4 SPD has 384 to 512 bytes
* To access the lower 256 bytes, we need to set EE page address to 0
* To access the upper 256 bytes, we need to set EE page address to 1
* See Jedec standar No. 21-C for detail
*/
i2c_write(SPD_SPA0_ADDRESS, 0, 1, &dummy, 1);
ret = i2c_read(i2c_address, 0, 1, (uchar *)spd, 256);
if (!ret) {
i2c_write(SPD_SPA1_ADDRESS, 0, 1, &dummy, 1);
ret = i2c_read(i2c_address, 0, 1,
(uchar *)((ulong)spd + 256),
min(256,
(int)sizeof(generic_spd_eeprom_t) - 256));
}
#else
ret = i2c_read(i2c_address, 0, 1, (uchar *)spd,
sizeof(generic_spd_eeprom_t));
#endif
if (ret) {
if (i2c_address ==
#ifdef SPD_EEPROM_ADDRESS
SPD_EEPROM_ADDRESS
#elif defined(SPD_EEPROM_ADDRESS1)
SPD_EEPROM_ADDRESS1
#endif
) {
printf("DDR: failed to read SPD from address %u\n",
i2c_address);
} else {
debug("DDR: failed to read SPD from address %u\n",
i2c_address);
}
memset(spd, 0, sizeof(generic_spd_eeprom_t));
}
}
__attribute__((weak, alias("__get_spd")))
void get_spd(generic_spd_eeprom_t *spd, u8 i2c_address);
void fsl_ddr_get_spd(generic_spd_eeprom_t *ctrl_dimms_spd,
unsigned int ctrl_num, unsigned int dimm_slots_per_ctrl)
{
unsigned int i;
unsigned int i2c_address = 0;
if (ctrl_num >= CONFIG_NUM_DDR_CONTROLLERS) {
printf("%s unexpected ctrl_num = %u\n", __FUNCTION__, ctrl_num);
return;
}
for (i = 0; i < dimm_slots_per_ctrl; i++) {
i2c_address = spd_i2c_addr[ctrl_num][i];
get_spd(&(ctrl_dimms_spd[i]), i2c_address);
}
}
#else
void fsl_ddr_get_spd(generic_spd_eeprom_t *ctrl_dimms_spd,
unsigned int ctrl_num, unsigned int dimm_slots_per_ctrl)
{
}
#endif /* SPD_EEPROM_ADDRESSx */
/*
* ASSUMPTIONS:
* - Same number of CONFIG_DIMM_SLOTS_PER_CTLR on each controller
* - Same memory data bus width on all controllers
*
* NOTES:
*
* The memory controller and associated documentation use confusing
* terminology when referring to the orgranization of DRAM.
*
* Here is a terminology translation table:
*
* memory controller/documention |industry |this code |signals
* -------------------------------|-----------|-----------|-----------------
* physical bank/bank |rank |rank |chip select (CS)
* logical bank/sub-bank |bank |bank |bank address (BA)
* page/row |row |page |row address
* ??? |column |column |column address
*
* The naming confusion is further exacerbated by the descriptions of the
* memory controller interleaving feature, where accesses are interleaved
* _BETWEEN_ two seperate memory controllers. This is configured only in
* CS0_CONFIG[INTLV_CTL] of each memory controller.
*
* memory controller documentation | number of chip selects
* | per memory controller supported
* --------------------------------|-----------------------------------------
* cache line interleaving | 1 (CS0 only)
* page interleaving | 1 (CS0 only)
* bank interleaving | 1 (CS0 only)
* superbank interleraving | depends on bank (chip select)
* | interleraving [rank interleaving]
* | mode used on every memory controller
*
* Even further confusing is the existence of the interleaving feature
* _WITHIN_ each memory controller. The feature is referred to in
* documentation as chip select interleaving or bank interleaving,
* although it is configured in the DDR_SDRAM_CFG field.
