u-boot/drivers/ddr/marvell/axp/ddr3_hw_training.c
Simon Glass c05ed00afb common: Drop linux/delay.h from common header
Move this uncommon header out of the common header.

Signed-off-by: Simon Glass <sjg@chromium.org>
2020-05-18 21:19:23 -04:00

1116 lines
28 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (C) Marvell International Ltd. and its affiliates
*/
#include <common.h>
#include <i2c.h>
#include <log.h>
#include <spl.h>
#include <asm/io.h>
#include <asm/arch/cpu.h>
#include <asm/arch/soc.h>
#include <linux/delay.h>
#include "ddr3_init.h"
#include "ddr3_hw_training.h"
#include "xor.h"
#ifdef MV88F78X60
#include "ddr3_patterns_64bit.h"
#else
#include "ddr3_patterns_16bit.h"
#if defined(MV88F672X)
#include "ddr3_patterns_16bit.h"
#endif
#endif
/*
* Debug
*/
#define DEBUG_MAIN_C(s, d, l) \
DEBUG_MAIN_S(s); DEBUG_MAIN_D(d, l); DEBUG_MAIN_S("\n")
#define DEBUG_MAIN_FULL_C(s, d, l) \
DEBUG_MAIN_FULL_S(s); DEBUG_MAIN_FULL_D(d, l); DEBUG_MAIN_FULL_S("\n")
#ifdef MV_DEBUG_MAIN
#define DEBUG_MAIN_S(s) puts(s)
#define DEBUG_MAIN_D(d, l) printf("%x", d)
#else
#define DEBUG_MAIN_S(s)
#define DEBUG_MAIN_D(d, l)
#endif
#ifdef MV_DEBUG_MAIN_FULL
#define DEBUG_MAIN_FULL_S(s) puts(s)
#define DEBUG_MAIN_FULL_D(d, l) printf("%x", d)
#else
#define DEBUG_MAIN_FULL_S(s)
#define DEBUG_MAIN_FULL_D(d, l)
#endif
#ifdef MV_DEBUG_SUSPEND_RESUME
#define DEBUG_SUSPEND_RESUME_S(s) puts(s)
#define DEBUG_SUSPEND_RESUME_D(d, l) printf("%x", d)
#else
#define DEBUG_SUSPEND_RESUME_S(s)
#define DEBUG_SUSPEND_RESUME_D(d, l)
#endif
static u32 ddr3_sw_wl_rl_debug;
static u32 ddr3_run_pbs = 1;
void ddr3_print_version(void)
{
puts("DDR3 Training Sequence - Ver 5.7.");
}
void ddr3_set_sw_wl_rl_debug(u32 val)
{
ddr3_sw_wl_rl_debug = val;
}
void ddr3_set_pbs(u32 val)
{
ddr3_run_pbs = val;
}
int ddr3_hw_training(u32 target_freq, u32 ddr_width, int xor_bypass,
u32 scrub_offs, u32 scrub_size, int dqs_clk_aligned,
int debug_mode, int reg_dimm_skip_wl)
{
/* A370 has no PBS mechanism */
__maybe_unused u32 first_loop_flag = 0;
u32 freq, reg;
MV_DRAM_INFO dram_info;
int ratio_2to1 = 0;
int tmp_ratio = 1;
int status;
if (debug_mode)
DEBUG_MAIN_S("DDR3 Training Sequence - DEBUG - 1\n");
memset(&dram_info, 0, sizeof(dram_info));
dram_info.num_cs = ddr3_get_cs_num_from_reg();
dram_info.cs_ena = ddr3_get_cs_ena_from_reg();
dram_info.target_frequency = target_freq;
dram_info.ddr_width = ddr_width;
dram_info.num_of_std_pups = ddr_width / PUP_SIZE;
dram_info.rl400_bug = 0;
dram_info.multi_cs_mr_support = 0;
#ifdef MV88F67XX
dram_info.rl400_bug = 1;
#endif
/* Ignore ECC errors - if ECC is enabled */
reg = reg_read(REG_SDRAM_CONFIG_ADDR);
if (reg & (1 << REG_SDRAM_CONFIG_ECC_OFFS)) {
dram_info.ecc_ena = 1;
reg |= (1 << REG_SDRAM_CONFIG_IERR_OFFS);
reg_write(REG_SDRAM_CONFIG_ADDR, reg);
} else {
dram_info.ecc_ena = 0;
}
reg = reg_read(REG_SDRAM_CONFIG_ADDR);
if (reg & (1 << REG_SDRAM_CONFIG_REGDIMM_OFFS))
dram_info.reg_dimm = 1;
else
dram_info.reg_dimm = 0;
dram_info.num_of_total_pups = ddr_width / PUP_SIZE + dram_info.ecc_ena;
/* Get target 2T value */
reg = reg_read(REG_DUNIT_CTRL_LOW_ADDR);
dram_info.mode_2t = (reg >> REG_DUNIT_CTRL_LOW_2T_OFFS) &
REG_DUNIT_CTRL_LOW_2T_MASK;
/* Get target CL value */
#ifdef MV88F67XX
reg = reg_read(REG_DDR3_MR0_ADDR) >> 2;
#else
reg = reg_read(REG_DDR3_MR0_CS_ADDR) >> 2;
#endif
reg = (((reg >> 1) & 0xE) | (reg & 0x1)) & 0xF;
dram_info.cl = ddr3_valid_cl_to_cl(reg);
/* Get target CWL value */
#ifdef MV88F67XX
reg = reg_read(REG_DDR3_MR2_ADDR) >> REG_DDR3_MR2_CWL_OFFS;
#else
reg = reg_read(REG_DDR3_MR2_CS_ADDR) >> REG_DDR3_MR2_CWL_OFFS;
#endif
reg &= REG_DDR3_MR2_CWL_MASK;
dram_info.cwl = reg;
#if !defined(MV88F67XX)
/* A370 has no PBS mechanism */
#if defined(MV88F78X60)
if ((dram_info.target_frequency > DDR_400) && (ddr3_run_pbs))
first_loop_flag = 1;
#else
/* first_loop_flag = 1; skip mid freq at ALP/A375 */
if ((dram_info.target_frequency > DDR_400) && (ddr3_run_pbs) &&
(mv_ctrl_revision_get() >= UMC_A0))
first_loop_flag = 1;
else
first_loop_flag = 0;
#endif
#endif
freq = dram_info.target_frequency;
/* Set ODT to always on */
ddr3_odt_activate(1);
/* Init XOR */
mv_sys_xor_init(&dram_info);
/* Get DRAM/HCLK ratio */
if (reg_read(REG_DDR_IO_ADDR) & (1 << REG_DDR_IO_CLK_RATIO_OFFS))
ratio_2to1 = 1;
/*
* Xor Bypass - ECC support in AXP is currently available for 1:1
* modes frequency modes.
