mirror of
https://github.com/AsahiLinux/u-boot
synced 2024-12-30 06:53:09 +00:00
cb14cc8867
There are two different implementations to do a secure monitor call: smc_call() and arm_smccc_smc(). The former is defined in fwcall.c and seems to be an ad-hoc implementation. The latter is imported from linux. smc_call() is also only available if CONFIG_ARMV8_PSCI is not defined. This makes it impossible to have both PSCI calls and PSCI implementation in one u-boot build. The layerscape SoC code decide at runtime via check_psci() if there is a PSCI support. Therefore, this is a prerequisite patch to add PSCI implementation support for the layerscape SoCs. Note, for the TFA part, this is only compile time tested with (ls1028ardb_tfa_defconfig). Signed-off-by: Michael Walle <michael@walle.cc> [Rebased] Signed-off-by: Priyanka Jain <priyanka.jain@nxp.com>
338 lines
8.5 KiB
C
338 lines
8.5 KiB
C
// SPDX-License-Identifier: GPL-2.0+
|
|
/*
|
|
* Copyright 2014-2015 Freescale Semiconductor, Inc.
|
|
*/
|
|
|
|
#include <common.h>
|
|
#include <clock_legacy.h>
|
|
#include <cpu_func.h>
|
|
#include <image.h>
|
|
#include <log.h>
|
|
#include <asm/cache.h>
|
|
#include <asm/global_data.h>
|
|
#include <asm/io.h>
|
|
#include <asm/ptrace.h>
|
|
#include <asm/system.h>
|
|
#include <asm/arch/mp.h>
|
|
#include <asm/arch/soc.h>
|
|
#include <linux/compat.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/psci.h>
|
|
#include <malloc.h>
|
|
#include "cpu.h"
|
|
#include <asm/arch-fsl-layerscape/soc.h>
|
|
|
|
DECLARE_GLOBAL_DATA_PTR;
|
|
|
|
void *get_spin_tbl_addr(void)
|
|
{
|
|
/* the spin table is at the beginning */
|
|
return secondary_boot_code_start;
|
|
}
|
|
|
|
void update_os_arch_secondary_cores(uint8_t os_arch)
|
|
{
|
|
u64 *table = get_spin_tbl_addr();
|
|
int i;
|
|
|
|
for (i = 1; i < CONFIG_MAX_CPUS; i++) {
|
|
if (os_arch == IH_ARCH_DEFAULT)
|
|
table[i * WORDS_PER_SPIN_TABLE_ENTRY +
|
|
SPIN_TABLE_ELEM_ARCH_COMP_IDX] = OS_ARCH_SAME;
|
|
else
|
|
table[i * WORDS_PER_SPIN_TABLE_ENTRY +
|
|
SPIN_TABLE_ELEM_ARCH_COMP_IDX] = OS_ARCH_DIFF;
|
|
}
|
|
}
|
|
|
|
#ifdef CONFIG_FSL_LSCH3
|
|
static void wake_secondary_core_n(int cluster, int core, int cluster_cores)
|
|
{
|
|
struct ccsr_gur __iomem *gur = (void *)(CONFIG_SYS_FSL_GUTS_ADDR);
|
|
struct ccsr_reset __iomem *rst = (void *)(CONFIG_SYS_FSL_RST_ADDR);
|
|
u32 mpidr = 0;
|
|
|
|
mpidr = ((cluster << 8) | core);
|
|
/*
|
|
* mpidr_el1 register value of core which needs to be released
|
|
* is written to scratchrw[6] register
|
|
*/
|
|
gur_out32(&gur->scratchrw[6], mpidr);
|
|
asm volatile("dsb st" : : : "memory");
|
|
rst->brrl |= 1 << ((cluster * cluster_cores) + core);
|
|
asm volatile("dsb st" : : : "memory");
|
|
/*
|
|
* scratchrw[6] register value is polled
|
|
* when the value becomes zero, this means that this core is up
|
|
* and running, next core can be released now
|
|
*/
|
|
while (gur_in32(&gur->scratchrw[6]) != 0)
|
|
;
|
|
}
|
|
#endif
|
|
|
|
int fsl_layerscape_wake_seconday_cores(void)
|
|
{
|
|
struct ccsr_gur __iomem *gur = (void *)(CONFIG_SYS_FSL_GUTS_ADDR);
|
|
#ifdef CONFIG_FSL_LSCH3
|
|
struct ccsr_reset __iomem *rst = (void *)(CONFIG_SYS_FSL_RST_ADDR);
|
|
u32 svr, ver, cluster, type;
|
|
int j = 0, cluster_cores = 0;
|
|
#elif defined(CONFIG_FSL_LSCH2)
|
|
struct ccsr_scfg __iomem *scfg = (void *)(CONFIG_SYS_FSL_SCFG_ADDR);
|
|
#endif
|
|
u32 cores, cpu_up_mask = 1;
|
|
int i, timeout = 10;
|
|
u64 *table;
|
|
#ifdef CONFIG_EFI_LOADER
|
|
void *reloc_addr;
|
|
#endif
|
|
|
|
#ifdef COUNTER_FREQUENCY_REAL
|
|
/* update for secondary cores */
|
|
__real_cntfrq = COUNTER_FREQUENCY_REAL;
|
|
flush_dcache_range((unsigned long)&__real_cntfrq,
|
|
(unsigned long)&__real_cntfrq + 8);
|
|
#endif
|
|
|
|
#ifdef CONFIG_EFI_LOADER
|
|
/*
|
|
* EFI will reserve 64kb for its runtime services. This will probably
|
|
* overlap with our spin table code, which is why we have to relocate
|
|
* it.