*
* Name of field | documentation name | this code
* -----------------------------|-----------------------|------------------
* DDR_SDRAM_CFG[BA_INTLV_CTL] | Bank (chip select) | rank interleaving
* | interleaving
*/
const char *step_string_tbl[] = {
"STEP_GET_SPD",
"STEP_COMPUTE_DIMM_PARMS",
"STEP_COMPUTE_COMMON_PARMS",
"STEP_GATHER_OPTS",
"STEP_ASSIGN_ADDRESSES",
"STEP_COMPUTE_REGS",
"STEP_PROGRAM_REGS",
"STEP_ALL"
};
const char * step_to_string(unsigned int step) {
unsigned int s = __ilog2(step);
if ((1 << s) != step)
return step_string_tbl[7];
if (s >= ARRAY_SIZE(step_string_tbl)) {
printf("Error for the step in %s\n", __func__);
s = 0;
}
return step_string_tbl[s];
}
static unsigned long long __step_assign_addresses(fsl_ddr_info_t *pinfo,
unsigned int dbw_cap_adj[])
{
unsigned int i, j;
unsigned long long total_mem, current_mem_base, total_ctlr_mem;
unsigned long long rank_density, ctlr_density = 0;
unsigned int first_ctrl = pinfo->first_ctrl;
unsigned int last_ctrl = first_ctrl + pinfo->num_ctrls - 1;
/*
* If a reduced data width is requested, but the SPD
* specifies a physically wider device, adjust the
* computed dimm capacities accordingly before
* assigning addresses.
*/
for (i = first_ctrl; i <= last_ctrl; i++) {
unsigned int found = 0;
switch (pinfo->memctl_opts[i].data_bus_width) {
case 2:
/* 16-bit */
for (j = 0; j < CONFIG_DIMM_SLOTS_PER_CTLR; j++) {
unsigned int dw;
if (!pinfo->dimm_params[i][j].n_ranks)
continue;
dw = pinfo->dimm_params[i][j].primary_sdram_width;
if ((dw == 72 || dw == 64)) {
dbw_cap_adj[i] = 2;
break;
} else if ((dw == 40 || dw == 32)) {
dbw_cap_adj[i] = 1;
break;
}
}
break;
case 1:
/* 32-bit */
for (j = 0; j < CONFIG_DIMM_SLOTS_PER_CTLR; j++) {
unsigned int dw;
dw = pinfo->dimm_params[i][j].data_width;
if (pinfo->dimm_params[i][j].n_ranks
&& (dw == 72 || dw == 64)) {
/*
* FIXME: can't really do it
* like this because this just
* further reduces the memory
*/
found = 1;
break;
}
}
if (found) {
dbw_cap_adj[i] = 1;
}
break;
case 0:
/* 64-bit */
break;
default:
printf("unexpected data bus width "
"specified controller %u\n", i);
return 1;
}
debug("dbw_cap_adj[%d]=%d\n", i, dbw_cap_adj[i]);
}
current_mem_base = pinfo->mem_base;
total_mem = 0;
if (pinfo->memctl_opts[first_ctrl].memctl_interleaving) {
rank_density = pinfo->dimm_params[first_ctrl][0].rank_density >>
dbw_cap_adj[first_ctrl];
switch (pinfo->memctl_opts[first_ctrl].ba_intlv_ctl &
FSL_DDR_CS0_CS1_CS2_CS3) {
case FSL_DDR_CS0_CS1_CS2_CS3:
ctlr_density = 4 * rank_density;
break;
case FSL_DDR_CS0_CS1:
case FSL_DDR_CS0_CS1_AND_CS2_CS3:
ctlr_density = 2 * rank_density;
break;
case FSL_DDR_CS2_CS3:
default:
ctlr_density = rank_density;
break;
}
debug("rank density is 0x%llx, ctlr density is 0x%llx\n",
rank_density, ctlr_density);
for (i = first_ctrl; i <= last_ctrl; i++) {
if (pinfo->memctl_opts[i].memctl_interleaving) {
switch (pinfo->memctl_opts[i].memctl_interleaving_mode) {