* Not all frequency modes support the ddr3 training sequence
* (Only 1200/300).
* Xor Bypass allows using the Xor initializations and scrubbing
* inside the ddr3 training sequence without running the training
* itself.
*/
if (xor_bypass == 0) {
if (ddr3_run_pbs) {
DEBUG_MAIN_S("DDR3 Training Sequence - Run with PBS.\n");
} else {
DEBUG_MAIN_S("DDR3 Training Sequence - Run without PBS.\n");
}
if (dram_info.target_frequency > DFS_MARGIN) {
tmp_ratio = 0;
freq = DDR_100;
if (dram_info.reg_dimm == 1)
freq = DDR_300;
if (MV_OK != ddr3_dfs_high_2_low(freq, &dram_info)) {
/* Set low - 100Mhz DDR Frequency by HW */
DEBUG_MAIN_S("DDR3 Training Sequence - FAILED (Dfs High2Low)\n");
return MV_DDR3_TRAINING_ERR_DFS_H2L;
}
if ((dram_info.reg_dimm == 1) &&
(reg_dimm_skip_wl == 0)) {
if (MV_OK !=
ddr3_write_leveling_hw_reg_dimm(freq,
&dram_info))
DEBUG_MAIN_S("DDR3 Training Sequence - Registered DIMM Low WL - SKIP\n");
}
if (ddr3_get_log_level() >= MV_LOG_LEVEL_1)
ddr3_print_freq(freq);
if (debug_mode)
DEBUG_MAIN_S("DDR3 Training Sequence - DEBUG - 2\n");
} else {
if (!dqs_clk_aligned) {
#ifdef MV88F67XX
/*
* If running training sequence without DFS,
* we must run Write leveling before writing
* the patterns
*/
/*
* ODT - Multi CS system use SW WL,
* Single CS System use HW WL
*/
if (dram_info.cs_ena > 1) {
if (MV_OK !=
ddr3_write_leveling_sw(
freq, tmp_ratio,
&dram_info)) {
DEBUG_MAIN_S("DDR3 Training Sequence - FAILED (Write Leveling Sw)\n");
return MV_DDR3_TRAINING_ERR_WR_LVL_SW;
}
} else {
if (MV_OK !=
ddr3_write_leveling_hw(freq,
&dram_info)) {
DEBUG_MAIN_S("DDR3 Training Sequence - FAILED (Write Leveling Hw)\n");
return MV_DDR3_TRAINING_ERR_WR_LVL_HW;
}
}
#else
if (MV_OK != ddr3_write_leveling_hw(
freq, &dram_info)) {
DEBUG_MAIN_S("DDR3 Training Sequence - FAILED (Write Leveling Hw)\n");
if (ddr3_sw_wl_rl_debug) {
if (MV_OK !=
ddr3_write_leveling_sw(
freq, tmp_ratio,
&dram_info)) {
DEBUG_MAIN_S("DDR3 Training Sequence - FAILED (Write Leveling Sw)\n");
return MV_DDR3_TRAINING_ERR_WR_LVL_SW;
}
} else {
return MV_DDR3_TRAINING_ERR_WR_LVL_HW;
}
}
#endif
}
if (debug_mode)
DEBUG_MAIN_S("DDR3 Training Sequence - DEBUG - 3\n");
}
if (MV_OK != ddr3_load_patterns(&dram_info, 0)) {
DEBUG_MAIN_S("DDR3 Training Sequence - FAILED (Loading Patterns)\n");
return MV_DDR3_TRAINING_ERR_LOAD_PATTERNS;
}
/*
* TODO:
* The mainline U-Boot port of the bin_hdr DDR training code
* needs a delay of minimum 20ms here (10ms is a bit too short
* and the CPU hangs). The bin_hdr code doesn't have this delay.
