u-boot/include/dm/read.h
Sean Anderson 082faeb865 dm: Fix error handling for dev_read_addr_ptr
dev_read_addr_ptr had different semantics depending on whether OF_LIVE was
enabled. This patch converts both implementations to return NULL on error,
and converts all call sites which check for FDT_ADDR_T_NONE to check for
NULL instead. This patch also removes the call to map_physmem, since we
have dev_remap_addr* for those semantics.

Signed-off-by: Sean Anderson <seanga2@gmail.com>
Reviewed-by: Bin Meng <bmeng.cn@gmail.com>
Reviewed-by: Simon Glass <sjg@chromium.org>
2020-07-01 15:01:21 +08:00

1032 lines
31 KiB
C

/* SPDX-License-Identifier: GPL-2.0+ */
/*
* Function to read values from the device tree node attached to a udevice.
*
* Copyright (c) 2017 Google, Inc
* Written by Simon Glass <sjg@chromium.org>
*/
#ifndef _DM_READ_H
#define _DM_READ_H
#include <dm/fdtaddr.h>
#include <dm/ofnode.h>
#include <dm/uclass.h>
struct resource;
#if CONFIG_IS_ENABLED(OF_LIVE)
static inline const struct device_node *dev_np(const struct udevice *dev)
{
return ofnode_to_np(dev->node);
}
#else
static inline const struct device_node *dev_np(const struct udevice *dev)
{
return NULL;
}
#endif
/**
* dev_ofnode() - get the DT node reference associated with a udevice
*
* @dev: device to check
* @return reference of the the device's DT node
*/
static inline ofnode dev_ofnode(const struct udevice *dev)
{
return dev->node;
}
static inline bool dev_of_valid(const struct udevice *dev)
{
return ofnode_valid(dev_ofnode(dev));
}
#ifndef CONFIG_DM_DEV_READ_INLINE
/**
* dev_read_u32() - read a 32-bit integer from a device's DT property
*
* @dev: device to read DT property from
* @propname: name of the property to read from
* @outp: place to put value (if found)
* @return 0 if OK, -ve on error
*/
int dev_read_u32(const struct udevice *dev, const char *propname, u32 *outp);
/**
* dev_read_u32_default() - read a 32-bit integer from a device's DT property
*
* @dev: device to read DT property from
* @propname: name of the property to read from
* @def: default value to return if the property has no value
* @return property value, or @def if not found
*/
int dev_read_u32_default(const struct udevice *dev, const char *propname,
int def);
/**
* dev_read_u32_index() - read an indexed 32-bit integer from a device's DT
* property
*
* @dev: device to read DT property from
* @propname: name of the property to read from
* @index: index of the integer to return
* @outp: place to put value (if found)
* @return 0 if OK, -ve on error
*/
int dev_read_u32_index(struct udevice *dev, const char *propname, int index,
u32 *outp);
/**
* dev_read_u32_index_default() - read an indexed 32-bit integer from a device's
* DT property
*
* @dev: device to read DT property from
* @propname: name of the property to read from
* @index: index of the integer to return
* @def: default value to return if the property has no value
* @return property value, or @def if not found
*/
u32 dev_read_u32_index_default(struct udevice *dev, const char *propname,
int index, u32 def);
/**
* dev_read_s32() - read a signed 32-bit integer from a device's DT property
*
* @dev: device to read DT property from
* @propname: name of the property to read from
* @outp: place to put value (if found)
* @return 0 if OK, -ve on error
*/
int dev_read_s32(const struct udevice *dev, const char *propname, s32 *outp);
/**
* dev_read_s32_default() - read a signed 32-bit int from a device's DT property
*
* @dev: device to read DT property from
* @propname: name of the property to read from
* @def: default value to return if the property has no value
* @return property value, or @def if not found
*/
int dev_read_s32_default(const struct udevice *dev, const char *propname,
int def);
/**
* dev_read_u32u() - read a 32-bit integer from a device's DT property
*
* This version uses a standard uint type.