case FSL_DDR_256B_INTERLEAVING:
case FSL_DDR_CACHE_LINE_INTERLEAVING:
case FSL_DDR_PAGE_INTERLEAVING:
case FSL_DDR_BANK_INTERLEAVING:
case FSL_DDR_SUPERBANK_INTERLEAVING:
total_ctlr_mem = 2 * ctlr_density;
break;
case FSL_DDR_3WAY_1KB_INTERLEAVING:
case FSL_DDR_3WAY_4KB_INTERLEAVING:
case FSL_DDR_3WAY_8KB_INTERLEAVING:
total_ctlr_mem = 3 * ctlr_density;
break;
case FSL_DDR_4WAY_1KB_INTERLEAVING:
case FSL_DDR_4WAY_4KB_INTERLEAVING:
case FSL_DDR_4WAY_8KB_INTERLEAVING:
total_ctlr_mem = 4 * ctlr_density;
break;
default:
panic("Unknown interleaving mode");
}
pinfo->common_timing_params[i].base_address =
current_mem_base;
pinfo->common_timing_params[i].total_mem =
total_ctlr_mem;
total_mem = current_mem_base + total_ctlr_mem;
debug("ctrl %d base 0x%llx\n", i, current_mem_base);
debug("ctrl %d total 0x%llx\n", i, total_ctlr_mem);
} else {
/* when 3rd controller not interleaved */
current_mem_base = total_mem;
total_ctlr_mem = 0;
pinfo->common_timing_params[i].base_address =
current_mem_base;
for (j = 0; j < CONFIG_DIMM_SLOTS_PER_CTLR; j++) {
unsigned long long cap =
pinfo->dimm_params[i][j].capacity >> dbw_cap_adj[i];
pinfo->dimm_params[i][j].base_address =
current_mem_base;
debug("ctrl %d dimm %d base 0x%llx\n", i, j, current_mem_base);
current_mem_base += cap;
total_ctlr_mem += cap;
}
debug("ctrl %d total 0x%llx\n", i, total_ctlr_mem);
pinfo->common_timing_params[i].total_mem =
total_ctlr_mem;
total_mem += total_ctlr_mem;
}
}
} else {
/*
* Simple linear assignment if memory
* controllers are not interleaved.
*/
for (i = first_ctrl; i <= last_ctrl; i++) {
total_ctlr_mem = 0;
pinfo->common_timing_params[i].base_address =
current_mem_base;
for (j = 0; j < CONFIG_DIMM_SLOTS_PER_CTLR; j++) {
/* Compute DIMM base addresses. */
unsigned long long cap =
pinfo->dimm_params[i][j].capacity >> dbw_cap_adj[i];
pinfo->dimm_params[i][j].base_address =
current_mem_base;
debug("ctrl %d dimm %d base 0x%llx\n", i, j, current_mem_base);
current_mem_base += cap;
total_ctlr_mem += cap;
}
debug("ctrl %d total 0x%llx\n", i, total_ctlr_mem);
pinfo->common_timing_params[i].total_mem =
total_ctlr_mem;
total_mem += total_ctlr_mem;
}
}
debug("Total mem by %s is 0x%llx\n", __func__, total_mem);
return total_mem;
}
/* Use weak function to allow board file to override the address assignment */
__attribute__((weak, alias("__step_assign_addresses")))
unsigned long long step_assign_addresses(fsl_ddr_info_t *pinfo,
unsigned int dbw_cap_adj[]);
unsigned long long
fsl_ddr_compute(fsl_ddr_info_t *pinfo, unsigned int start_step,
unsigned int size_only)
{
unsigned int i, j;
unsigned long long total_mem = 0;
int assert_reset = 0;
unsigned int first_ctrl = pinfo->first_ctrl;
unsigned int last_ctrl = first_ctrl + pinfo->num_ctrls - 1;
__maybe_unused int retval;
__maybe_unused bool goodspd = false;
__maybe_unused int dimm_slots_per_ctrl = pinfo->dimm_slots_per_ctrl;
fsl_ddr_cfg_regs_t *ddr_reg = pinfo->fsl_ddr_config_reg;
