mirror of
https://github.com/AsahiLinux/u-boot
synced 2024-11-14 08:57:58 +00:00
e97943b732
Although it isn't known what bit 0 in PHY reg 8 does, it's obvious that
it has to be set before read calibration and cleared afterwards. This is
already done for first rank, but not for second (copy & paste error.)
Fix it.
Fixes: f4317dbd06
("sunxi: Add H616 DRAM support")
Signed-off-by: Jernej Skrabec <jernej.skrabec@gmail.com>
Reviewed-by: Andre Przywara <andre.przywara@arm.com>
Signed-off-by: Andre Przywara <andre.przywara@arm.com>
1023 lines
27 KiB
C
1023 lines
27 KiB
C
// SPDX-License-Identifier: GPL-2.0+
|
|
/*
|
|
* sun50i H616 platform dram controller driver
|
|
*
|
|
* While controller is very similar to that in H6, PHY is completely
|
|
* unknown. That's why this driver has plenty of magic numbers. Some
|
|
* meaning was nevertheless deduced from strings found in boot0 and
|
|
* known meaning of some dram parameters.
|
|
* This driver only supports DDR3 memory and omits logic for all
|
|
* other supported types supported by hardware.
|
|
*
|
|
* (C) Copyright 2020 Jernej Skrabec <jernej.skrabec@siol.net>
|
|
*
|
|
*/
|
|
#include <common.h>
|
|
#include <init.h>
|
|
#include <log.h>
|
|
#include <asm/io.h>
|
|
#include <asm/arch/clock.h>
|
|
#include <asm/arch/dram.h>
|
|
#include <asm/arch/cpu.h>
|
|
#include <linux/bitops.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/kconfig.h>
|
|
|
|
enum {
|
|
MBUS_QOS_LOWEST = 0,
|
|
MBUS_QOS_LOW,
|
|
MBUS_QOS_HIGH,
|
|
MBUS_QOS_HIGHEST
|
|
};
|
|
|
|
inline void mbus_configure_port(u8 port,
|
|
bool bwlimit,
|
|
bool priority,
|
|
u8 qos,
|
|
u8 waittime,
|
|
u8 acs,
|
|
u16 bwl0,
|
|
u16 bwl1,
|
|
u16 bwl2)
|
|
{
|
|
struct sunxi_mctl_com_reg * const mctl_com =
|
|
(struct sunxi_mctl_com_reg *)SUNXI_DRAM_COM_BASE;
|
|
|
|
const u32 cfg0 = ( (bwlimit ? (1 << 0) : 0)
|
|
| (priority ? (1 << 1) : 0)
|
|
| ((qos & 0x3) << 2)
|
|
| ((waittime & 0xf) << 4)
|
|
| ((acs & 0xff) << 8)
|
|
| (bwl0 << 16) );
|
|
const u32 cfg1 = ((u32)bwl2 << 16) | (bwl1 & 0xffff);
|
|
|
|
debug("MBUS port %d cfg0 %08x cfg1 %08x\n", port, cfg0, cfg1);
|
|
writel_relaxed(cfg0, &mctl_com->master[port].cfg0);
|
|
writel_relaxed(cfg1, &mctl_com->master[port].cfg1);
|
|
}
|
|
|
|
#define MBUS_CONF(port, bwlimit, qos, acs, bwl0, bwl1, bwl2) \
|
|
mbus_configure_port(port, bwlimit, false, \
|
|
MBUS_QOS_ ## qos, 0, acs, bwl0, bwl1, bwl2)
|
|
|
|
static void mctl_set_master_priority(void)
|
|
{
|
|
struct sunxi_mctl_com_reg * const mctl_com =
|
|
(struct sunxi_mctl_com_reg *)SUNXI_DRAM_COM_BASE;
|
|
|
|
/* enable bandwidth limit windows and set windows size 1us */
|
|
writel(399, &mctl_com->tmr);
|
|
writel(BIT(16), &mctl_com->bwcr);
|
|
|
|
MBUS_CONF( 0, true, HIGHEST, 0, 256, 128, 100);
|
|
MBUS_CONF( 1, true, HIGH, 0, 1536, 1400, 256);
|
|
MBUS_CONF( 2, true, HIGHEST, 0, 512, 256, 96);
|
|
MBUS_CONF( 3, true, HIGH, 0, 256, 100, 80);
|
|
MBUS_CONF( 4, true, HIGH, 2, 8192, 5500, 5000);
|
|
MBUS_CONF( 5, true, HIGH, 2, 100, 64, 32);
|
|
MBUS_CONF( 6, true, HIGH, 2, 100, 64, 32);
|
|
MBUS_CONF( 8, true, HIGH, 0, 256, 128, 64);
|
|
MBUS_CONF(11, true, HIGH, 0, 256, 128, 100);
|
|
MBUS_CONF(14, true, HIGH, 0, 1024, 256, 64);
|
|
MBUS_CONF(16, true, HIGHEST, 6, 8192, 2800, 2400);
|
|
MBUS_CONF(21, true, HIGHEST, 6, 2048, 768, 512);
|
|
MBUS_CONF(25, true, HIGHEST, 0, 100, 64, 32);
|
|
MBUS_CONF(26, true, HIGH, 2, 8192, 5500, 5000);
|
|
MBUS_CONF(37, true, HIGH, 0, 256, 128, 64);
|
|
MBUS_CONF(38, true, HIGH, 2, 100, 64, 32);
|
|
MBUS_CONF(39, true, HIGH, 2, 8192, 5500, 5000);
|
|
MBUS_CONF(40, true, HIGH, 2, 100, 64, 32);
|
|
|
|
dmb();
|
|
}
|
|
|
|
static void mctl_sys_init(struct dram_para *para)
|
|
{
|
|
struct sunxi_ccm_reg * const ccm =
|
|
(struct sunxi_ccm_reg *)SUNXI_CCM_BASE;
|
|
struct sunxi_mctl_com_reg * const mctl_com =
|
|
(struct sunxi_mctl_com_reg *)SUNXI_DRAM_COM_BASE;
|
|
struct sunxi_mctl_ctl_reg * const mctl_ctl =