*
* @dev: device to read DT property from
* @propname: name of the property to read from
* @outp: place to put value (if found)
* @return 0 if OK, -ve on error
*/
int dev_read_u32u(const struct udevice *dev, const char *propname, uint *outp);
/**
* dev_read_u64() - read a 64-bit integer from a device's DT property
*
* @dev: device to read DT property from
* @propname: name of the property to read from
* @outp: place to put value (if found)
* @return 0 if OK, -ve on error
*/
int dev_read_u64(const struct udevice *dev, const char *propname, u64 *outp);
/**
* dev_read_u64_default() - read a 64-bit integer from a device's DT property
*
* @dev: device to read DT property from
* @propname: name of the property to read from
* @def: default value to return if the property has no value
* @return property value, or @def if not found
*/
u64 dev_read_u64_default(const struct udevice *dev, const char *propname,
u64 def);
/**
* dev_read_string() - Read a string from a device's DT property
*
* @dev: device to read DT property from
* @propname: name of the property to read
* @return string from property value, or NULL if there is no such property
*/
const char *dev_read_string(const struct udevice *dev, const char *propname);
/**
* dev_read_bool() - read a boolean value from a device's DT property
*
* @dev: device to read DT property from
* @propname: name of property to read
* @return true if property is present (meaning true), false if not present
*/
bool dev_read_bool(const struct udevice *dev, const char *propname);
/**
* dev_read_subnode() - find a named subnode of a device
*
* @dev: device whose DT node contains the subnode
* @subnode_name: name of subnode to find
* @return reference to subnode (which can be invalid if there is no such
* subnode)
*/
ofnode dev_read_subnode(const struct udevice *dev, const char *subbnode_name);
/**
* dev_read_size() - read the size of a property
*
* @dev: device to check
* @propname: property to check
* @return size of property if present, or -EINVAL if not
*/
int dev_read_size(const struct udevice *dev, const char *propname);
/**
* dev_read_addr_index() - Get the indexed reg property of a device
*
* @dev: Device to read from
* @index: the 'reg' property can hold a list of <addr, size> pairs
* and @index is used to select which one is required
*
* @return address or FDT_ADDR_T_NONE if not found
*/
fdt_addr_t dev_read_addr_index(const struct udevice *dev, int index);
/**
* dev_read_addr_size_index() - Get the indexed reg property of a device
*
* @dev: Device to read from
* @index: the 'reg' property can hold a list of <addr, size> pairs
* and @index is used to select which one is required
* @size: place to put size value (on success)
*
* @return address or FDT_ADDR_T_NONE if not found
*/
fdt_addr_t dev_read_addr_size_index(const struct udevice *dev, int index,
fdt_size_t *size);
/**
* dev_remap_addr_index() - Get the indexed reg property of a device
* as a memory-mapped I/O pointer
*
* @dev: Device to read from
* @index: the 'reg' property can hold a list of <addr, size> pairs
* and @index is used to select which one is required
*
* @return pointer or NULL if not found
*/
void *dev_remap_addr_index(const struct udevice *dev, int index);
/**
* dev_read_addr_name() - Get the reg property of a device, indexed by name
*
* @dev: Device to read from
* @name: the 'reg' property can hold a list of <addr, size> pairs, with the
* 'reg-names' property providing named-based identification. @index
* indicates the value to search for in 'reg-names'.
*
* @return address or FDT_ADDR_T_NONE if not found
*/
fdt_addr_t dev_read_addr_name(const struct udevice *dev, const char *name);
/**
* dev_read_addr_size_name() - Get the reg property of a device, indexed by name
*
* @dev: Device to read from
* @name: the 'reg' property can hold a list of <addr, size> pairs, with the
* 'reg-names' property providing named-based identification. @index
* indicates the value to search for in 'reg-names'.