* To be save here, lets add a delay of 50ms here.
*
* Tested on the Marvell DB-MV784MP-GP board
*/
mdelay(50);
do {
freq = dram_info.target_frequency;
tmp_ratio = ratio_2to1;
DEBUG_MAIN_FULL_S("DDR3 Training Sequence - DEBUG - 4\n");
#if defined(MV88F78X60)
/*
* There is a difference on the DFS frequency at the
* first iteration of this loop
*/
if (first_loop_flag) {
freq = DDR_400;
tmp_ratio = 0;
}
#endif
if (MV_OK != ddr3_dfs_low_2_high(freq, tmp_ratio,
&dram_info)) {
DEBUG_MAIN_S("DDR3 Training Sequence - FAILED (Dfs Low2High)\n");
return MV_DDR3_TRAINING_ERR_DFS_H2L;
}
if (ddr3_get_log_level() >= MV_LOG_LEVEL_1) {
ddr3_print_freq(freq);
}
if (debug_mode)
DEBUG_MAIN_S("DDR3 Training Sequence - DEBUG - 5\n");
/* Write leveling */
if (!dqs_clk_aligned) {
#ifdef MV88F67XX
/*
* ODT - Multi CS system that not support Multi
* CS MRS commands must use SW WL
*/
if (dram_info.cs_ena > 1) {
if (MV_OK != ddr3_write_leveling_sw(
freq, tmp_ratio, &dram_info)) {
DEBUG_MAIN_S("DDR3 Training Sequence - FAILED (Write Leveling Sw)\n");
return MV_DDR3_TRAINING_ERR_WR_LVL_SW;
}
} else {
if (MV_OK != ddr3_write_leveling_hw(
freq, &dram_info)) {
DEBUG_MAIN_S("DDR3 Training Sequence - FAILED (Write Leveling Hw)\n");
return MV_DDR3_TRAINING_ERR_WR_LVL_HW;
}
}
#else
if ((dram_info.reg_dimm == 1) &&
(freq == DDR_400)) {
if (reg_dimm_skip_wl == 0) {
if (MV_OK != ddr3_write_leveling_hw_reg_dimm(
freq, &dram_info))
DEBUG_MAIN_S("DDR3 Training Sequence - Registered DIMM WL - SKIP\n");
}
} else {
if (MV_OK != ddr3_write_leveling_hw(
freq, &dram_info)) {
DEBUG_MAIN_S("DDR3 Training Sequence - FAILED (Write Leveling Hw)\n");
if (ddr3_sw_wl_rl_debug) {
if (MV_OK != ddr3_write_leveling_sw(
freq, tmp_ratio, &dram_info)) {
DEBUG_MAIN_S("DDR3 Training Sequence - FAILED (Write Leveling Sw)\n");
return MV_DDR3_TRAINING_ERR_WR_LVL_SW;
}
} else {
return MV_DDR3_TRAINING_ERR_WR_LVL_HW;
}
}
}
#endif
if (debug_mode)
DEBUG_MAIN_S
("DDR3 Training Sequence - DEBUG - 6\n");
}
/* Read Leveling */
/*
* Armada 370 - Support for HCLK @ 400MHZ - must use
* SW read leveling
*/
if (freq == DDR_400 && dram_info.rl400_bug) {
status = ddr3_read_leveling_sw(freq, tmp_ratio,
&dram_info);
if (MV_OK != status) {
DEBUG_MAIN_S
("DDR3 Training Sequence - FAILED (Read Leveling Sw)\n");
return status;
}
} else {
if (MV_OK != ddr3_read_leveling_hw(
freq, &dram_info)) {
DEBUG_MAIN_S("DDR3 Training Sequence - FAILED (Read Leveling Hw)\n");
if (ddr3_sw_wl_rl_debug) {
if (MV_OK != ddr3_read_leveling_sw(
freq, tmp_ratio,
&dram_info)) {
DEBUG_MAIN_S("DDR3 Training Sequence - FAILED (Read Leveling Sw)\n");
return MV_DDR3_TRAINING_ERR_WR_LVL_SW;
}
} else {
return MV_DDR3_TRAINING_ERR_WR_LVL_HW;
}
}
}
if (debug_mode)
DEBUG_MAIN_S("DDR3 Training Sequence - DEBUG - 7\n");
if (MV_OK != ddr3_wl_supplement(&dram_info)) {
DEBUG_MAIN_S("DDR3 Training Sequence - FAILED (Write Leveling Hi-Freq Sup)\n");
return MV_DDR3_TRAINING_ERR_WR_LVL_HI_FREQ;
}
if (debug_mode)
DEBUG_MAIN_S("DDR3 Training Sequence - DEBUG - 8\n");
#if !defined(MV88F67XX)
/* A370 has no PBS mechanism */
#if defined(MV88F78X60) || defined(MV88F672X)
if (first_loop_flag == 1) {
first_loop_flag = 0;
status = MV_OK;
status = ddr3_pbs_rx(&dram_info);
if (MV_OK != status) {
DEBUG_MAIN_S("DDR3 Training Sequence - FAILED (PBS RX)\n");
return status;
}
if (debug_mode)
DEBUG_MAIN_S("DDR3 Training Sequence - DEBUG - 9\n");
status = ddr3_pbs_tx(&dram_info);
if (MV_OK != status) {
DEBUG_MAIN_S("DDR3 Training Sequence - FAILED (PBS TX)\n");
return status;
}
if (debug_mode)
