u-boot/arch/arm/mach-snapdragon/clock-apq8016.c
Stephen Warren 135aa95002 clk: convert API to match reset/mailbox style
The following changes are made to the clock API:
* The concept of "clocks" and "peripheral clocks" are unified; each clock
  provider now implements a single set of clocks. This provides a simpler
  conceptual interface to clients, and better aligns with device tree
  clock bindings.
* Clocks are now identified with a single "struct clk", rather than
  requiring clients to store the clock provider device and clock identity
  values separately. For simple clock consumers, this isolates clients
  from internal details of the clock API.
* clk.h is split so it only contains the client/consumer API, whereas
  clk-uclass.h contains the provider API. This aligns with the recently
  added reset and mailbox APIs.
* clk_ops .of_xlate(), .request(), and .free() are added so providers
  can customize these operations if needed. This also aligns with the
  recently added reset and mailbox APIs.
* clk_disable() is added.
* All users of the current clock APIs are updated.
* Sandbox clock tests are updated to exercise clock lookup via DT, and
  clock enable/disable.
* rkclk_get_clk() is removed and replaced with standard APIs.

Buildman shows no clock-related errors for any board for which buildman
can download a toolchain.

test/py passes for sandbox (which invokes the dm clk test amongst
others).

Signed-off-by: Stephen Warren <swarren@nvidia.com>
Acked-by: Simon Glass <sjg@chromium.org>
2016-06-19 17:05:55 -06:00