|
|
(struct sunxi_mctl_ctl_reg *)SUNXI_DRAM_CTL0_BASE;
|
|
|
|
/* Put all DRAM-related blocks to reset state */
|
|
clrbits_le32(&ccm->mbus_cfg, MBUS_ENABLE);
|
|
clrbits_le32(&ccm->mbus_cfg, MBUS_RESET);
|
|
clrbits_le32(&ccm->dram_gate_reset, BIT(GATE_SHIFT));
|
|
udelay(5);
|
|
clrbits_le32(&ccm->dram_gate_reset, BIT(RESET_SHIFT));
|
|
clrbits_le32(&ccm->pll5_cfg, CCM_PLL5_CTRL_EN);
|
|
clrbits_le32(&ccm->dram_clk_cfg, DRAM_MOD_RESET);
|
|
|
|
udelay(5);
|
|
|
|
/* Set PLL5 rate to doubled DRAM clock rate */
|
|
writel(CCM_PLL5_CTRL_EN | CCM_PLL5_LOCK_EN | CCM_PLL5_OUT_EN |
|
|
CCM_PLL5_CTRL_N(para->clk * 2 / 24), &ccm->pll5_cfg);
|
|
mctl_await_completion(&ccm->pll5_cfg, CCM_PLL5_LOCK, CCM_PLL5_LOCK);
|
|
|
|
/* Configure DRAM mod clock */
|
|
writel(DRAM_CLK_SRC_PLL5, &ccm->dram_clk_cfg);
|
|
writel(BIT(RESET_SHIFT), &ccm->dram_gate_reset);
|
|
udelay(5);
|
|
setbits_le32(&ccm->dram_gate_reset, BIT(GATE_SHIFT));
|
|
|
|
/* Disable all channels */
|
|
writel(0, &mctl_com->maer0);
|
|
writel(0, &mctl_com->maer1);
|
|
writel(0, &mctl_com->maer2);
|
|
|
|
/* Configure MBUS and enable DRAM mod reset */
|
|
setbits_le32(&ccm->mbus_cfg, MBUS_RESET);
|
|
setbits_le32(&ccm->mbus_cfg, MBUS_ENABLE);
|
|
|
|
clrbits_le32(&mctl_com->unk_0x500, BIT(25));
|
|
|
|
setbits_le32(&ccm->dram_clk_cfg, DRAM_MOD_RESET);
|
|
udelay(5);
|
|
|
|
/* Unknown hack, which enables access of mctl_ctl regs */
|
|
writel(0x8000, &mctl_ctl->clken);
|
|
}
|
|
|
|
static void mctl_set_addrmap(struct dram_para *para)
|
|
{
|
|
struct sunxi_mctl_ctl_reg * const mctl_ctl =
|
|
(struct sunxi_mctl_ctl_reg *)SUNXI_DRAM_CTL0_BASE;
|
|
u8 cols = para->cols;
|
|
u8 rows = para->rows;
|
|
u8 ranks = para->ranks;
|
|
|
|
if (!para->bus_full_width)
|
|
cols -= 1;
|
|
|
|
/* Ranks */
|
|
if (ranks == 2)
|
|
mctl_ctl->addrmap[0] = rows + cols - 3;
|
|
else
|
|
mctl_ctl->addrmap[0] = 0x1F;
|
|
|
|
/* Banks, hardcoded to 8 banks now */
|
|
mctl_ctl->addrmap[1] = (cols - 2) | (cols - 2) << 8 | (cols - 2) << 16;
|
|
|
|
/* Columns */
|
|
mctl_ctl->addrmap[2] = 0;
|
|
switch (cols) {
|
|
case 7:
|
|
mctl_ctl->addrmap[3] = 0x1F1F1F00;
|
|
mctl_ctl->addrmap[4] = 0x1F1F;
|
|
break;
|
|
case 8:
|
|
mctl_ctl->addrmap[3] = 0x1F1F0000;
|
|
mctl_ctl->addrmap[4] = 0x1F1F;
|
|
break;
|
|
case 9:
|
|
mctl_ctl->addrmap[3] = 0x1F000000;
|
|
mctl_ctl->addrmap[4] = 0x1F1F;
|
|
break;
|
|
case 10:
|
|
mctl_ctl->addrmap[3] = 0;
|
|
mctl_ctl->addrmap[4] = 0x1F1F;
|
|
break;
|
|
case 11:
|
|
mctl_ctl->addrmap[3] = 0;
|
|
mctl_ctl->addrmap[4] = 0x1F00;
|
|
break;
|
|
case 12:
|
|
mctl_ctl->addrmap[3] = 0;
|
|
mctl_ctl->addrmap[4] = 0;
|
|
break;
|
|
default:
|
|
panic("Unsupported DRAM configuration: column number invalid\n");
|
|
}
|
|
|
|
/* Rows */
|
|
mctl_ctl->addrmap[5] = (cols - 3) | ((cols - 3) << 8) | ((cols - 3) << 16) | ((cols - 3) << 24);
|
|
switch (rows) {
|
|
case 13:
|
|
mctl_ctl->addrmap[6] = (cols - 3) | 0x0F0F0F00;
|
|
mctl_ctl->addrmap[7] = 0x0F0F;
|
|
break;
|
|
case 14:
|
|
mctl_ctl->addrmap[6] = (cols - 3) | ((cols - 3) << 8) | 0x0F0F0000;
|
|
mctl_ctl->addrmap[7] = 0x0F0F;
|
|
break;
|
|
case 15:
|
|
mctl_ctl->addrmap[6] = (cols - 3) | ((cols - 3) << 8) | ((cols - 3) << 16) | 0x0F000000;
|
|
mctl_ctl->addrmap[7] = 0x0F0F;
|
|
break;
|
|
case 16:
|
|
mctl_ctl->addrmap[6] = (cols - 3) | ((cols - 3) << 8) | ((cols - 3) << 16) | ((cols - 3) << 24);
|
|
mctl_ctl->addrmap[7] = 0x0F0F;
|
|
break;
|
|
case 17:
|
|
mctl_ctl->addrmap[6] = (cols - 3) | ((cols - 3) << 8) | ((cols - 3) << 16) | ((cols - 3) << 24);
|
|
mctl_ctl->addrmap[7] = (cols - 3) | 0x0F00;
|
|
break;
|
|
case 18:
|
|
mctl_ctl->addrmap[6] = (cols - 3) | ((cols - 3) << 8) | ((cols - 3) << 16) | ((cols - 3) << 24);
|
|
mctl_ctl->addrmap[7] = (cols - 3) | ((cols - 3) << 8);
|
|
break;
|
|
default:
|
|
panic("Unsupported DRAM configuration: row number invalid\n");
|
|
}
|
|
|
|
/* Bank groups, DDR4 only */
|
|