DEBUG_MAIN_S("DDR3 Training Sequence - DEBUG - 10\n");
}
#endif
#endif
} while (freq != dram_info.target_frequency);
status = ddr3_dqs_centralization_rx(&dram_info);
if (MV_OK != status) {
DEBUG_MAIN_S("DDR3 Training Sequence - FAILED (DQS Centralization RX)\n");
return status;
}
if (debug_mode)
DEBUG_MAIN_S("DDR3 Training Sequence - DEBUG - 11\n");
status = ddr3_dqs_centralization_tx(&dram_info);
if (MV_OK != status) {
DEBUG_MAIN_S("DDR3 Training Sequence - FAILED (DQS Centralization TX)\n");
return status;
}
if (debug_mode)
DEBUG_MAIN_S("DDR3 Training Sequence - DEBUG - 12\n");
}
ddr3_set_performance_params(&dram_info);
if (dram_info.ecc_ena) {
/* Need to SCRUB the DRAM memory area to load U-Boot */
mv_sys_xor_finish();
dram_info.num_cs = 1;
dram_info.cs_ena = 1;
mv_sys_xor_init(&dram_info);
mv_xor_mem_init(0, scrub_offs, scrub_size, 0xdeadbeef,
0xdeadbeef);
/* Wait for previous transfer completion */
while (mv_xor_state_get(0) != MV_IDLE)
;
if (debug_mode)
DEBUG_MAIN_S("DDR3 Training Sequence - DEBUG - 13\n");
}
/* Return XOR State */
mv_sys_xor_finish();
#if defined(MV88F78X60)
/* Save training results in memeory for resume state */
ddr3_save_training(&dram_info);
#endif
/* Clear ODT always on */
ddr3_odt_activate(0);
/* Configure Dynamic read ODT */
ddr3_odt_read_dynamic_config(&dram_info);
return MV_OK;
}
void ddr3_set_performance_params(MV_DRAM_INFO *dram_info)
{
u32 twr2wr, trd2rd, trd2wr_wr2rd;
u32 tmp1, tmp2, reg;
DEBUG_MAIN_FULL_C("Max WL Phase: ", dram_info->wl_max_phase, 2);
DEBUG_MAIN_FULL_C("Min WL Phase: ", dram_info->wl_min_phase, 2);
DEBUG_MAIN_FULL_C("Max RL Phase: ", dram_info->rl_max_phase, 2);
DEBUG_MAIN_FULL_C("Min RL Phase: ", dram_info->rl_min_phase, 2);
if (dram_info->wl_max_phase < 2)
twr2wr = 0x2;
else
twr2wr = 0x3;
trd2rd = 0x1 + (dram_info->rl_max_phase + 1) / 2 +
(dram_info->rl_max_phase + 1) % 2;
tmp1 = (dram_info->rl_max_phase - dram_info->wl_min_phase) / 2 +
(((dram_info->rl_max_phase - dram_info->wl_min_phase) % 2) >
0 ? 1 : 0);
tmp2 = (dram_info->wl_max_phase - dram_info->rl_min_phase) / 2 +
((dram_info->wl_max_phase - dram_info->rl_min_phase) % 2 >
0 ? 1 : 0);
trd2wr_wr2rd = (tmp1 >= tmp2) ? tmp1 : tmp2;
trd2wr_wr2rd += 2;
trd2rd += 2;
twr2wr += 2;
DEBUG_MAIN_FULL_C("WR 2 WR: ", twr2wr, 2);
DEBUG_MAIN_FULL_C("RD 2 RD: ", trd2rd, 2);
DEBUG_MAIN_FULL_C("RD 2 WR / WR 2 RD: ", trd2wr_wr2rd, 2);
reg = reg_read(REG_SDRAM_TIMING_HIGH_ADDR);
reg &= ~(REG_SDRAM_TIMING_H_W2W_MASK << REG_SDRAM_TIMING_H_W2W_OFFS);
reg |= ((twr2wr & REG_SDRAM_TIMING_H_W2W_MASK) <<
REG_SDRAM_TIMING_H_W2W_OFFS);
reg &= ~(REG_SDRAM_TIMING_H_R2R_MASK << REG_SDRAM_TIMING_H_R2R_OFFS);
reg &= ~(REG_SDRAM_TIMING_H_R2R_H_MASK <<
REG_SDRAM_TIMING_H_R2R_H_OFFS);
reg |= ((trd2rd & REG_SDRAM_TIMING_H_R2R_MASK) <<
REG_SDRAM_TIMING_H_R2R_OFFS);
reg |= (((trd2rd >> 2) & REG_SDRAM_TIMING_H_R2R_H_MASK) <<
REG_SDRAM_TIMING_H_R2R_H_OFFS);
reg &= ~(REG_SDRAM_TIMING_H_R2W_W2R_MASK <<
REG_SDRAM_TIMING_H_R2W_W2R_OFFS);
reg &= ~(REG_SDRAM_TIMING_H_R2W_W2R_H_MASK <<
REG_SDRAM_TIMING_H_R2W_W2R_H_OFFS);
reg |= ((trd2wr_wr2rd & REG_SDRAM_TIMING_H_R2W_W2R_MASK) <<
REG_SDRAM_TIMING_H_R2W_W2R_OFFS);
reg |= (((trd2wr_wr2rd >> 2) & REG_SDRAM_TIMING_H_R2W_W2R_H_MASK) <<
REG_SDRAM_TIMING_H_R2W_W2R_H_OFFS);
reg_write(REG_SDRAM_TIMING_HIGH_ADDR, reg);
}
/*
* Perform DDR3 PUP Indirect Write
*/
void ddr3_write_pup_reg(u32 mode, u32 cs, u32 pup, u32 phase, u32 delay)
{
u32 reg = 0;
if (pup == PUP_BC)
reg |= (1 << REG_PHY_BC_OFFS);
else
reg |= (pup << REG_PHY_PUP_OFFS);
reg |= ((0x4 * cs + mode) << REG_PHY_CS_OFFS);