|
|
* Keep this after the __real_cntfrq update, so we have it when we
|
|
* copy the complete section here.
|
|
*/
|
|
reloc_addr = memalign(PAGE_SIZE,
|
|
round_up(secondary_boot_code_size, PAGE_SIZE));
|
|
if (reloc_addr) {
|
|
debug("Relocating spin table from %p to %p (size %lx)\n",
|
|
secondary_boot_code_start, reloc_addr,
|
|
secondary_boot_code_size);
|
|
memcpy(reloc_addr, secondary_boot_code_start,
|
|
secondary_boot_code_size);
|
|
flush_dcache_range((unsigned long)reloc_addr,
|
|
(unsigned long)reloc_addr +
|
|
secondary_boot_code_size);
|
|
|
|
/* set new entry point for secondary cores */
|
|
secondary_boot_addr += reloc_addr -
|
|
secondary_boot_code_start;
|
|
flush_dcache_range((unsigned long)&secondary_boot_addr,
|
|
(unsigned long)&secondary_boot_addr + 8);
|
|
|
|
/* this will be used to reserve the memory */
|
|
secondary_boot_code_start = reloc_addr;
|
|
}
|
|
#endif
|
|
|
|
cores = cpu_mask();
|
|
/* Clear spin table so that secondary processors
|
|
* observe the correct value after waking up from wfe.
|
|
*/
|
|
table = get_spin_tbl_addr();
|
|
memset(table, 0, CONFIG_MAX_CPUS*SPIN_TABLE_ELEM_SIZE);
|
|
flush_dcache_range((unsigned long)table,
|
|
(unsigned long)table +
|
|
(CONFIG_MAX_CPUS*SPIN_TABLE_ELEM_SIZE));
|
|
|
|
debug("Waking secondary cores to start from %lx\n", gd->relocaddr);
|
|
|
|
#ifdef CONFIG_FSL_LSCH3
|
|
gur_out32(&gur->bootlocptrh, (u32)(gd->relocaddr >> 32));
|
|
gur_out32(&gur->bootlocptrl, (u32)gd->relocaddr);
|
|
|
|
svr = gur_in32(&gur->svr);
|
|
ver = SVR_SOC_VER(svr);
|
|
if (ver == SVR_LS2080A || ver == SVR_LS2085A) {
|
|
gur_out32(&gur->scratchrw[6], 1);
|
|
asm volatile("dsb st" : : : "memory");
|
|
rst->brrl = cores;
|
|
asm volatile("dsb st" : : : "memory");
|
|
} else {
|
|
/*
|
|
* Release the cores out of reset one-at-a-time to avoid
|
|
* power spikes
|
|
*/
|
|
i = 0;
|
|
cluster = in_le32(&gur->tp_cluster[i].lower);
|
|
for (j = 0; j < TP_INIT_PER_CLUSTER; j++) {
|
|
type = initiator_type(cluster, j);
|
|
if (type &&
|
|
TP_ITYP_TYPE(type) == TP_ITYP_TYPE_ARM)
|
|
cluster_cores++;
|
|
}
|
|
|
|
do {
|
|
cluster = in_le32(&gur->tp_cluster[i].lower);
|
|
for (j = 0; j < TP_INIT_PER_CLUSTER; j++) {
|
|
type = initiator_type(cluster, j);
|
|
if (type &&
|
|
TP_ITYP_TYPE(type) == TP_ITYP_TYPE_ARM)
|
|
wake_secondary_core_n(i, j,
|
|
cluster_cores);
|
|
}
|
|
i++;
|
|
} while ((cluster & TP_CLUSTER_EOC) != TP_CLUSTER_EOC);
|
|
}
|
|
#elif defined(CONFIG_FSL_LSCH2)
|
|
scfg_out32(&scfg->scratchrw[0], (u32)(gd->relocaddr >> 32));
|
|
scfg_out32(&scfg->scratchrw[1], (u32)gd->relocaddr);
|
|
asm volatile("dsb st" : : : "memory");
|
|
gur_out32(&gur->brrl, cores);
|
|
asm volatile("dsb st" : : : "memory");
|
|
|
|
/* Bootup online cores */
|
|
scfg_out32(&scfg->corebcr, cores);
|
|
#endif
|
|
/* This is needed as a precautionary measure.