mctl_ctl->addrmap[8] = 0x3F3F;
|
|
}
|
|
|
|
static const u8 phy_init[] = {
|
|
0x07, 0x0b, 0x02, 0x16, 0x0d, 0x0e, 0x14, 0x19,
|
|
0x0a, 0x15, 0x03, 0x13, 0x04, 0x0c, 0x10, 0x06,
|
|
0x0f, 0x11, 0x1a, 0x01, 0x12, 0x17, 0x00, 0x08,
|
|
0x09, 0x05, 0x18
|
|
};
|
|
|
|
static void mctl_phy_configure_odt(void)
|
|
{
|
|
writel_relaxed(0xe, SUNXI_DRAM_PHY0_BASE + 0x388);
|
|
writel_relaxed(0xe, SUNXI_DRAM_PHY0_BASE + 0x38c);
|
|
|
|
writel_relaxed(0xe, SUNXI_DRAM_PHY0_BASE + 0x3c8);
|
|
writel_relaxed(0xe, SUNXI_DRAM_PHY0_BASE + 0x3cc);
|
|
|
|
writel_relaxed(0xe, SUNXI_DRAM_PHY0_BASE + 0x408);
|
|
writel_relaxed(0xe, SUNXI_DRAM_PHY0_BASE + 0x40c);
|
|
|
|
writel_relaxed(0xe, SUNXI_DRAM_PHY0_BASE + 0x448);
|
|
writel_relaxed(0xe, SUNXI_DRAM_PHY0_BASE + 0x44c);
|
|
|
|
writel_relaxed(0xe, SUNXI_DRAM_PHY0_BASE + 0x340);
|
|
writel_relaxed(0xe, SUNXI_DRAM_PHY0_BASE + 0x344);
|
|
|
|
writel_relaxed(0xe, SUNXI_DRAM_PHY0_BASE + 0x348);
|
|
writel_relaxed(0xe, SUNXI_DRAM_PHY0_BASE + 0x34c);
|
|
|
|
writel_relaxed(0x8, SUNXI_DRAM_PHY0_BASE + 0x380);
|
|
writel_relaxed(0x8, SUNXI_DRAM_PHY0_BASE + 0x384);
|
|
|
|
writel_relaxed(0x8, SUNXI_DRAM_PHY0_BASE + 0x3c0);
|
|
writel_relaxed(0x8, SUNXI_DRAM_PHY0_BASE + 0x3c4);
|
|
|
|
writel_relaxed(0x8, SUNXI_DRAM_PHY0_BASE + 0x400);
|
|
writel_relaxed(0x8, SUNXI_DRAM_PHY0_BASE + 0x404);
|
|
|
|
writel_relaxed(0x8, SUNXI_DRAM_PHY0_BASE + 0x440);
|
|
writel_relaxed(0x8, SUNXI_DRAM_PHY0_BASE + 0x444);
|
|
|
|
dmb();
|
|
}
|
|
|
|
static bool mctl_phy_write_leveling(struct dram_para *para)
|
|
{
|
|
bool result = true;
|
|
u32 val;
|
|
|
|
clrsetbits_le32(SUNXI_DRAM_PHY0_BASE + 8, 0xc0, 0x80);
|
|
writel(4, SUNXI_DRAM_PHY0_BASE + 0xc);
|
|
writel(0x40, SUNXI_DRAM_PHY0_BASE + 0x10);
|
|
|
|
setbits_le32(SUNXI_DRAM_PHY0_BASE + 8, 4);
|
|
|
|
if (para->bus_full_width)
|
|
val = 0xf;
|
|
else
|
|
val = 3;
|
|
|
|
mctl_await_completion((u32*)(SUNXI_DRAM_PHY0_BASE + 0x188), val, val);
|
|
|
|
clrbits_le32(SUNXI_DRAM_PHY0_BASE + 8, 4);
|
|
|
|
val = readl(SUNXI_DRAM_PHY0_BASE + 0x258);
|
|
if (val == 0 || val == 0x3f)
|
|
result = false;
|
|
val = readl(SUNXI_DRAM_PHY0_BASE + 0x25c);
|
|
if (val == 0 || val == 0x3f)
|
|
result = false;
|
|
val = readl(SUNXI_DRAM_PHY0_BASE + 0x318);
|
|
if (val == 0 || val == 0x3f)
|
|
result = false;
|
|
val = readl(SUNXI_DRAM_PHY0_BASE + 0x31c);
|
|
if (val == 0 || val == 0x3f)
|
|
result = false;
|
|
|
|
clrbits_le32(SUNXI_DRAM_PHY0_BASE + 8, 0xc0);
|
|
|
|
if (para->ranks == 2) {
|
|
clrsetbits_le32(SUNXI_DRAM_PHY0_BASE + 8, 0xc0, 0x40);
|
|
|
|
setbits_le32(SUNXI_DRAM_PHY0_BASE + 8, 4);
|
|
|
|
if (para->bus_full_width)
|
|
val = 0xf;
|
|
else
|
|
val = 3;
|
|
|
|
mctl_await_completion((u32*)(SUNXI_DRAM_PHY0_BASE + 0x188), val, val);
|
|
|
|
clrbits_le32(SUNXI_DRAM_PHY0_BASE + 8, 4);
|
|
}
|
|
|
|
clrbits_le32(SUNXI_DRAM_PHY0_BASE + 8, 0xc0);
|
|
|
|
return result;
|
|
}
|
|
|
|
static bool mctl_phy_read_calibration(struct dram_para *para)
|
|
{
|
|
bool result = true;
|
|
u32 val, tmp;
|
|
|
|
clrsetbits_le32(SUNXI_DRAM_PHY0_BASE + 8, 0x30, 0x20);
|
|
|
|
setbits_le32(SUNXI_DRAM_PHY0_BASE + 8, 1);
|
|
|
|
if (para->bus_full_width)
|
|
val = 0xf;
|
|
else
|
|
val = 3;
|
|
|
|
while ((readl(SUNXI_DRAM_PHY0_BASE + 0x184) & val) != val) {
|
|
if (readl(SUNXI_DRAM_PHY0_BASE + 0x184) & 0x20) {
|
|
result = false;
|
|
break;
|
|
}
|
|
}
|
|
|
|
clrbits_le32(SUNXI_DRAM_PHY0_BASE + 8, 1);
|
|
|
|
clrbits_le32(SUNXI_DRAM_PHY0_BASE + 8, 0x30);
|
|
|
|
if (para->ranks == 2) {
|
|
clrsetbits_le32(SUNXI_DRAM_PHY0_BASE + 8, 0x30, 0x10);
|
|
|
|
setbits_le32(SUNXI_DRAM_PHY0_BASE + 8, 1);
|
|
|
|
while ((readl(SUNXI_DRAM_PHY0_BASE + 0x184) & val) != val) {
|
|
if (readl(SUNXI_DRAM_PHY0_BASE + 0x184) & 0x20) {
|
|
result = false;
|
|
break;
|
|
}
|
|
}
|
|
|
|
clrbits_le32(SUNXI_DRAM_PHY0_BASE + 8, 1);
|
|
}
|
|
|
|
clrbits_le32(SUNXI_DRAM_PHY0_BASE + 8, 0x30);
|
|
|
|
val = readl(SUNXI_DRAM_PHY0_BASE + 0x274) & 7;