reg |= (phase << REG_PHY_PHASE_OFFS) | delay;
if (mode == PUP_WL_MODE)
reg |= ((INIT_WL_DELAY + delay) << REG_PHY_DQS_REF_DLY_OFFS);
reg_write(REG_PHY_REGISTRY_FILE_ACCESS_ADDR, reg); /* 0x16A0 */
reg |= REG_PHY_REGISTRY_FILE_ACCESS_OP_WR;
reg_write(REG_PHY_REGISTRY_FILE_ACCESS_ADDR, reg); /* 0x16A0 */
do {
reg = reg_read(REG_PHY_REGISTRY_FILE_ACCESS_ADDR) &
REG_PHY_REGISTRY_FILE_ACCESS_OP_DONE;
} while (reg); /* Wait for '0' to mark the end of the transaction */
/* If read Leveling mode - need to write to register 3 separetly */
if (mode == PUP_RL_MODE) {
reg = 0;
if (pup == PUP_BC)
reg |= (1 << REG_PHY_BC_OFFS);
else
reg |= (pup << REG_PHY_PUP_OFFS);
reg |= ((0x4 * cs + mode + 1) << REG_PHY_CS_OFFS);
reg |= (INIT_RL_DELAY);
reg_write(REG_PHY_REGISTRY_FILE_ACCESS_ADDR, reg); /* 0x16A0 */
reg |= REG_PHY_REGISTRY_FILE_ACCESS_OP_WR;
reg_write(REG_PHY_REGISTRY_FILE_ACCESS_ADDR, reg); /* 0x16A0 */
do {
reg = reg_read(REG_PHY_REGISTRY_FILE_ACCESS_ADDR) &
REG_PHY_REGISTRY_FILE_ACCESS_OP_DONE;
} while (reg);
}
}
/*
* Perform DDR3 PUP Indirect Read
*/
u32 ddr3_read_pup_reg(u32 mode, u32 cs, u32 pup)
{
u32 reg;
reg = (pup << REG_PHY_PUP_OFFS) |
((0x4 * cs + mode) << REG_PHY_CS_OFFS);
reg_write(REG_PHY_REGISTRY_FILE_ACCESS_ADDR, reg); /* 0x16A0 */
reg |= REG_PHY_REGISTRY_FILE_ACCESS_OP_RD;
reg_write(REG_PHY_REGISTRY_FILE_ACCESS_ADDR, reg); /* 0x16A0 */
do {
reg = reg_read(REG_PHY_REGISTRY_FILE_ACCESS_ADDR) &
REG_PHY_REGISTRY_FILE_ACCESS_OP_DONE;
} while (reg); /* Wait for '0' to mark the end of the transaction */
return reg_read(REG_PHY_REGISTRY_FILE_ACCESS_ADDR); /* 0x16A0 */
}
/*
* Set training patterns
*/
int ddr3_load_patterns(MV_DRAM_INFO *dram_info, int resume)
{
u32 reg;
/* Enable SW override - Required for the ECC Pup */
reg = reg_read(REG_DRAM_TRAINING_2_ADDR) |
(1 << REG_DRAM_TRAINING_2_SW_OVRD_OFFS);
/* [0] = 1 - Enable SW override */
/* 0x15B8 - Training SW 2 Register */
reg_write(REG_DRAM_TRAINING_2_ADDR, reg);
reg = (1 << REG_DRAM_TRAINING_AUTO_OFFS);
reg_write(REG_DRAM_TRAINING_ADDR, reg); /* 0x15B0 - Training Register */
if (resume == 0) {
#if defined(MV88F78X60) || defined(MV88F672X)
ddr3_load_pbs_patterns(dram_info);
#endif
ddr3_load_dqs_patterns(dram_info);
}
/* Disable SW override - Must be in a different stage */
/* [0]=0 - Enable SW override */
reg = reg_read(REG_DRAM_TRAINING_2_ADDR);
reg &= ~(1 << REG_DRAM_TRAINING_2_SW_OVRD_OFFS);
/* 0x15B8 - Training SW 2 Register */
reg_write(REG_DRAM_TRAINING_2_ADDR, reg);
reg = reg_read(REG_DRAM_TRAINING_1_ADDR) |
(1 << REG_DRAM_TRAINING_1_TRNBPOINT_OFFS);
reg_write(REG_DRAM_TRAINING_1_ADDR, reg);
/* Set Base Addr */
#if defined(MV88F67XX)
reg_write(REG_DRAM_TRAINING_PATTERN_BASE_ADDR, 0);
#else
if (resume == 0)
reg_write(REG_DRAM_TRAINING_PATTERN_BASE_ADDR, 0);
else
reg_write(REG_DRAM_TRAINING_PATTERN_BASE_ADDR,
RESUME_RL_PATTERNS_ADDR);
#endif
/* Set Patterns */
if (resume == 0) {
reg = (dram_info->cs_ena << REG_DRAM_TRAINING_CS_OFFS) |
(1 << REG_DRAM_TRAINING_PATTERNS_OFFS);
} else {
reg = (0x1 << REG_DRAM_TRAINING_CS_OFFS) |
(1 << REG_DRAM_TRAINING_PATTERNS_OFFS);
}
reg |= (1 << REG_DRAM_TRAINING_AUTO_OFFS);
reg_write(REG_DRAM_TRAINING_ADDR, reg);
udelay(100);
/* Check if Successful */
if (reg_read(REG_DRAM_TRAINING_ADDR) &
(1 << REG_DRAM_TRAINING_ERROR_OFFS))
return MV_OK;
else
return MV_FAIL;
}
#if !defined(MV88F67XX)
/*
* Name: ddr3_save_training(MV_DRAM_INFO *dram_info)
* Desc: saves the training results to memeory (RL,WL,PBS,Rx/Tx
* Centeralization)
* Args: MV_DRAM_INFO *dram_info
* Notes:
* Returns: None.