262 lines
6.2 KiB
C

/*
* Clock drivers for Qualcomm APQ8016
*
* (C) Copyright 2015 Mateusz Kulikowski <mateusz.kulikowski@gmail.com>
*
* Based on Little Kernel driver, simplified
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#include <common.h>
#include <clk-uclass.h>
#include <dm.h>
#include <errno.h>
#include <asm/io.h>
#include <linux/bitops.h>
/* GPLL0 clock control registers */
#define GPLL0_STATUS 0x2101C
#define GPLL0_STATUS_ACTIVE BIT(17)
#define APCS_GPLL_ENA_VOTE 0x45000
#define APCS_GPLL_ENA_VOTE_GPLL0 BIT(0)
/* vote reg for blsp1 clock */
#define APCS_CLOCK_BRANCH_ENA_VOTE 0x45004
#define APCS_CLOCK_BRANCH_ENA_VOTE_BLSP1 BIT(10)
/* SDC(n) clock control registers; n=1,2 */
/* block control register */
#define SDCC_BCR(n) ((n * 0x1000) + 0x41000)
/* cmd */
#define SDCC_CMD_RCGR(n) ((n * 0x1000) + 0x41004)
/* cfg */
#define SDCC_CFG_RCGR(n) ((n * 0x1000) + 0x41008)
/* m */
#define SDCC_M(n) ((n * 0x1000) + 0x4100C)
/* n */
#define SDCC_N(n) ((n * 0x1000) + 0x41010)
/* d */
#define SDCC_D(n) ((n * 0x1000) + 0x41014)
/* branch control */
#define SDCC_APPS_CBCR(n) ((n * 0x1000) + 0x41018)
#define SDCC_AHB_CBCR(n) ((n * 0x1000) + 0x4101C)
/* BLSP1 AHB clock (root clock for BLSP) */
#define BLSP1_AHB_CBCR 0x1008
/* Uart clock control registers */
#define BLSP1_UART2_BCR 0x3028
#define BLSP1_UART2_APPS_CBCR 0x302C
#define BLSP1_UART2_APPS_CMD_RCGR 0x3034
#define BLSP1_UART2_APPS_CFG_RCGR 0x3038
#define BLSP1_UART2_APPS_M 0x303C
#define BLSP1_UART2_APPS_N 0x3040
#define BLSP1_UART2_APPS_D 0x3044
/* CBCR register fields */
#define CBCR_BRANCH_ENABLE_BIT BIT(0)
#define CBCR_BRANCH_OFF_BIT BIT(31)
struct msm_clk_priv {
phys_addr_t base;
};
/* Enable clock controlled by CBC soft macro */
static void clk_enable_cbc(phys_addr_t cbcr)
{
setbits_le32(cbcr, CBCR_BRANCH_ENABLE_BIT);
while (readl(cbcr) & CBCR_BRANCH_OFF_BIT)
;
}
/* clock has 800MHz */
static void clk_enable_gpll0(phys_addr_t base)
{
if (readl(base + GPLL0_STATUS) & GPLL0_STATUS_ACTIVE)
return; /* clock already enabled */
setbits_le32(base + APCS_GPLL_ENA_VOTE, APCS_GPLL_ENA_VOTE_GPLL0);
while ((readl(base + GPLL0_STATUS) & GPLL0_STATUS_ACTIVE) == 0)
;
}
#define APPS_CMD_RGCR_UPDATE BIT(0)
/* Update clock command via CMD_RGCR */
static void clk_bcr_update(phys_addr_t apps_cmd_rgcr)
{
setbits_le32(apps_cmd_rgcr, APPS_CMD_RGCR_UPDATE);
/* Wait for frequency to be updated. */
while (readl(apps_cmd_rgcr) & APPS_CMD_RGCR_UPDATE)
;
}
struct bcr_regs {
uintptr_t cfg_rcgr;
uintptr_t cmd_rcgr;
uintptr_t M;
uintptr_t N;
uintptr_t D;
};
/* RCGR_CFG register fields */
#define CFG_MODE_DUAL_EDGE (0x2 << 12) /* Counter mode */
/* sources */
#define CFG_CLK_SRC_CXO (0 << 8)
#define CFG_CLK_SRC_GPLL0 (1 << 8)
#define CFG_CLK_SRC_MASK (7 << 8)
/* Mask for supported fields */
#define CFG_MASK 0x3FFF
#define CFG_DIVIDER_MASK 0x1F
/* root set rate for clocks with half integer and MND divider */
static void clk_rcg_set_rate_mnd(phys_addr_t base, const struct bcr_regs *regs,
int div, int m, int n, int source)
{
uint32_t cfg;
/* M value for MND divider. */
uint32_t m_val = m;
/* NOT(N-M) value for MND divider. */
uint32_t n_val = ~((n)-(m)) * !!(n);
/* NOT 2D value for MND divider. */
uint32_t d_val = ~(n);
/* Program MND values */
writel(m_val, base + regs->M);
writel(n_val, base + regs->N);
writel(d_val, base + regs->D);
/* setup src select and divider */
cfg = readl(base + regs->cfg_rcgr);
cfg &= ~CFG_MASK;
cfg |= source & CFG_CLK_SRC_MASK; /* Select clock source */
/* Set the divider; HW permits fraction dividers (+0.5), but
for simplicity, we will support integers only */
if (div)
cfg |= (2 * div - 1) & CFG_DIVIDER_MASK;
if (n_val)
cfg |= CFG_MODE_DUAL_EDGE;
writel(cfg, base + regs->cfg_rcgr); /* Write new clock configuration */
/* Inform h/w to start using the new config. */
clk_bcr_update(base + regs->cmd_rcgr);
}
static const struct bcr_regs sdc_regs[] = {
{
.cfg_rcgr = SDCC_CFG_RCGR(1),
.cmd_rcgr = SDCC_CMD_RCGR(1),
.M = SDCC_M(1),
.N = SDCC_N(1),
.D = SDCC_D(1),
},
{
.cfg_rcgr = SDCC_CFG_RCGR(2),
.cmd_rcgr = SDCC_CMD_RCGR(2),
.M = SDCC_M(2),
.N = SDCC_N(2),
.D = SDCC_D(2),
}
};
/* Init clock for SDHCI controller */
static int clk_init_sdc(struct msm_clk_priv *priv, int slot, uint rate)
{
int div = 8; /* 100MHz default */
if (rate == 200000000)
div = 4;
clk_enable_cbc(priv->base + SDCC_AHB_CBCR(slot));
/* 800Mhz/div, gpll0 */
clk_rcg_set_rate_mnd(priv->base, &sdc_regs[slot], div, 0, 0,
CFG_CLK_SRC_GPLL0);
clk_enable_gpll0(priv->base);
clk_enable_cbc(priv->base + SDCC_APPS_CBCR(slot));
return rate;
}
static const struct bcr_regs uart2_regs = {
.cfg_rcgr = BLSP1_UART2_APPS_CFG_RCGR,
.cmd_rcgr = BLSP1_UART2_APPS_CMD_RCGR,
.M = BLSP1_UART2_APPS_M,
.N = BLSP1_UART2_APPS_N,
.D = BLSP1_UART2_APPS_D,
};
/* Init UART clock, 115200 */
static int clk_init_uart(struct msm_clk_priv *priv)
{
/* Enable iface clk */
clk_enable_cbc(priv->base + BLSP1_AHB_CBCR);
/* 7372800 uart block clock @ GPLL0 */
clk_rcg_set_rate_mnd(priv->base, &uart2_regs, 1, 144, 15625,
CFG_CLK_SRC_GPLL0);
clk_enable_gpll0(priv->base);
/* Enable core clk */
clk_enable_cbc(priv->base + BLSP1_UART2_APPS_CBCR);
return 0;
}
ulong msm_set_rate(struct clk *clk, ulong rate)
{
struct msm_clk_priv *priv = dev_get_priv(clk->dev);
switch (clk->id) {
case 0: /* SDC1 */
return clk_init_sdc(priv, 0, rate);
break;
case 1: /* SDC2 */
return clk_init_sdc(priv, 1, rate);
break;
case 4: /* UART2 */
return clk_init_uart(priv);
break;
default:
return 0;
}
}
static int msm_clk_probe(struct udevice *dev)
{
struct msm_clk_priv *priv = dev_get_priv(dev);
priv->base = dev_get_addr(dev);
if (priv->base == FDT_ADDR_T_NONE)
return -EINVAL;
return 0;
}
static struct clk_ops msm_clk_ops = {
.set_rate = msm_set_rate,
};
static const struct udevice_id msm_clk_ids[] = {
{ .compatible = "qcom,gcc-msm8916" },
{ .compatible = "qcom,gcc-apq8016" },
{ }
};
U_BOOT_DRIVER(clk_msm) = {
.name = "clk_msm",
.id = UCLASS_CLK,
.of_match = msm_clk_ids,
.ops = &msm_clk_ops,
.priv_auto_alloc_size = sizeof(struct msm_clk_priv),
.probe = msm_clk_probe,
};