|
|
tmp = readl(SUNXI_DRAM_PHY0_BASE + 0x26c) & 7;
|
|
if (val < tmp)
|
|
val = tmp;
|
|
tmp = readl(SUNXI_DRAM_PHY0_BASE + 0x32c) & 7;
|
|
if (val < tmp)
|
|
val = tmp;
|
|
tmp = readl(SUNXI_DRAM_PHY0_BASE + 0x334) & 7;
|
|
if (val < tmp)
|
|
val = tmp;
|
|
clrsetbits_le32(SUNXI_DRAM_PHY0_BASE + 0x38, 0x7, (val + 2) & 7);
|
|
|
|
setbits_le32(SUNXI_DRAM_PHY0_BASE + 4, 0x20);
|
|
|
|
return result;
|
|
}
|
|
|
|
static bool mctl_phy_read_training(struct dram_para *para)
|
|
{
|
|
u32 val1, val2, *ptr1, *ptr2;
|
|
bool result = true;
|
|
int i;
|
|
|
|
clrsetbits_le32(SUNXI_DRAM_PHY0_BASE + 0x198, 3, 2);
|
|
clrsetbits_le32(SUNXI_DRAM_PHY0_BASE + 0x804, 0x3f, 0xf);
|
|
clrsetbits_le32(SUNXI_DRAM_PHY0_BASE + 0x808, 0x3f, 0xf);
|
|
clrsetbits_le32(SUNXI_DRAM_PHY0_BASE + 0xa04, 0x3f, 0xf);
|
|
clrsetbits_le32(SUNXI_DRAM_PHY0_BASE + 0xa08, 0x3f, 0xf);
|
|
|
|
setbits_le32(SUNXI_DRAM_PHY0_BASE + 0x190, 6);
|
|
setbits_le32(SUNXI_DRAM_PHY0_BASE + 0x190, 1);
|
|
|
|
mctl_await_completion((u32*)(SUNXI_DRAM_PHY0_BASE + 0x840), 0xc, 0xc);
|
|
if (readl(SUNXI_DRAM_PHY0_BASE + 0x840) & 3)
|
|
result = false;
|
|
|
|
if (para->bus_full_width) {
|
|
mctl_await_completion((u32*)(SUNXI_DRAM_PHY0_BASE + 0xa40), 0xc, 0xc);
|
|
if (readl(SUNXI_DRAM_PHY0_BASE + 0xa40) & 3)
|
|
result = false;
|
|
}
|
|
|
|
ptr1 = (u32*)(SUNXI_DRAM_PHY0_BASE + 0x898);
|
|
ptr2 = (u32*)(SUNXI_DRAM_PHY0_BASE + 0x850);
|
|
for (i = 0; i < 9; i++) {
|
|
val1 = readl(&ptr1[i]);
|
|
val2 = readl(&ptr2[i]);
|
|
if (val1 - val2 <= 6)
|
|
result = false;
|
|
}
|
|
ptr1 = (u32*)(SUNXI_DRAM_PHY0_BASE + 0x8bc);
|
|
ptr2 = (u32*)(SUNXI_DRAM_PHY0_BASE + 0x874);
|
|
for (i = 0; i < 9; i++) {
|
|
val1 = readl(&ptr1[i]);
|
|
val2 = readl(&ptr2[i]);
|
|
if (val1 - val2 <= 6)
|
|
result = false;
|
|
}
|
|
|
|
if (para->bus_full_width) {
|
|
ptr1 = (u32*)(SUNXI_DRAM_PHY0_BASE + 0xa98);
|
|
ptr2 = (u32*)(SUNXI_DRAM_PHY0_BASE + 0xa50);
|
|
for (i = 0; i < 9; i++) {
|
|
val1 = readl(&ptr1[i]);
|
|
val2 = readl(&ptr2[i]);
|
|
if (val1 - val2 <= 6)
|
|
result = false;
|
|
}
|
|
|
|
ptr1 = (u32*)(SUNXI_DRAM_PHY0_BASE + 0xabc);
|
|
ptr2 = (u32*)(SUNXI_DRAM_PHY0_BASE + 0xa74);
|
|
for (i = 0; i < 9; i++) {
|
|
val1 = readl(&ptr1[i]);
|
|
val2 = readl(&ptr2[i]);
|
|
if (val1 - val2 <= 6)
|
|
result = false;
|
|
}
|
|
}
|
|
|
|
clrbits_le32(SUNXI_DRAM_PHY0_BASE + 0x190, 3);
|
|
|
|
if (para->ranks == 2) {
|
|
/* maybe last parameter should be 1? */
|
|
clrsetbits_le32(SUNXI_DRAM_PHY0_BASE + 0x198, 3, 2);
|
|
|
|
setbits_le32(SUNXI_DRAM_PHY0_BASE + 0x190, 6);
|
|
setbits_le32(SUNXI_DRAM_PHY0_BASE + 0x190, 1);
|
|
|
|
mctl_await_completion((u32*)(SUNXI_DRAM_PHY0_BASE + 0x840), 0xc, 0xc);
|
|
if (readl(SUNXI_DRAM_PHY0_BASE + 0x840) & 3)
|
|
result = false;
|
|
|
|
if (para->bus_full_width) {
|
|
mctl_await_completion((u32*)(SUNXI_DRAM_PHY0_BASE + 0xa40), 0xc, 0xc);
|
|
if (readl(SUNXI_DRAM_PHY0_BASE + 0xa40) & 3)
|
|
result = false;
|
|
}
|
|
|
|
clrbits_le32(SUNXI_DRAM_PHY0_BASE + 0x190, 3);
|
|
}
|
|
|
|
clrbits_le32(SUNXI_DRAM_PHY0_BASE + 0x198, 3);
|
|
|
|
return result;
|
|
}
|
|
|
|
static bool mctl_phy_write_training(struct dram_para *para)
|
|
{
|
|
u32 val1, val2, *ptr1, *ptr2;
|
|
bool result = true;
|
|
int i;
|
|
|
|
writel(0, SUNXI_DRAM_PHY0_BASE + 0x134);
|
|
writel(0, SUNXI_DRAM_PHY0_BASE + 0x138);
|
|
writel(0, SUNXI_DRAM_PHY0_BASE + 0x19c);
|
|
writel(0, SUNXI_DRAM_PHY0_BASE + 0x1a0);
|
|
|
|
clrsetbits_le32(SUNXI_DRAM_PHY0_BASE + 0x198, 0xc, 8);
|
|
|
|
setbits_le32(SUNXI_DRAM_PHY0_BASE + 0x190, 0x10);
|
|
setbits_le32(SUNXI_DRAM_PHY0_BASE + 0x190, 0x20);
|
|
|
|
mctl_await_completion((u32*)(SUNXI_DRAM_PHY0_BASE + 0x8e0), 3, 3);
|
|
if (readl(SUNXI_DRAM_PHY0_BASE + 0x8e0) & 0xc)
|
|
result = false;
|
|
|
|
if (para->bus_full_width) {
|
|
mctl_await_completion((u32*)(SUNXI_DRAM_PHY0_BASE + 0xae0), 3, 3);
|
|
if (readl(SUNXI_DRAM_PHY0_BASE + 0xae0) & 0xc)
|
|
result = false;