*/
void ddr3_save_training(MV_DRAM_INFO *dram_info)
{
u32 val, pup, tmp_cs, cs, i, dq;
u32 crc = 0;
u32 regs = 0;
u32 *sdram_offset = (u32 *)RESUME_TRAINING_VALUES_ADDR;
u32 mode_config[MAX_TRAINING_MODE];
mode_config[DQS_WR_MODE] = PUP_DQS_WR;
mode_config[WL_MODE_] = PUP_WL_MODE;
mode_config[RL_MODE_] = PUP_RL_MODE;
mode_config[DQS_RD_MODE] = PUP_DQS_RD;
mode_config[PBS_TX_DM_MODE] = PUP_PBS_TX_DM;
mode_config[PBS_TX_MODE] = PUP_PBS_TX;
mode_config[PBS_RX_MODE] = PUP_PBS_RX;
/* num of training modes */
for (i = 0; i < MAX_TRAINING_MODE; i++) {
tmp_cs = dram_info->cs_ena;
/* num of CS */
for (cs = 0; cs < MAX_CS; cs++) {
if (tmp_cs & (1 << cs)) {
/* num of PUPs */
for (pup = 0; pup < dram_info->num_of_total_pups;
pup++) {
if (pup == dram_info->num_of_std_pups &&
dram_info->ecc_ena)
pup = ECC_PUP;
if (i == PBS_TX_DM_MODE) {
/*
* Change CS bitmask because
* PBS works only with CS0
*/
tmp_cs = 0x1;
val = ddr3_read_pup_reg(
mode_config[i], CS0, pup);
} else if (i == PBS_TX_MODE ||
i == PBS_RX_MODE) {
/*
* Change CS bitmask because
* PBS works only with CS0
*/
tmp_cs = 0x1;
for (dq = 0; dq <= DQ_NUM;
dq++) {
val = ddr3_read_pup_reg(
mode_config[i] + dq,
CS0,
pup);
(*sdram_offset) = val;
crc += *sdram_offset;
sdram_offset++;
regs++;
}
continue;
} else {
val = ddr3_read_pup_reg(
mode_config[i], cs, pup);
}
*sdram_offset = val;
crc += *sdram_offset;
sdram_offset++;
regs++;
}
}
}
}
*sdram_offset = reg_read(REG_READ_DATA_SAMPLE_DELAYS_ADDR);
crc += *sdram_offset;
sdram_offset++;
regs++;
*sdram_offset = reg_read(REG_READ_DATA_READY_DELAYS_ADDR);
crc += *sdram_offset;
sdram_offset++;
regs++;
sdram_offset = (u32 *)NUM_OF_REGISTER_ADDR;
*sdram_offset = regs;
DEBUG_SUSPEND_RESUME_S("Training Results CheckSum write= ");
DEBUG_SUSPEND_RESUME_D(crc, 8);
DEBUG_SUSPEND_RESUME_S("\n");
sdram_offset = (u32 *)CHECKSUM_RESULT_ADDR;
*sdram_offset = crc;
}
/*
* Name: ddr3_read_training_results()
* Desc: Reads the training results from memeory (RL,WL,PBS,Rx/Tx
* Centeralization)
* and writes them to the relevant registers
* Args: MV_DRAM_INFO *dram_info
* Notes:
* Returns: None.