common_timing_params_t *timing_params = pinfo->common_timing_params;
if (pinfo->board_need_mem_reset)
assert_reset = pinfo->board_need_mem_reset();
/* data bus width capacity adjust shift amount */
unsigned int dbw_capacity_adjust[CONFIG_NUM_DDR_CONTROLLERS];
for (i = first_ctrl; i <= last_ctrl; i++)
dbw_capacity_adjust[i] = 0;
debug("starting at step %u (%s)\n",
start_step, step_to_string(start_step));
switch (start_step) {
case STEP_GET_SPD:
#if defined(CONFIG_DDR_SPD) || defined(CONFIG_SPD_EEPROM)
/* STEP 1: Gather all DIMM SPD data */
for (i = first_ctrl; i <= last_ctrl; i++) {
fsl_ddr_get_spd(pinfo->spd_installed_dimms[i], i,
dimm_slots_per_ctrl);
}
case STEP_COMPUTE_DIMM_PARMS:
/* STEP 2: Compute DIMM parameters from SPD data */
for (i = first_ctrl; i <= last_ctrl; i++) {
for (j = 0; j < CONFIG_DIMM_SLOTS_PER_CTLR; j++) {
generic_spd_eeprom_t *spd =
&(pinfo->spd_installed_dimms[i][j]);
dimm_params_t *pdimm =
&(pinfo->dimm_params[i][j]);
retval = compute_dimm_parameters(
i, spd, pdimm, j);
#ifdef CONFIG_SYS_DDR_RAW_TIMING
if (!i && !j && retval) {
printf("SPD error on controller %d! "
"Trying fallback to raw timing "
"calculation\n", i);
retval = fsl_ddr_get_dimm_params(pdimm,
i, j);
}
#else
if (retval == 2) {
printf("Error: compute_dimm_parameters"
" non-zero returned FATAL value "
"for memctl=%u dimm=%u\n", i, j);
return 0;
}
#endif
if (retval) {
debug("Warning: compute_dimm_parameters"
" non-zero return value for memctl=%u "
"dimm=%u\n", i, j);
} else {
goodspd = true;
}
}
}
if (!goodspd) {
/*
* No valid SPD found
* Throw an error if this is for main memory, i.e.
* first_ctrl == 0. Otherwise, siliently return 0
* as the memory size.
*/
if (first_ctrl == 0)
printf("Error: No valid SPD detected.\n");
return 0;
}
#elif defined(CONFIG_SYS_DDR_RAW_TIMING)
case STEP_COMPUTE_DIMM_PARMS:
for (i = first_ctrl; i <= last_ctrl; i++) {
for (j = 0; j < CONFIG_DIMM_SLOTS_PER_CTLR; j++) {
dimm_params_t *pdimm =
&(pinfo->dimm_params[i][j]);
fsl_ddr_get_dimm_params(pdimm, i, j);
}
}
debug("Filling dimm parameters from board specific file\n");
#endif
case STEP_COMPUTE_COMMON_PARMS:
/*
* STEP 3: Compute a common set of timing parameters
* suitable for all of the DIMMs on each memory controller
*/
for (i = first_ctrl; i <= last_ctrl; i++) {
debug("Computing lowest common DIMM"
" parameters for memctl=%u\n", i);
compute_lowest_common_dimm_parameters
(i,
pinfo->dimm_params[i],
&timing_params[i],
CONFIG_DIMM_SLOTS_PER_CTLR);
}
case STEP_GATHER_OPTS:
/* STEP 4: Gather configuration requirements from user */
for (i = first_ctrl; i <= last_ctrl; i++) {
debug("Reloading memory controller "
"configuration options for memctl=%u\n", i);
/*
* This "reloads" the memory controller options
* to defaults. If the user "edits" an option,
* next_step points to the step after this,
* which is currently STEP_ASSIGN_ADDRESSES.