|
|
}
|
|
|
|
ptr1 = (u32*)(SUNXI_DRAM_PHY0_BASE + 0x938);
|
|
ptr2 = (u32*)(SUNXI_DRAM_PHY0_BASE + 0x8f0);
|
|
for (i = 0; i < 9; i++) {
|
|
val1 = readl(&ptr1[i]);
|
|
val2 = readl(&ptr2[i]);
|
|
if (val1 - val2 <= 6)
|
|
result = false;
|
|
}
|
|
ptr1 = (u32*)(SUNXI_DRAM_PHY0_BASE + 0x95c);
|
|
ptr2 = (u32*)(SUNXI_DRAM_PHY0_BASE + 0x914);
|
|
for (i = 0; i < 9; i++) {
|
|
val1 = readl(&ptr1[i]);
|
|
val2 = readl(&ptr2[i]);
|
|
if (val1 - val2 <= 6)
|
|
result = false;
|
|
}
|
|
|
|
if (para->bus_full_width) {
|
|
ptr1 = (u32*)(SUNXI_DRAM_PHY0_BASE + 0xb38);
|
|
ptr2 = (u32*)(SUNXI_DRAM_PHY0_BASE + 0xaf0);
|
|
for (i = 0; i < 9; i++) {
|
|
val1 = readl(&ptr1[i]);
|
|
val2 = readl(&ptr2[i]);
|
|
if (val1 - val2 <= 6)
|
|
result = false;
|
|
}
|
|
ptr1 = (u32*)(SUNXI_DRAM_PHY0_BASE + 0xb5c);
|
|
ptr2 = (u32*)(SUNXI_DRAM_PHY0_BASE + 0xb14);
|
|
for (i = 0; i < 9; i++) {
|
|
val1 = readl(&ptr1[i]);
|
|
val2 = readl(&ptr2[i]);
|
|
if (val1 - val2 <= 6)
|
|
result = false;
|
|
}
|
|
}
|
|
|
|
clrbits_le32(SUNXI_DRAM_PHY0_BASE + 0x190, 0x60);
|
|
|
|
if (para->ranks == 2) {
|
|
clrsetbits_le32(SUNXI_DRAM_PHY0_BASE + 0x198, 0xc, 4);
|
|
|
|
setbits_le32(SUNXI_DRAM_PHY0_BASE + 0x190, 0x10);
|
|
setbits_le32(SUNXI_DRAM_PHY0_BASE + 0x190, 0x20);
|
|
|
|
mctl_await_completion((u32*)(SUNXI_DRAM_PHY0_BASE + 0x8e0), 3, 3);
|
|
if (readl(SUNXI_DRAM_PHY0_BASE + 0x8e0) & 0xc)
|
|
result = false;
|
|
|
|
if (para->bus_full_width) {
|
|
mctl_await_completion((u32*)(SUNXI_DRAM_PHY0_BASE + 0xae0), 3, 3);
|
|
if (readl(SUNXI_DRAM_PHY0_BASE + 0xae0) & 0xc)
|
|
result = false;
|
|
}
|
|
|
|
clrbits_le32(SUNXI_DRAM_PHY0_BASE + 0x190, 0x60);
|
|
}
|
|
|
|
clrbits_le32(SUNXI_DRAM_PHY0_BASE + 0x198, 0xc);
|
|
|
|
return result;
|
|
}
|
|
|
|
static bool mctl_phy_bit_delay_compensation(struct dram_para *para)
|
|
{
|
|
u32 *ptr;
|
|
int i;
|
|
|
|
clrbits_le32(SUNXI_DRAM_PHY0_BASE + 0x60, 1);
|
|
setbits_le32(SUNXI_DRAM_PHY0_BASE + 8, 8);
|
|
clrbits_le32(SUNXI_DRAM_PHY0_BASE + 0x190, 0x10);
|
|
|
|
ptr = (u32*)(SUNXI_DRAM_PHY0_BASE + 0x484);
|
|
for (i = 0; i < 9; i++) {
|
|
writel_relaxed(0x16, ptr);
|
|
writel_relaxed(0x16, ptr + 0x30);
|
|
ptr += 2;
|
|
}
|
|
writel_relaxed(0x1c, SUNXI_DRAM_PHY0_BASE + 0x4d0);
|
|
writel_relaxed(0x1c, SUNXI_DRAM_PHY0_BASE + 0x590);
|
|
writel_relaxed(0x1c, SUNXI_DRAM_PHY0_BASE + 0x4cc);
|
|
writel_relaxed(0x1c, SUNXI_DRAM_PHY0_BASE + 0x58c);
|
|
|
|
ptr = (u32*)(SUNXI_DRAM_PHY0_BASE + 0x4d8);
|
|
for (i = 0; i < 9; i++) {
|
|
writel_relaxed(0x1a, ptr);
|
|
writel_relaxed(0x1a, ptr + 0x30);
|
|
ptr += 2;
|
|
}
|
|
writel_relaxed(0x1e, SUNXI_DRAM_PHY0_BASE + 0x524);
|
|
writel_relaxed(0x1e, SUNXI_DRAM_PHY0_BASE + 0x5e4);
|
|
writel_relaxed(0x1e, SUNXI_DRAM_PHY0_BASE + 0x520);
|
|
writel_relaxed(0x1e, SUNXI_DRAM_PHY0_BASE + 0x5e0);
|
|
|
|
ptr = (u32*)(SUNXI_DRAM_PHY0_BASE + 0x604);
|
|
for (i = 0; i < 9; i++) {
|
|
writel_relaxed(0x1a, ptr);
|
|
writel_relaxed(0x1a, ptr + 0x30);
|
|
ptr += 2;
|
|
}
|
|
writel_relaxed(0x1e, SUNXI_DRAM_PHY0_BASE + 0x650);
|
|
writel_relaxed(0x1e, SUNXI_DRAM_PHY0_BASE + 0x710);
|
|
writel_relaxed(0x1e, SUNXI_DRAM_PHY0_BASE + 0x64c);
|
|
writel_relaxed(0x1e, SUNXI_DRAM_PHY0_BASE + 0x70c);
|
|
|
|
ptr = (u32*)(SUNXI_DRAM_PHY0_BASE + 0x658);
|
|
for (i = 0; i < 9; i++) {
|
|
writel_relaxed(0x1a, ptr);
|
|
writel_relaxed(0x1a, ptr + 0x30);
|
|
ptr += 2;
|
|
}
|
|
writel_relaxed(0x1e, SUNXI_DRAM_PHY0_BASE + 0x6a4);
|
|
writel_relaxed(0x1e, SUNXI_DRAM_PHY0_BASE + 0x764);
|
|
writel_relaxed(0x1e, SUNXI_DRAM_PHY0_BASE + 0x6a0);
|
|
writel_relaxed(0x1e, SUNXI_DRAM_PHY0_BASE + 0x760);
|
|
|
|
dmb();
|
|
|
|
setbits_le32(SUNXI_DRAM_PHY0_BASE + 0x60, 1);
|
|
|
|
/* second part */
|
|
clrbits_le32(SUNXI_DRAM_PHY0_BASE + 0x54, 0x80);
|
|
clrbits_le32(SUNXI_DRAM_PHY0_BASE + 0x190, 4);
|
|
|
|
ptr = (u32*)(SUNXI_DRAM_PHY0_BASE + 0x480);
|
|
for (i = 0; i < 9; i++) {
|
|
writel_relaxed(0x10, ptr);
|
|