* @size: place to put size value (on success)
*
* @return address or FDT_ADDR_T_NONE if not found
*/
fdt_addr_t dev_read_addr_size_name(const struct udevice *dev, const char *name,
fdt_size_t *size);
/**
* dev_remap_addr_name() - Get the reg property of a device, indexed by name,
* as a memory-mapped I/O pointer
*
* @dev: Device to read from
* @name: the 'reg' property can hold a list of <addr, size> pairs, with the
* 'reg-names' property providing named-based identification. @index
* indicates the value to search for in 'reg-names'.
*
* @return pointer or NULL if not found
*/
void *dev_remap_addr_name(const struct udevice *dev, const char *name);
/**
* dev_read_addr() - Get the reg property of a device
*
* @dev: Device to read from
*
* @return address or FDT_ADDR_T_NONE if not found
*/
fdt_addr_t dev_read_addr(const struct udevice *dev);
/**
* dev_read_addr_ptr() - Get the reg property of a device
* as a pointer
*
* @dev: Device to read from
*
* @return pointer or NULL if not found
*/
void *dev_read_addr_ptr(const struct udevice *dev);
/**
* dev_read_addr_pci() - Read an address and handle PCI address translation
*
* At present U-Boot does not have address translation logic for PCI in the
* livetree implementation (of_addr.c). This special function supports this for
* the flat tree implementation.
*
* This function should be removed (and code should use dev_read() instead)
* once:
*
* 1. PCI address translation is added; and either
* 2. everything uses livetree where PCI translation is used (which is feasible
* in SPL and U-Boot proper) or PCI address translation is added to
* fdtdec_get_addr() and friends.
*
* @dev: Device to read from
* @return address or FDT_ADDR_T_NONE if not found
*/
fdt_addr_t dev_read_addr_pci(const struct udevice *dev);
/**
* dev_remap_addr() - Get the reg property of a device as a
* memory-mapped I/O pointer
*
* @dev: Device to read from
*
* @return pointer or NULL if not found
*/
void *dev_remap_addr(const struct udevice *dev);
/**
* dev_read_addr_size() - get address and size from a device property
*
* This does no address translation. It simply reads an property that contains
* an address and a size value, one after the other.
*
* @dev: Device to read from
* @propname: property to read
* @sizep: place to put size value (on success)
* @return address value, or FDT_ADDR_T_NONE on error
*/
fdt_addr_t dev_read_addr_size(const struct udevice *dev, const char *propname,
fdt_size_t *sizep);
/**
* dev_read_name() - get the name of a device's node
*
* @dev: Device to read from
* @return name of node
*/
const char *dev_read_name(const struct udevice *dev);
/**
* dev_read_stringlist_search() - find string in a string list and return index
*
* Note that it is possible for this function to succeed on property values
* that are not NUL-terminated. That's because the function will stop after
* finding the first occurrence of @string. This can for example happen with
* small-valued cell properties, such as #address-cells, when searching for
* the empty string.
*
* @dev: device to check
* @propname: name of the property containing the string list
* @string: string to look up in the string list
*
* @return:
* the index of the string in the list of strings
* -ENODATA if the property is not found
* -EINVAL on some other error
*/
int dev_read_stringlist_search(const struct udevice *dev, const char *property,
const char *string);
/**
* dev_read_string_index() - obtain an indexed string from a string list
*
* @dev: device to examine
* @propname: name of the property containing the string list
* @index: index of the string to return
* @out: return location for the string
*
* @return:
* length of string, if found or -ve error value if not found
*/
int dev_read_string_index(const struct udevice *dev, const char *propname,
int index, const char **outp);
/**
* dev_read_string_count() - find the number of strings in a string list
*
* @dev: device to examine
* @propname: name of the property containing the string list
* @return:
* number of strings in the list, or -ve error value if not found
*/
int dev_read_string_count(const struct udevice *dev, const char *propname);
/**
* dev_read_phandle_with_args() - Find a node pointed by phandle in a list
*
* This function is useful to parse lists of phandles and their arguments.