*/
int ddr3_read_training_results(void)
{
u32 val, reg, idx, dqs_wr_idx = 0, crc = 0;
u32 *sdram_offset = (u32 *)RESUME_TRAINING_VALUES_ADDR;
u32 training_val[RESUME_TRAINING_VALUES_MAX] = { 0 };
u32 regs = *((u32 *)NUM_OF_REGISTER_ADDR);
/*
* Read Training results & Dunit registers from memory and write
* it to an array
*/
for (idx = 0; idx < regs; idx++) {
training_val[idx] = *sdram_offset;
crc += *sdram_offset;
sdram_offset++;
}
sdram_offset = (u32 *)CHECKSUM_RESULT_ADDR;
if ((*sdram_offset) == crc) {
DEBUG_SUSPEND_RESUME_S("Training Results CheckSum read PASS= ");
DEBUG_SUSPEND_RESUME_D(crc, 8);
DEBUG_SUSPEND_RESUME_S("\n");
} else {
DEBUG_MAIN_S("Wrong Training Results CheckSum\n");
return MV_FAIL;
}
/*
* We iterate through all the registers except for the last 2 since
* they are Dunit registers (and not PHY registers)
*/
for (idx = 0; idx < (regs - 2); idx++) {
val = training_val[idx];
reg = (val >> REG_PHY_CS_OFFS) & 0x3F; /*read the phy address */
/* Check if the values belongs to the DQS WR */
if (reg == PUP_WL_MODE) {
/* bit[5:0] in DQS_WR are delay */
val = (training_val[dqs_wr_idx++] & 0x3F);
/*
* bit[15:10] are DQS_WR delay & bit[9:0] are
* WL phase & delay
*/
val = (val << REG_PHY_DQS_REF_DLY_OFFS) |
(training_val[idx] & 0x3C003FF);
/* Add Request pending and write operation bits */
val |= REG_PHY_REGISTRY_FILE_ACCESS_OP_WR;
} else if (reg == PUP_DQS_WR) {
/*
* Do nothing since DQS_WR will be done in PUP_WL_MODE
*/
continue;
}
val |= REG_PHY_REGISTRY_FILE_ACCESS_OP_WR;
reg_write(REG_PHY_REGISTRY_FILE_ACCESS_ADDR, val);
do {
val = (reg_read(REG_PHY_REGISTRY_FILE_ACCESS_ADDR)) &
REG_PHY_REGISTRY_FILE_ACCESS_OP_DONE;
} while (val); /* Wait for '0' to mark the end of the transaction */
}
/* write last 2 Dunit configurations */
val = training_val[idx];
reg_write(REG_READ_DATA_SAMPLE_DELAYS_ADDR, val); /* reg 0x1538 */
val = training_val[idx + 1];
reg_write(REG_READ_DATA_READY_DELAYS_ADDR, val); /* reg 0x153c */
return MV_OK;
}
/*
* Name: ddr3_check_if_resume_mode()
* Desc: Reads the address (0x3000) of the Resume Magic word (0xDEADB002)
* Args: MV_DRAM_INFO *dram_info
* Notes:
* Returns: return (magic_word == SUSPEND_MAGIC_WORD)
*/
int ddr3_check_if_resume_mode(MV_DRAM_INFO *dram_info, u32 freq)
{
u32 magic_word;
u32 *sdram_offset = (u32 *)BOOT_INFO_ADDR;
if (dram_info->reg_dimm != 1) {
/*
* Perform write levleling in order initiate the phy with
* low frequency
*/
if (MV_OK != ddr3_write_leveling_hw(freq, dram_info)) {
DEBUG_MAIN_S("DDR3 Training Sequence - FAILED (Write Leveling Hw)\n");
return MV_DDR3_TRAINING_ERR_WR_LVL_HW;
}
}
if (MV_OK != ddr3_load_patterns(dram_info, 1)) {
DEBUG_MAIN_S("DDR3 Training Sequence - FAILED (Loading Patterns)\n");
return MV_DDR3_TRAINING_ERR_LOAD_PATTERNS;
}
/* Enable CS0 only for RL */
dram_info->cs_ena = 0x1;
/* Perform Read levleling in order to get stable memory */
if (MV_OK != ddr3_read_leveling_hw(freq, dram_info)) {
DEBUG_MAIN_S("DDR3 Training Sequence - FAILED (Read Leveling Hw)\n");
return MV_DDR3_TRAINING_ERR_WR_LVL_HW;
}
/* Back to relevant CS */
dram_info->cs_ena = ddr3_get_cs_ena_from_reg();
magic_word = *sdram_offset;
return magic_word == SUSPEND_MAGIC_WORD;
}
/*
* Name: ddr3_training_suspend_resume()
* Desc: Execute the Resume state
* Args: MV_DRAM_INFO *dram_info
* Notes:
* Returns: return (magic_word == SUSPEND_MAGIC_WORD)
*/
int ddr3_training_suspend_resume(MV_DRAM_INFO *dram_info)
{
u32 freq, reg;
int tmp_ratio;
/* Configure DDR */
if (MV_OK != ddr3_read_training_results())
return MV_FAIL;
/* Reset read FIFO */
reg = reg_read(REG_DRAM_TRAINING_ADDR);
/* Start Auto Read Leveling procedure */
reg |= (1 << REG_DRAM_TRAINING_RL_OFFS);