writel_relaxed(0x10, ptr + 0x30);
|
|
ptr += 2;
|
|
}
|
|
writel_relaxed(0x18, SUNXI_DRAM_PHY0_BASE + 0x528);
|
|
writel_relaxed(0x18, SUNXI_DRAM_PHY0_BASE + 0x5e8);
|
|
writel_relaxed(0x18, SUNXI_DRAM_PHY0_BASE + 0x4c8);
|
|
writel_relaxed(0x18, SUNXI_DRAM_PHY0_BASE + 0x588);
|
|
|
|
ptr = (u32*)(SUNXI_DRAM_PHY0_BASE + 0x4d4);
|
|
for (i = 0; i < 9; i++) {
|
|
writel_relaxed(0x12, ptr);
|
|
writel_relaxed(0x12, ptr + 0x30);
|
|
ptr += 2;
|
|
}
|
|
writel_relaxed(0x1a, SUNXI_DRAM_PHY0_BASE + 0x52c);
|
|
writel_relaxed(0x1a, SUNXI_DRAM_PHY0_BASE + 0x5ec);
|
|
writel_relaxed(0x1a, SUNXI_DRAM_PHY0_BASE + 0x51c);
|
|
writel_relaxed(0x1a, SUNXI_DRAM_PHY0_BASE + 0x5dc);
|
|
|
|
ptr = (u32*)(SUNXI_DRAM_PHY0_BASE + 0x600);
|
|
for (i = 0; i < 9; i++) {
|
|
writel_relaxed(0x12, ptr);
|
|
writel_relaxed(0x12, ptr + 0x30);
|
|
ptr += 2;
|
|
}
|
|
writel_relaxed(0x1a, SUNXI_DRAM_PHY0_BASE + 0x6a8);
|
|
writel_relaxed(0x1a, SUNXI_DRAM_PHY0_BASE + 0x768);
|
|
writel_relaxed(0x1a, SUNXI_DRAM_PHY0_BASE + 0x648);
|
|
writel_relaxed(0x1a, SUNXI_DRAM_PHY0_BASE + 0x708);
|
|
|
|
ptr = (u32*)(SUNXI_DRAM_PHY0_BASE + 0x654);
|
|
for (i = 0; i < 9; i++) {
|
|
writel_relaxed(0x14, ptr);
|
|
writel_relaxed(0x14, ptr + 0x30);
|
|
ptr += 2;
|
|
}
|
|
writel_relaxed(0x1c, SUNXI_DRAM_PHY0_BASE + 0x6ac);
|
|
writel_relaxed(0x1c, SUNXI_DRAM_PHY0_BASE + 0x76c);
|
|
writel_relaxed(0x1c, SUNXI_DRAM_PHY0_BASE + 0x69c);
|
|
writel_relaxed(0x1c, SUNXI_DRAM_PHY0_BASE + 0x75c);
|
|
|
|
dmb();
|
|
|
|
setbits_le32(SUNXI_DRAM_PHY0_BASE + 0x54, 0x80);
|
|
|
|
return true;
|
|
}
|
|
|
|
static bool mctl_phy_init(struct dram_para *para)
|
|
{
|
|
struct sunxi_mctl_com_reg * const mctl_com =
|
|
(struct sunxi_mctl_com_reg *)SUNXI_DRAM_COM_BASE;
|
|
struct sunxi_mctl_ctl_reg * const mctl_ctl =
|
|
(struct sunxi_mctl_ctl_reg *)SUNXI_DRAM_CTL0_BASE;
|
|
u32 val, *ptr;
|
|
int i;
|
|
|
|
if (para->bus_full_width)
|
|
val = 0xf;
|
|
else
|
|
val = 3;
|
|
clrsetbits_le32(SUNXI_DRAM_PHY0_BASE + 0x3c, 0xf, val);
|
|
|
|
writel(0xd, SUNXI_DRAM_PHY0_BASE + 0x14);
|
|
writel(0xd, SUNXI_DRAM_PHY0_BASE + 0x35c);
|
|
writel(0xd, SUNXI_DRAM_PHY0_BASE + 0x368);
|
|
writel(0xd, SUNXI_DRAM_PHY0_BASE + 0x374);
|
|
|
|
writel(0, SUNXI_DRAM_PHY0_BASE + 0x18);
|
|
writel(0, SUNXI_DRAM_PHY0_BASE + 0x360);
|
|
writel(0, SUNXI_DRAM_PHY0_BASE + 0x36c);
|
|
writel(0, SUNXI_DRAM_PHY0_BASE + 0x378);
|
|
|
|
writel(9, SUNXI_DRAM_PHY0_BASE + 0x1c);
|
|
writel(9, SUNXI_DRAM_PHY0_BASE + 0x364);
|
|
writel(9, SUNXI_DRAM_PHY0_BASE + 0x370);
|
|
writel(9, SUNXI_DRAM_PHY0_BASE + 0x37c);
|
|
|
|
ptr = (u32*)(SUNXI_DRAM_PHY0_BASE + 0xc0);
|
|
for (i = 0; i < ARRAY_SIZE(phy_init); i++)
|
|
writel(phy_init[i], &ptr[i]);
|
|
|
|
if (IS_ENABLED(CONFIG_DRAM_SUN50I_H616_UNKNOWN_FEATURE)) {
|
|
ptr = (u32*)(SUNXI_DRAM_PHY0_BASE + 0x780);
|
|
for (i = 0; i < 32; i++)
|
|
writel(0x16, &ptr[i]);
|
|
writel(0xe, SUNXI_DRAM_PHY0_BASE + 0x78c);
|
|
writel(0xe, SUNXI_DRAM_PHY0_BASE + 0x7a4);
|
|
writel(0xe, SUNXI_DRAM_PHY0_BASE + 0x7b8);
|
|
writel(0x8, SUNXI_DRAM_PHY0_BASE + 0x7d4);
|
|
writel(0xe, SUNXI_DRAM_PHY0_BASE + 0x7dc);
|
|
writel(0xe, SUNXI_DRAM_PHY0_BASE + 0x7e0);
|
|
}
|
|
|
|
writel(0x80, SUNXI_DRAM_PHY0_BASE + 0x3dc);
|
|
writel(0x80, SUNXI_DRAM_PHY0_BASE + 0x45c);
|
|
|
|
if (IS_ENABLED(CONFIG_DRAM_ODT_EN))
|
|
mctl_phy_configure_odt();
|
|
|
|
clrsetbits_le32(SUNXI_DRAM_PHY0_BASE + 4, 7, 0xa);
|
|
|
|
if (para->clk <= 672)
|
|
writel(0xf, SUNXI_DRAM_PHY0_BASE + 0x20);
|
|
if (para->clk > 500) {
|
|
clrbits_le32(SUNXI_DRAM_PHY0_BASE + 0x144, BIT(7));
|
|
clrbits_le32(SUNXI_DRAM_PHY0_BASE + 0x14c, 0xe0);
|
|
} else {
|
|
setbits_le32(SUNXI_DRAM_PHY0_BASE + 0x144, BIT(7));
|
|
clrsetbits_le32(SUNXI_DRAM_PHY0_BASE + 0x14c, 0xe0, 0x20);
|
|
}
|
|
|
|
clrbits_le32(SUNXI_DRAM_PHY0_BASE + 0x14c, 8);
|
|
|
|
mctl_await_completion((u32*)(SUNXI_DRAM_PHY0_BASE + 0x180), 4, 4);
|
|
|
|
writel(0x37, SUNXI_DRAM_PHY0_BASE + 0x58);