* Returns 0 on success and fills out_args, on error returns appropriate
* errno value.
*
* Caller is responsible to call of_node_put() on the returned out_args->np
* pointer.
*
* Example:
*
* phandle1: node1 {
* #list-cells = <2>;
* }
*
* phandle2: node2 {
* #list-cells = <1>;
* }
*
* node3 {
* list = <&phandle1 1 2 &phandle2 3>;
* }
*
* To get a device_node of the `node2' node you may call this:
* dev_read_phandle_with_args(dev, "list", "#list-cells", 0, 1, &args);
*
* @dev: device whose node containing a list
* @list_name: property name that contains a list
* @cells_name: property name that specifies phandles' arguments count
* @cells_count: Cell count to use if @cells_name is NULL
* @index: index of a phandle to parse out
* @out_args: optional pointer to output arguments structure (will be filled)
* @return 0 on success (with @out_args filled out if not NULL), -ENOENT if
* @list_name does not exist, -EINVAL if a phandle was not found,
* @cells_name could not be found, the arguments were truncated or there
* were too many arguments.
*/
int dev_read_phandle_with_args(const struct udevice *dev, const char *list_name,
const char *cells_name, int cell_count,
int index, struct ofnode_phandle_args *out_args);
/**
* dev_count_phandle_with_args() - Return phandle number in a list
*
* This function is usefull to get phandle number contained in a property list.
* For example, this allows to allocate the right amount of memory to keep
* clock's reference contained into the "clocks" property.
*
*
* @dev: device whose node containing a list
* @list_name: property name that contains a list
* @cells_name: property name that specifies phandles' arguments count
* @Returns number of phandle found on success, on error returns appropriate
* errno value.
*/
int dev_count_phandle_with_args(const struct udevice *dev,
const char *list_name, const char *cells_name);
/**
* dev_read_addr_cells() - Get the number of address cells for a device's node
*
* This walks back up the tree to find the closest #address-cells property
* which controls the given node.
*
* @dev: device to check
* @return number of address cells this node uses
*/
int dev_read_addr_cells(const struct udevice *dev);
/**
* dev_read_size_cells() - Get the number of size cells for a device's node
*
* This walks back up the tree to find the closest #size-cells property
* which controls the given node.
*
* @dev: device to check
* @return number of size cells this node uses
*/
int dev_read_size_cells(const struct udevice *dev);
/**
* dev_read_addr_cells() - Get the address cells property in a node
*
* This function matches fdt_address_cells().
*
* @dev: device to check
* @return number of address cells this node uses
*/
int dev_read_simple_addr_cells(const struct udevice *dev);
/**
* dev_read_size_cells() - Get the size cells property in a node
*
* This function matches fdt_size_cells().
*
* @dev: device to check
* @return number of size cells this node uses
*/
int dev_read_simple_size_cells(const struct udevice *dev);
/**
* dev_read_phandle() - Get the phandle from a device
*
* @dev: device to check
* @return phandle (1 or greater), or 0 if no phandle or other error
*/
int dev_read_phandle(const struct udevice *dev);
/**
* dev_read_prop()- - read a property from a device's node
*
* @dev: device to check
* @propname: property to read
* @lenp: place to put length on success
* @return pointer to property, or NULL if not found
*/
const void *dev_read_prop(const struct udevice *dev, const char *propname,
int *lenp);
/**
* dev_read_first_prop()- get the reference of the first property
*
* Get reference to the first property of the node, it is used to iterate
* and read all the property with dev_read_prop_by_prop().
*
* @dev: device to check
* @prop: place to put argument reference
* @return 0 if OK, -ve on error. -FDT_ERR_NOTFOUND if not found
*/
int dev_read_first_prop(const struct udevice *dev, struct ofprop *prop);
/**
* ofnode_get_next_property() - get the reference of the next property
*
* Get reference to the next property of the node, it is used to iterate
* and read all the property with dev_read_prop_by_prop().