*/
populate_memctl_options(
timing_params[i].all_dimms_registered,
&pinfo->memctl_opts[i],
pinfo->dimm_params[i], i);
/*
* For RDIMMs, JEDEC spec requires clocks to be stable
* before reset signal is deasserted. For the boards
* using fixed parameters, this function should be
* be called from board init file.
*/
if (timing_params[i].all_dimms_registered)
assert_reset = 1;
}
if (assert_reset && !size_only) {
if (pinfo->board_mem_reset) {
debug("Asserting mem reset\n");
pinfo->board_mem_reset();
} else {
debug("Asserting mem reset missing\n");
}
}
case STEP_ASSIGN_ADDRESSES:
/* STEP 5: Assign addresses to chip selects */
check_interleaving_options(pinfo);
total_mem = step_assign_addresses(pinfo, dbw_capacity_adjust);
debug("Total mem %llu assigned\n", total_mem);
case STEP_COMPUTE_REGS:
/* STEP 6: compute controller register values */
debug("FSL Memory ctrl register computation\n");
for (i = first_ctrl; i <= last_ctrl; i++) {
if (timing_params[i].ndimms_present == 0) {
memset(&ddr_reg[i], 0,
sizeof(fsl_ddr_cfg_regs_t));
continue;
}
compute_fsl_memctl_config_regs
(i,
&pinfo->memctl_opts[i],
&ddr_reg[i], &timing_params[i],
pinfo->dimm_params[i],
dbw_capacity_adjust[i],
size_only);
}
default:
break;
}
{
/*
* Compute the amount of memory available just by
* looking for the highest valid CSn_BNDS value.
* This allows us to also experiment with using
* only CS0 when using dual-rank DIMMs.
*/
unsigned int max_end = 0;
for (i = first_ctrl; i <= last_ctrl; i++) {
for (j = 0; j < CONFIG_CHIP_SELECTS_PER_CTRL; j++) {
fsl_ddr_cfg_regs_t *reg = &ddr_reg[i];
if (reg->cs[j].config & 0x80000000) {
unsigned int end;
/*
* 0xfffffff is a special value we put
* for unused bnds
*/
if (reg->cs[j].bnds == 0xffffffff)
continue;
end = reg->cs[j].bnds & 0xffff;
if (end > max_end) {
max_end = end;
}
}
}
}
total_mem = 1 + (((unsigned long long)max_end << 24ULL) |
0xFFFFFFULL) - pinfo->mem_base;
}
return total_mem;
}
phys_size_t __fsl_ddr_sdram(fsl_ddr_info_t *pinfo)
{
unsigned int i, first_ctrl, last_ctrl;
#ifdef CONFIG_PPC
unsigned int law_memctl = LAW_TRGT_IF_DDR_1;
#endif
unsigned long long total_memory;
int deassert_reset = 0;
first_ctrl = pinfo->first_ctrl;
last_ctrl = first_ctrl + pinfo->num_ctrls - 1;
/* Compute it once normally. */
#ifdef CONFIG_FSL_DDR_INTERACTIVE
if (tstc() && (getc() == 'd')) { /* we got a key press of 'd' */
total_memory = fsl_ddr_interactive(pinfo, 0);
} else if (fsl_ddr_interactive_env_var_exists()) {
total_memory = fsl_ddr_interactive(pinfo, 1);
} else
#endif
total_memory = fsl_ddr_compute(pinfo, STEP_GET_SPD, 0);
/* setup 3-way interleaving before enabling DDRC */
switch (pinfo->memctl_opts[first_ctrl].memctl_interleaving_mode) {
case FSL_DDR_3WAY_1KB_INTERLEAVING:
case FSL_DDR_3WAY_4KB_INTERLEAVING:
case FSL_DDR_3WAY_8KB_INTERLEAVING:
fsl_ddr_set_intl3r(
pinfo->memctl_opts[first_ctrl].
memctl_interleaving_mode);
break;
default:
break;
}
/*
* Program configuration registers.