|
|
clrbits_le32(&mctl_com->unk_0x500, 0x200);
|
|
|
|
writel(0, &mctl_ctl->swctl);
|
|
setbits_le32(&mctl_ctl->dfimisc, 1);
|
|
|
|
/* start DFI init */
|
|
setbits_le32(&mctl_ctl->dfimisc, 0x20);
|
|
writel(1, &mctl_ctl->swctl);
|
|
mctl_await_completion(&mctl_ctl->swstat, 1, 1);
|
|
/* poll DFI init complete */
|
|
mctl_await_completion(&mctl_ctl->dfistat, 1, 1);
|
|
writel(0, &mctl_ctl->swctl);
|
|
clrbits_le32(&mctl_ctl->dfimisc, 0x20);
|
|
|
|
clrbits_le32(&mctl_ctl->pwrctl, 0x20);
|
|
writel(1, &mctl_ctl->swctl);
|
|
mctl_await_completion(&mctl_ctl->swstat, 1, 1);
|
|
mctl_await_completion(&mctl_ctl->statr, 3, 1);
|
|
|
|
writel(0, &mctl_ctl->swctl);
|
|
clrbits_le32(&mctl_ctl->dfimisc, 1);
|
|
|
|
writel(1, &mctl_ctl->swctl);
|
|
mctl_await_completion(&mctl_ctl->swstat, 1, 1);
|
|
|
|
writel(0x1f14, &mctl_ctl->mrctrl1);
|
|
writel(0x80000030, &mctl_ctl->mrctrl0);
|
|
mctl_await_completion(&mctl_ctl->mrctrl0, BIT(31), 0);
|
|
|
|
writel(4, &mctl_ctl->mrctrl1);
|
|
writel(0x80001030, &mctl_ctl->mrctrl0);
|
|
mctl_await_completion(&mctl_ctl->mrctrl0, BIT(31), 0);
|
|
|
|
writel(0x20, &mctl_ctl->mrctrl1);
|
|
writel(0x80002030, &mctl_ctl->mrctrl0);
|
|
mctl_await_completion(&mctl_ctl->mrctrl0, BIT(31), 0);
|
|
|
|
writel(0, &mctl_ctl->mrctrl1);
|
|
writel(0x80003030, &mctl_ctl->mrctrl0);
|
|
mctl_await_completion(&mctl_ctl->mrctrl0, BIT(31), 0);
|
|
|
|
writel(0, SUNXI_DRAM_PHY0_BASE + 0x54);
|
|
|
|
writel(0, &mctl_ctl->swctl);
|
|
clrbits_le32(&mctl_ctl->rfshctl3, 1);
|
|
writel(1, &mctl_ctl->swctl);
|
|
|
|
if (IS_ENABLED(CONFIG_DRAM_SUN50I_H616_WRITE_LEVELING)) {
|
|
for (i = 0; i < 5; i++)
|
|
if (mctl_phy_write_leveling(para))
|
|
break;
|
|
if (i == 5) {
|
|
debug("write leveling failed!\n");
|
|
return false;
|
|
}
|
|
}
|
|
|
|
if (IS_ENABLED(CONFIG_DRAM_SUN50I_H616_READ_CALIBRATION)) {
|
|
for (i = 0; i < 5; i++)
|
|
if (mctl_phy_read_calibration(para))
|
|
break;
|
|
if (i == 5) {
|
|
debug("read calibration failed!\n");
|
|
return false;
|
|
}
|
|
}
|
|
|
|
if (IS_ENABLED(CONFIG_DRAM_SUN50I_H616_READ_TRAINING)) {
|
|
for (i = 0; i < 5; i++)
|
|
if (mctl_phy_read_training(para))
|
|
break;
|
|
if (i == 5) {
|
|
debug("read training failed!\n");
|
|
return false;
|
|
}
|
|
}
|
|
|
|
if (IS_ENABLED(CONFIG_DRAM_SUN50I_H616_WRITE_TRAINING)) {
|
|
for (i = 0; i < 5; i++)
|
|
if (mctl_phy_write_training(para))
|
|
break;
|
|
if (i == 5) {
|
|
debug("write training failed!\n");
|
|
return false;
|
|
}
|
|
}
|
|
|
|
if (IS_ENABLED(CONFIG_DRAM_SUN50I_H616_BIT_DELAY_COMPENSATION))
|
|
mctl_phy_bit_delay_compensation(para);
|
|
|
|
clrbits_le32(SUNXI_DRAM_PHY0_BASE + 0x60, 4);
|
|
|
|
return true;
|
|
}
|
|
|
|
static bool mctl_ctrl_init(struct dram_para *para)
|
|
{
|
|
struct sunxi_mctl_com_reg * const mctl_com =
|
|
(struct sunxi_mctl_com_reg *)SUNXI_DRAM_COM_BASE;
|
|
struct sunxi_mctl_ctl_reg * const mctl_ctl =
|
|
(struct sunxi_mctl_ctl_reg *)SUNXI_DRAM_CTL0_BASE;
|
|
u32 reg_val;
|
|
|
|
clrsetbits_le32(&mctl_com->unk_0x500, BIT(24), 0x200);
|
|
writel(0x8000, &mctl_ctl->clken);
|
|
|
|
setbits_le32(&mctl_com->unk_0x008, 0xff00);
|
|
|
|
clrsetbits_le32(&mctl_ctl->sched[0], 0xff00, 0x3000);
|
|
|
|
writel(0, &mctl_ctl->hwlpctl);
|
|
|
|
setbits_le32(&mctl_com->unk_0x008, 0xff00);
|
|
|
|
reg_val = MSTR_BURST_LENGTH(8) | MSTR_ACTIVE_RANKS(para->ranks);
|
|
reg_val |= MSTR_DEVICETYPE_DDR3 | MSTR_2TMODE;
|
|
if (para->bus_full_width)
|
|
reg_val |= MSTR_BUSWIDTH_FULL;
|
|
else
|
|
reg_val |= MSTR_BUSWIDTH_HALF;
|
|
writel(BIT(31) | BIT(30) | reg_val, &mctl_ctl->mstr);
|
|
|
|
if (para->ranks == 2)
|
|
writel(0x0303, &mctl_ctl->odtmap);
|
|
else
|
|
writel(0x0201, &mctl_ctl->odtmap);
|
|
|
|
writel(0x06000400, &mctl_ctl->odtcfg);
|
|
writel(0x06000400, &mctl_ctl->unk_0x2240);
|
|
writel(0x06000400, &mctl_ctl->unk_0x3240);
|
|
writel(0x06000400, &mctl_ctl->unk_0x4240);
|
|
|
|
setbits_le32(&mctl_com->cr, BIT(31));
|
|
|
|