*
* @prop: reference of current argument and place to put reference of next one
* @return 0 if OK, -ve on error. -FDT_ERR_NOTFOUND if not found
*/
int dev_read_next_prop(struct ofprop *prop);
/**
* dev_read_prop_by_prop() - get a pointer to the value of a property
*
* Get value for the property identified by the provided reference.
*
* @prop: reference on property
* @propname: If non-NULL, place to property name on success,
* @lenp: If non-NULL, place to put length on success
* @return 0 if OK, -ve on error. -FDT_ERR_NOTFOUND if not found
*/
const void *dev_read_prop_by_prop(struct ofprop *prop,
const char **propname, int *lenp);
/**
* dev_read_alias_seq() - Get the alias sequence number of a node
*
* This works out whether a node is pointed to by an alias, and if so, the
* sequence number of that alias. Aliases are of the form <base><num> where
* <num> is the sequence number. For example spi2 would be sequence number 2.
*
* @dev: device to look up
* @devnump: set to the sequence number if one is found
* @return 0 if a sequence was found, -ve if not
*/
int dev_read_alias_seq(const struct udevice *dev, int *devnump);
/**
* dev_read_u32_array() - Find and read an array of 32 bit integers
*
* Search for a property in a device node and read 32-bit value(s) from
* it.
*
* The out_values is modified only if a valid u32 value can be decoded.
*
* @dev: device to look up
* @propname: name of the property to read
* @out_values: pointer to return value, modified only if return value is 0
* @sz: number of array elements to read
* @return 0 on success, -EINVAL if the property does not exist, -ENODATA if
* property does not have a value, and -EOVERFLOW if the property data isn't
* large enough.
*/
int dev_read_u32_array(const struct udevice *dev, const char *propname,
u32 *out_values, size_t sz);
/**
* dev_read_first_subnode() - find the first subnode of a device's node
*
* @dev: device to look up
* @return reference to the first subnode (which can be invalid if the device's
* node has no subnodes)
*/
ofnode dev_read_first_subnode(const struct udevice *dev);
/**
* ofnode_next_subnode() - find the next sibling of a subnode
*
* @node: valid reference to previous node (sibling)
* @return reference to the next subnode (which can be invalid if the node
* has no more siblings)
*/
ofnode dev_read_next_subnode(ofnode node);
/**
* dev_read_u8_array_ptr() - find an 8-bit array
*
* Look up a device's node property and return a pointer to its contents as a
* byte array of given length. The property must have at least enough data
* for the array (count bytes). It may have more, but this will be ignored.
* The data is not copied.
*
* @dev: device to look up
* @propname: name of property to find
* @sz: number of array elements
* @return pointer to byte array if found, or NULL if the property is not
* found or there is not enough data
*/
const uint8_t *dev_read_u8_array_ptr(const struct udevice *dev,
const char *propname, size_t sz);
/**
* dev_read_enabled() - check whether a node is enabled
*
* This looks for a 'status' property. If this exists, then returns 1 if
* the status is 'ok' and 0 otherwise. If there is no status property,
* it returns 1 on the assumption that anything mentioned should be enabled
* by default.
*
* @dev: device to examine
* @return integer value 0 (not enabled) or 1 (enabled)
*/
int dev_read_enabled(const struct udevice *dev);
/**
* dev_read_resource() - obtain an indexed resource from a device.
*
* @dev: device to examine
* @index index of the resource to retrieve (0 = first)
* @res returns the resource
* @return 0 if ok, negative on error
*/
int dev_read_resource(const struct udevice *dev, uint index,
struct resource *res);
/**
* dev_read_resource_byname() - obtain a named resource from a device.