reg_write(REG_DRAM_TRAINING_ADDR, reg); /* 0x15B0 - Training Register */
reg = reg_read(REG_DRAM_TRAINING_2_ADDR);
reg |= ((1 << REG_DRAM_TRAINING_2_FIFO_RST_OFFS) +
(1 << REG_DRAM_TRAINING_2_SW_OVRD_OFFS));
/* [0] = 1 - Enable SW override, [4] = 1 - FIFO reset */
/* 0x15B8 - Training SW 2 Register */
reg_write(REG_DRAM_TRAINING_2_ADDR, reg);
udelay(2);
reg = reg_read(REG_DRAM_TRAINING_ADDR);
/* Clear Auto Read Leveling procedure */
reg &= ~(1 << REG_DRAM_TRAINING_RL_OFFS);
reg_write(REG_DRAM_TRAINING_ADDR, reg); /* 0x15B0 - Training Register */
/* Return to target frequency */
freq = dram_info->target_frequency;
tmp_ratio = 1;
if (MV_OK != ddr3_dfs_low_2_high(freq, tmp_ratio, dram_info)) {
DEBUG_MAIN_S("DDR3 Training Sequence - FAILED (Dfs Low2High)\n");
return MV_DDR3_TRAINING_ERR_DFS_H2L;
}
if (dram_info->ecc_ena) {
/* Scabbling the RL area pattern and the training area */
mv_sys_xor_finish();
dram_info->num_cs = 1;
dram_info->cs_ena = 1;
mv_sys_xor_init(dram_info);
mv_xor_mem_init(0, RESUME_RL_PATTERNS_ADDR,
RESUME_RL_PATTERNS_SIZE, 0xFFFFFFFF, 0xFFFFFFFF);
/* Wait for previous transfer completion */
while (mv_xor_state_get(0) != MV_IDLE)
;
/* Return XOR State */
mv_sys_xor_finish();
}
return MV_OK;
}
#endif
void ddr3_print_freq(u32 freq)
{
u32 tmp_freq;
switch (freq) {
case 0:
tmp_freq = 100;
break;
case 1:
tmp_freq = 300;
break;
case 2:
tmp_freq = 360;
break;
case 3:
tmp_freq = 400;
break;
case 4:
tmp_freq = 444;
break;
case 5:
tmp_freq = 500;
break;
case 6:
tmp_freq = 533;
break;
case 7:
tmp_freq = 600;
break;
case 8:
tmp_freq = 666;
break;
case 9:
tmp_freq = 720;
break;
case 10:
tmp_freq = 800;
break;
default:
tmp_freq = 100;
}
printf("Current frequency is: %dMHz\n", tmp_freq);
}
int ddr3_get_min_max_read_sample_delay(u32 cs_enable, u32 reg, u32 *min,
u32 *max, u32 *cs_max)
{
u32 cs, delay;
*min = 0xFFFFFFFF;
*max = 0x0;
for (cs = 0; cs < MAX_CS; cs++) {
if ((cs_enable & (1 << cs)) == 0)
continue;
delay = ((reg >> (cs * 8)) & 0x1F);
if (delay < *min)
*min = delay;
if (delay > *max) {
*max = delay;
*cs_max = cs;
}
}
return MV_OK;
}
int ddr3_get_min_max_rl_phase(MV_DRAM_INFO *dram_info, u32 *min, u32 *max,
u32 cs)
{
u32 pup, reg, phase;
*min = 0xFFFFFFFF;
*max = 0x0;
for (pup = 0; pup < dram_info->num_of_total_pups; pup++) {
reg = ddr3_read_pup_reg(PUP_RL_MODE, cs, pup);
phase = ((reg >> 8) & 0x7);
if (phase < *min)
*min = phase;
if (phase > *max)
*max = phase;
}
return MV_OK;
}
int ddr3_odt_activate(int activate)
{
u32 reg, mask;
mask = (1 << REG_DUNIT_ODT_CTRL_OVRD_OFFS) |
(1 << REG_DUNIT_ODT_CTRL_OVRD_VAL_OFFS);
/* {0x0000149C} - DDR Dunit ODT Control Register */
reg = reg_read(REG_DUNIT_ODT_CTRL_ADDR);
if (activate)
reg |= mask;
else
reg &= ~mask;
reg_write(REG_DUNIT_ODT_CTRL_ADDR, reg);
return MV_OK;
}
int ddr3_odt_read_dynamic_config(MV_DRAM_INFO *dram_info)
{
u32 min_read_sample_delay, max_read_sample_delay, max_rl_phase;
u32 min, max, cs_max;
u32 cs_ena, reg;
reg = reg_read(REG_READ_DATA_SAMPLE_DELAYS_ADDR);
cs_ena = ddr3_get_cs_ena_from_reg();
/* Get minimum and maximum of read sample delay of all CS */
ddr3_get_min_max_read_sample_delay(cs_ena, reg, &min_read_sample_delay,
&max_read_sample_delay, &cs_max);
/*
* Get minimum and maximum read leveling phase which belongs to the
* maximal read sample delay
*/
ddr3_get_min_max_rl_phase(dram_info, &min, &max, cs_max);
max_rl_phase = max;
/* DDR ODT Timing (Low) Register calculation */
reg = reg_read(REG_ODT_TIME_LOW_ADDR);
reg &= ~(0x1FF << REG_ODT_ON_CTL_RD_OFFS);
reg |= (((min_read_sample_delay - 1) & 0xF) << REG_ODT_ON_CTL_RD_OFFS);
reg |= (((max_read_sample_delay + 4 + (((max_rl_phase + 1) / 2) + 1)) &
0x1F) << REG_ODT_OFF_CTL_RD_OFFS);
reg_write(REG_ODT_TIME_LOW_ADDR, reg);
return MV_OK;
}