mctl_set_addrmap(para);
|
|
|
|
mctl_set_timing_params(para);
|
|
|
|
writel(0, &mctl_ctl->pwrctl);
|
|
|
|
setbits_le32(&mctl_ctl->dfiupd[0], BIT(31) | BIT(30));
|
|
setbits_le32(&mctl_ctl->zqctl[0], BIT(31) | BIT(30));
|
|
setbits_le32(&mctl_ctl->unk_0x2180, BIT(31) | BIT(30));
|
|
setbits_le32(&mctl_ctl->unk_0x3180, BIT(31) | BIT(30));
|
|
setbits_le32(&mctl_ctl->unk_0x4180, BIT(31) | BIT(30));
|
|
|
|
setbits_le32(&mctl_ctl->rfshctl3, BIT(0));
|
|
clrbits_le32(&mctl_ctl->dfimisc, BIT(0));
|
|
|
|
writel(0, &mctl_com->maer0);
|
|
writel(0, &mctl_com->maer1);
|
|
writel(0, &mctl_com->maer2);
|
|
|
|
writel(0x20, &mctl_ctl->pwrctl);
|
|
setbits_le32(&mctl_ctl->clken, BIT(8));
|
|
|
|
clrsetbits_le32(&mctl_com->unk_0x500, BIT(24), 0x300);
|
|
/* this write seems to enable PHY MMIO region */
|
|
setbits_le32(&mctl_com->unk_0x500, BIT(24));
|
|
|
|
if (!mctl_phy_init(para))
|
|
return false;
|
|
|
|
writel(0, &mctl_ctl->swctl);
|
|
clrbits_le32(&mctl_ctl->rfshctl3, BIT(0));
|
|
|
|
setbits_le32(&mctl_com->unk_0x014, BIT(31));
|
|
writel(0xffffffff, &mctl_com->maer0);
|
|
writel(0x7ff, &mctl_com->maer1);
|
|
writel(0xffff, &mctl_com->maer2);
|
|
|
|
writel(1, &mctl_ctl->swctl);
|
|
mctl_await_completion(&mctl_ctl->swstat, 1, 1);
|
|
|
|
return true;
|
|
}
|
|
|
|
static bool mctl_core_init(struct dram_para *para)
|
|
{
|
|
mctl_sys_init(para);
|
|
|
|
return mctl_ctrl_init(para);
|
|
}
|
|
|
|
static void mctl_auto_detect_rank_width(struct dram_para *para)
|
|
{
|
|
/* this is minimum size that it's supported */
|
|
para->cols = 8;
|
|
para->rows = 13;
|
|
|
|
/*
|
|
* Strategy here is to test most demanding combination first and least
|
|
* demanding last, otherwise HW might not be fully utilized. For
|
|
* example, half bus width and rank = 1 combination would also work
|
|
* on HW with full bus width and rank = 2, but only 1/4 RAM would be
|
|
* visible.
|
|
*/
|
|
|
|
debug("testing 32-bit width, rank = 2\n");
|
|
para->bus_full_width = 1;
|
|
para->ranks = 2;
|
|
if (mctl_core_init(para))
|
|
return;
|
|
|
|
debug("testing 32-bit width, rank = 1\n");
|
|
para->bus_full_width = 1;
|
|
para->ranks = 1;
|
|
if (mctl_core_init(para))
|
|
return;
|
|
|
|
debug("testing 16-bit width, rank = 2\n");
|
|
para->bus_full_width = 0;
|
|
para->ranks = 2;
|
|
if (mctl_core_init(para))
|
|
return;
|
|
|
|
debug("testing 16-bit width, rank = 1\n");
|
|
para->bus_full_width = 0;
|
|
para->ranks = 1;
|
|
if (mctl_core_init(para))
|
|
return;
|
|
|
|
panic("This DRAM setup is currently not supported.\n");
|
|
}
|
|
|
|
static void mctl_auto_detect_dram_size(struct dram_para *para)
|
|
{
|
|
/* detect row address bits */
|
|
para->cols = 8;
|
|
para->rows = 18;
|
|
mctl_core_init(para);
|
|
|
|
for (para->rows = 13; para->rows < 18; para->rows++) {
|
|
/* 8 banks, 8 bit per byte and 16/32 bit width */
|
|
if (mctl_mem_matches((1 << (para->rows + para->cols +
|
|
4 + para->bus_full_width))))
|
|
break;
|
|
}
|
|
|
|
/* detect column address bits */
|
|
para->cols = 11;
|
|
mctl_core_init(para);
|
|
|
|
for (para->cols = 8; para->cols < 11; para->cols++) {
|
|
/* 8 bits per byte and 16/32 bit width */
|
|
if (mctl_mem_matches(1 << (para->cols + 1 +
|
|
para->bus_full_width)))
|
|
break;
|
|
}
|
|
}
|
|
|
|
static unsigned long mctl_calc_size(struct dram_para *para)
|
|
{
|
|
u8 width = para->bus_full_width ? 4 : 2;
|
|
|
|
/* 8 banks */
|
|
return (1ULL << (para->cols + para->rows + 3)) * width * para->ranks;
|
|
}
|
|
|
|
unsigned long sunxi_dram_init(void)
|
|
{
|
|
struct dram_para para = {
|
|
.clk = CONFIG_DRAM_CLK,
|
|
.type = SUNXI_DRAM_TYPE_DDR3,
|
|
};
|
|
unsigned long size;
|
|
|
|
setbits_le32(0x7010310, BIT(8));
|
|
clrbits_le32(0x7010318, 0x3f);
|
|
|
|
mctl_auto_detect_rank_width(¶);
|
|
mctl_auto_detect_dram_size(¶);
|
|
|
|
mctl_core_init(¶);
|
|
|
|
size = mctl_calc_size(¶);
|
|
|
|
mctl_set_master_priority();
|
|
|
|
return size;
|
|
};
|