*
* @dev: device to examine
* @name: name of the resource to retrieve
* @res: returns the resource
* @return 0 if ok, negative on error
*/
int dev_read_resource_byname(const struct udevice *dev, const char *name,
struct resource *res);
/**
* dev_translate_address() - Translate a device-tree address
*
* Translate an address from the device-tree into a CPU physical address. This
* function walks up the tree and applies the various bus mappings along the
* way.
*
* @dev: device giving the context in which to translate the address
* @in_addr: pointer to the address to translate
* @return the translated address; OF_BAD_ADDR on error
*/
u64 dev_translate_address(const struct udevice *dev, const fdt32_t *in_addr);
/**
* dev_translate_dma_address() - Translate a device-tree DMA address
*
* Translate a DMA address from the device-tree into a CPU physical address.
* This function walks up the tree and applies the various bus mappings along
* the way.
*
* @dev: device giving the context in which to translate the DMA address
* @in_addr: pointer to the DMA address to translate
* @return the translated DMA address; OF_BAD_ADDR on error
*/
u64 dev_translate_dma_address(const struct udevice *dev,
const fdt32_t *in_addr);
/**
* dev_read_alias_highest_id - Get highest alias id for the given stem
* @stem: Alias stem to be examined
*
* The function travels the lookup table to get the highest alias id for the
* given alias stem.
* @return alias ID, if found, else -1
*/
int dev_read_alias_highest_id(const char *stem);
/**
* dev_get_child_count() - get the child count of a device
*
* @dev: device to use for interation (struct udevice *)
* @return the count of child subnode
*/
int dev_get_child_count(const struct udevice *dev);
#else /* CONFIG_DM_DEV_READ_INLINE is enabled */
static inline int dev_read_u32(const struct udevice *dev,
const char *propname, u32 *outp)
{
return ofnode_read_u32(dev_ofnode(dev), propname, outp);
}
static inline int dev_read_u32_default(const struct udevice *dev,
const char *propname, int def)
{
return ofnode_read_u32_default(dev_ofnode(dev), propname, def);
}
static inline int dev_read_u32_index(struct udevice *dev,
const char *propname, int index, u32 *outp)
{
return ofnode_read_u32_index(dev_ofnode(dev), propname, index, outp);
}
static inline u32 dev_read_u32_index_default(struct udevice *dev,
const char *propname, int index,
u32 def)
{
return ofnode_read_u32_index_default(dev_ofnode(dev), propname, index,
def);
}
static inline int dev_read_s32(const struct udevice *dev,
const char *propname, s32 *outp)
{
return ofnode_read_s32(dev_ofnode(dev), propname, outp);
}
static inline int dev_read_s32_default(const struct udevice *dev,
const char *propname, int def)
{
return ofnode_read_s32_default(dev_ofnode(dev), propname, def);
}
static inline int dev_read_u32u(const struct udevice *dev,
const char *propname, uint *outp)
{
u32 val;
int ret;
ret = ofnode_read_u32(dev_ofnode(dev), propname, &val);
if (ret)
return ret;
*outp = val;
return 0;
}
static inline int dev_read_u64(const struct udevice *dev,
const char *propname, u64 *outp)
{
return ofnode_read_u64(dev_ofnode(dev), propname, outp);
}
static inline u64 dev_read_u64_default(const struct udevice *dev,
const char *propname, u64 def)
{
return ofnode_read_u64_default(dev_ofnode(dev), propname, def);
}
static inline const char *dev_read_string(const struct udevice *dev,
const char *propname)
{
return ofnode_read_string(dev_ofnode(dev), propname);
}
static inline bool dev_read_bool(const struct udevice *dev,
const char *propname)
{