* JEDEC specs requires clocks to be stable before deasserting reset
* for RDIMMs. Clocks start after chip select is enabled and clock
* control register is set. During step 1, all controllers have their
* registers set but not enabled. Step 2 proceeds after deasserting
* reset through board FPGA or GPIO.
* For non-registered DIMMs, initialization can go through but it is
* also OK to follow the same flow.
*/
if (pinfo->board_need_mem_reset)
deassert_reset = pinfo->board_need_mem_reset();
for (i = first_ctrl; i <= last_ctrl; i++) {
if (pinfo->common_timing_params[i].all_dimms_registered)
deassert_reset = 1;
}
for (i = first_ctrl; i <= last_ctrl; i++) {
debug("Programming controller %u\n", i);
if (pinfo->common_timing_params[i].ndimms_present == 0) {
debug("No dimms present on controller %u; "
"skipping programming\n", i);
continue;
}
/*
* The following call with step = 1 returns before enabling
* the controller. It has to finish with step = 2 later.
*/
fsl_ddr_set_memctl_regs(&(pinfo->fsl_ddr_config_reg[i]), i,
deassert_reset ? 1 : 0);
}
if (deassert_reset) {
/* Use board FPGA or GPIO to deassert reset signal */
if (pinfo->board_mem_de_reset) {
debug("Deasserting mem reset\n");
pinfo->board_mem_de_reset();
} else {
debug("Deasserting mem reset missing\n");
}
for (i = first_ctrl; i <= last_ctrl; i++) {
/* Call with step = 2 to continue initialization */
fsl_ddr_set_memctl_regs(&(pinfo->fsl_ddr_config_reg[i]),
i, 2);
}
}
#ifdef CONFIG_FSL_DDR_SYNC_REFRESH
fsl_ddr_sync_memctl_refresh(first_ctrl, last_ctrl);
#endif
#ifdef CONFIG_PPC
/* program LAWs */
for (i = first_ctrl; i <= last_ctrl; i++) {
if (pinfo->memctl_opts[i].memctl_interleaving) {
switch (pinfo->memctl_opts[i].
memctl_interleaving_mode) {
case FSL_DDR_CACHE_LINE_INTERLEAVING:
case FSL_DDR_PAGE_INTERLEAVING:
case FSL_DDR_BANK_INTERLEAVING:
case FSL_DDR_SUPERBANK_INTERLEAVING:
if (i % 2)
break;
if (i == 0) {
law_memctl = LAW_TRGT_IF_DDR_INTRLV;
fsl_ddr_set_lawbar(
&pinfo->common_timing_params[i],
law_memctl, i);
}
#if CONFIG_NUM_DDR_CONTROLLERS > 3
else if (i == 2) {
law_memctl = LAW_TRGT_IF_DDR_INTLV_34;
fsl_ddr_set_lawbar(
&pinfo->common_timing_params[i],
law_memctl, i);
}
#endif
break;
case FSL_DDR_3WAY_1KB_INTERLEAVING:
case FSL_DDR_3WAY_4KB_INTERLEAVING:
case FSL_DDR_3WAY_8KB_INTERLEAVING:
law_memctl = LAW_TRGT_IF_DDR_INTLV_123;
if (i == 0) {
fsl_ddr_set_lawbar(
&pinfo->common_timing_params[i],
law_memctl, i);
}
break;
case FSL_DDR_4WAY_1KB_INTERLEAVING:
case FSL_DDR_4WAY_4KB_INTERLEAVING:
case FSL_DDR_4WAY_8KB_INTERLEAVING:
law_memctl = LAW_TRGT_IF_DDR_INTLV_1234;
if (i == 0)
fsl_ddr_set_lawbar(
&pinfo->common_timing_params[i],
law_memctl, i);
/* place holder for future 4-way interleaving */
break;
default:
break;
}
} else {
switch (i) {
case 0:
law_memctl = LAW_TRGT_IF_DDR_1;
break;
case 1:
law_memctl = LAW_TRGT_IF_DDR_2;
break;
case 2:
law_memctl = LAW_TRGT_IF_DDR_3;
break;
case 3:
law_memctl = LAW_TRGT_IF_DDR_4;
break;
default:
break;
}
fsl_ddr_set_lawbar(&pinfo->common_timing_params[i],
law_memctl, i);
}
}
#endif
debug("total_memory by %s = %llu\n", __func__, total_memory);
#if !defined(CONFIG_PHYS_64BIT)
/* Check for 4G or more. Bad. */
if ((first_ctrl == 0) && (total_memory >= (1ull << 32))) {
puts("Detected ");
print_size(total_memory, " of memory\n");
printf(" This U-Boot only supports < 4G of DDR\n");
printf(" You could rebuild it with CONFIG_PHYS_64BIT\n");
printf(" "); /* re-align to match init_func_ram print */
total_memory = CONFIG_MAX_MEM_MAPPED;
}
#endif
return total_memory;
}
/*
* fsl_ddr_sdram(void) -- this is the main function to be
* called by initdram() in the board file.
*
* It returns amount of memory configured in bytes.
*/
phys_size_t fsl_ddr_sdram(void)
{
fsl_ddr_info_t info;
/* Reset info structure. */
memset(&info, 0, sizeof(fsl_ddr_info_t));
info.mem_base = CONFIG_SYS_FSL_DDR_SDRAM_BASE_PHY;
info.first_ctrl = 0;
info.num_ctrls = CONFIG_SYS_FSL_DDR_MAIN_NUM_CTRLS;
info.dimm_slots_per_ctrl = CONFIG_DIMM_SLOTS_PER_CTLR;
info.board_need_mem_reset = board_need_mem_reset;
info.board_mem_reset = board_assert_mem_reset;
info.board_mem_de_reset = board_deassert_mem_reset;
return __fsl_ddr_sdram(&info);
}
#ifdef CONFIG_SYS_FSL_OTHER_DDR_NUM_CTRLS
phys_size_t fsl_other_ddr_sdram(unsigned long long base,
unsigned int first_ctrl,
unsigned int num_ctrls,
unsigned int dimm_slots_per_ctrl,
int (*board_need_reset)(void),
void (*board_reset)(void),
void (*board_de_reset)(void))
{
fsl_ddr_info_t info;
/* Reset info structure. */
memset(&info, 0, sizeof(fsl_ddr_info_t));
info.mem_base = base;
info.first_ctrl = first_ctrl;
info.num_ctrls = num_ctrls;
info.dimm_slots_per_ctrl = dimm_slots_per_ctrl;
info.board_need_mem_reset = board_need_reset;
info.board_mem_reset = board_reset;
info.board_mem_de_reset = board_de_reset;
return __fsl_ddr_sdram(&info);
}
#endif
/*
* fsl_ddr_sdram_size(first_ctrl, last_intlv) - This function only returns the
* size of the total memory without setting ddr control registers.
*/
phys_size_t
fsl_ddr_sdram_size(void)
{
fsl_ddr_info_t info;
unsigned long long total_memory = 0;
memset(&info, 0 , sizeof(fsl_ddr_info_t));
info.mem_base = CONFIG_SYS_FSL_DDR_SDRAM_BASE_PHY;
info.first_ctrl = 0;
info.num_ctrls = CONFIG_SYS_FSL_DDR_MAIN_NUM_CTRLS;
info.dimm_slots_per_ctrl = CONFIG_DIMM_SLOTS_PER_CTLR;
info.board_need_mem_reset = NULL;
/* Compute it once normally. */
total_memory = fsl_ddr_compute(&info, STEP_GET_SPD, 1);
return total_memory;
}