return ofnode_read_bool(dev_ofnode(dev), propname);
}
static inline ofnode dev_read_subnode(const struct udevice *dev,
const char *subbnode_name)
{
return ofnode_find_subnode(dev_ofnode(dev), subbnode_name);
}
static inline int dev_read_size(const struct udevice *dev, const char *propname)
{
return ofnode_read_size(dev_ofnode(dev), propname);
}
static inline fdt_addr_t dev_read_addr_index(const struct udevice *dev,
int index)
{
return devfdt_get_addr_index(dev, index);
}
static inline fdt_addr_t dev_read_addr_size_index(const struct udevice *dev,
int index,
fdt_size_t *size)
{
return devfdt_get_addr_size_index(dev, index, size);
}
static inline fdt_addr_t dev_read_addr_name(const struct udevice *dev,
const char *name)
{
return devfdt_get_addr_name(dev, name);
}
static inline fdt_addr_t dev_read_addr_size_name(const struct udevice *dev,
const char *name,
fdt_size_t *size)
{
return devfdt_get_addr_size_name(dev, name, size);
}
static inline fdt_addr_t dev_read_addr(const struct udevice *dev)
{
return devfdt_get_addr(dev);
}
static inline void *dev_read_addr_ptr(const struct udevice *dev)
{
void *addr = devfdt_get_addr_ptr(dev);
return ((fdt_addr_t)(uintptr_t)addr == FDT_ADDR_T_NONE) ? NULL : addr;
}
static inline fdt_addr_t dev_read_addr_pci(const struct udevice *dev)
{
return devfdt_get_addr_pci(dev);
}
static inline void *dev_remap_addr(const struct udevice *dev)
{
return devfdt_remap_addr(dev);
}
static inline void *dev_remap_addr_index(const struct udevice *dev, int index)
{
return devfdt_remap_addr_index(dev, index);
}
static inline void *dev_remap_addr_name(const struct udevice *dev,
const char *name)
{
return devfdt_remap_addr_name(dev, name);
}
static inline fdt_addr_t dev_read_addr_size(const struct udevice *dev,
const char *propname,
fdt_size_t *sizep)
{
return ofnode_get_addr_size(dev_ofnode(dev), propname, sizep);
}
static inline const char *dev_read_name(const struct udevice *dev)
{
return ofnode_get_name(dev_ofnode(dev));
}
static inline int dev_read_stringlist_search(const struct udevice *dev,
const char *propname,
const char *string)
{
return ofnode_stringlist_search(dev_ofnode(dev), propname, string);
}
static inline int dev_read_string_index(const struct udevice *dev,
const char *propname, int index,
const char **outp)
{
return ofnode_read_string_index(dev_ofnode(dev), propname, index, outp);
}
static inline int dev_read_string_count(const struct udevice *dev,
const char *propname)
{
return ofnode_read_string_count(dev_ofnode(dev), propname);
}
static inline int dev_read_phandle_with_args(const struct udevice *dev,
const char *list_name, const char *cells_name, int cell_count,
int index, struct ofnode_phandle_args *out_args)
{
return ofnode_parse_phandle_with_args(dev_ofnode(dev), list_name,
cells_name, cell_count, index,
out_args);
}
static inline int dev_count_phandle_with_args(const struct udevice *dev,
const char *list_name, const char *cells_name)
{
return ofnode_count_phandle_with_args(dev_ofnode(dev), list_name,
cells_name);
}
static inline int dev_read_addr_cells(const struct udevice *dev)
{
/* NOTE: this call should walk up the parent stack */
return fdt_address_cells(gd->fdt_blob, dev_of_offset(dev));
}
static inline int dev_read_size_cells(const struct udevice *dev)
{
/* NOTE: this call should walk up the parent stack */
return fdt_size_cells(gd->fdt_blob, dev_of_offset(dev));
}
static inline int dev_read_simple_addr_cells(const struct udevice *dev)
{
return fdt_address_cells(gd->fdt_blob, dev_of_offset(dev));
}
static inline int dev_read_simple_size_cells(const struct udevice *dev)
{
return fdt_size_cells(gd->fdt_blob, dev_of_offset(dev));
}
static inline int dev_read_phandle(const struct udevice *dev)
{
return fdt_get_phandle(gd->fdt_blob, dev_of_offset(dev));
}
static inline const void *dev_read_prop(const struct udevice *dev,
const char *propname, int *lenp)
{
return ofnode_get_property(dev_ofnode(dev), propname, lenp);
}
static inline int dev_read_first_prop(const struct udevice *dev, struct ofprop *prop)
{
return ofnode_get_first_property(dev_ofnode(dev), prop);
}
static inline int dev_read_next_prop(struct ofprop *prop)
{
return ofnode_get_next_property(prop);
}
static inline const void *dev_read_prop_by_prop(struct ofprop *prop,
const char **propname,
int *lenp)
{
return ofnode_get_property_by_prop(prop, propname, lenp);
}
static inline int dev_read_alias_seq(const struct udevice *dev, int *devnump)
{
#if CONFIG_IS_ENABLED(OF_CONTROL)
return fdtdec_get_alias_seq(gd->fdt_blob, dev->uclass->uc_drv->name,
dev_of_offset(dev), devnump);
#else
return -ENOTSUPP;
#endif
}
static inline int dev_read_u32_array(const struct udevice *dev,
const char *propname, u32 *out_values,
size_t sz)
{
return ofnode_read_u32_array(dev_ofnode(dev), propname, out_values, sz);
}
static inline ofnode dev_read_first_subnode(const struct udevice *dev)
{
return ofnode_first_subnode(dev_ofnode(dev));
}
static inline ofnode dev_read_next_subnode(ofnode node)
{
return ofnode_next_subnode(node);
}
static inline const uint8_t *dev_read_u8_array_ptr(const struct udevice *dev,
const char *propname,
size_t sz)
{
return ofnode_read_u8_array_ptr(dev_ofnode(dev), propname, sz);
}
static inline int dev_read_enabled(const struct udevice *dev)
{
return fdtdec_get_is_enabled(gd->fdt_blob, dev_of_offset(dev));
}
static inline int dev_read_resource(const struct udevice *dev, uint index,
struct resource *res)
{
return ofnode_read_resource(dev_ofnode(dev), index, res);
}
static inline int dev_read_resource_byname(const struct udevice *dev,
const char *name,
struct resource *res)
{
return ofnode_read_resource_byname(dev_ofnode(dev), name, res);
}
static inline u64 dev_translate_address(const struct udevice *dev,
const fdt32_t *in_addr)
{
return ofnode_translate_address(dev_ofnode(dev), in_addr);
}
static inline u64 dev_translate_dma_address(const struct udevice *dev,
const fdt32_t *in_addr)
{
return ofnode_translate_dma_address(dev_ofnode(dev), in_addr);
}
static inline int dev_read_alias_highest_id(const char *stem)
{
if (!CONFIG_IS_ENABLED(OF_LIBFDT))
return -1;
return fdtdec_get_alias_highest_id(gd->fdt_blob, stem);
}
static inline int dev_get_child_count(const struct udevice *dev)
{
return ofnode_get_child_count(dev_ofnode(dev));
}
#endif /* CONFIG_DM_DEV_READ_INLINE */
/**
* dev_for_each_subnode() - Helper function to iterate through subnodes
*
* This creates a for() loop which works through the subnodes in a device's
* device-tree node.
*
* @subnode: ofnode holding the current subnode
* @dev: device to use for interation (struct udevice *)
*/
#define dev_for_each_subnode(subnode, dev) \
for (subnode = dev_read_first_subnode(dev); \
ofnode_valid(subnode); \
subnode = ofnode_next_subnode(subnode))
/**
* dev_for_each_property() - Helper function to iterate through property
*
* This creates a for() loop which works through the property in a device's
* device-tree node.
*
* @prop: struct ofprop holding the current property
* @dev: device to use for interation (struct udevice *)
*/
#define dev_for_each_property(prop, dev) \
for (int ret_prop = dev_read_first_prop(dev, &prop); \
!ret_prop; \
ret_prop = dev_read_next_prop(&prop))
#endif