|
|
* If some code before this has accidentally released the secondary
|
|
* cores then the pre-bootloader code will trap them in a "wfe" unless
|
|
* the scratchrw[6] is set. In this case we need a sev here to get these
|
|
* cores moving again.
|
|
*/
|
|
asm volatile("sev");
|
|
|
|
while (timeout--) {
|
|
flush_dcache_range((unsigned long)table, (unsigned long)table +
|
|
CONFIG_MAX_CPUS * 64);
|
|
for (i = 1; i < CONFIG_MAX_CPUS; i++) {
|
|
if (table[i * WORDS_PER_SPIN_TABLE_ENTRY +
|
|
SPIN_TABLE_ELEM_STATUS_IDX])
|
|
cpu_up_mask |= 1 << i;
|
|
}
|
|
if (hweight32(cpu_up_mask) == hweight32(cores))
|
|
break;
|
|
udelay(10);
|
|
}
|
|
if (timeout <= 0) {
|
|
printf("CPU: Failed to bring up some cores (mask 0x%x)\n",
|
|
cores ^ cpu_up_mask);
|
|
return 1;
|
|
}
|
|
printf("CPU: %d cores online\n", hweight32(cores));
|
|
|
|
return 0;
|
|
}
|
|
|
|
int is_core_valid(unsigned int core)
|
|
{
|
|
return !!((1 << core) & cpu_mask());
|
|
}
|
|
|
|
static int is_pos_valid(unsigned int pos)
|
|
{
|
|
return !!((1 << pos) & cpu_pos_mask());
|
|
}
|
|
|
|
int is_core_online(u64 cpu_id)
|
|
{
|
|
u64 *table = get_spin_tbl_addr();
|
|
int pos = id_to_core(cpu_id);
|
|
table += pos * WORDS_PER_SPIN_TABLE_ENTRY;
|
|
return table[SPIN_TABLE_ELEM_STATUS_IDX] == 1;
|
|
}
|
|
|
|
int cpu_reset(u32 nr)
|
|
{
|
|
puts("Feature is not implemented.\n");
|
|
|
|
return 0;
|
|
}
|
|
|
|
int cpu_disable(u32 nr)
|
|
{
|
|
puts("Feature is not implemented.\n");
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int core_to_pos(int nr)
|
|
{
|
|
u32 cores = cpu_pos_mask();
|
|
int i, count = 0;
|
|
|
|
if (nr == 0) {
|
|
return 0;
|
|
} else if (nr >= hweight32(cores)) {
|
|
puts("Not a valid core number.\n");
|
|
return -1;
|
|
}
|
|
|
|
for (i = 1; i < 32; i++) {
|
|
if (is_pos_valid(i)) {
|
|
count++;
|
|
if (count == nr)
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (count != nr)
|
|
return -1;
|
|
|
|
return i;
|
|
}
|
|
|
|
int cpu_status(u32 nr)
|
|
{
|
|
u64 *table = get_spin_tbl_addr();
|
|
int pos;
|
|
|
|
if (nr == 0) {
|
|
printf("table base @ 0x%p\n", table);
|
|
} else {
|
|
pos = core_to_pos(nr);
|
|
if (pos < 0)
|
|
return -1;
|
|
table += pos * WORDS_PER_SPIN_TABLE_ENTRY;
|
|
printf("table @ 0x%p\n", table);
|
|
printf(" addr - 0x%016llx\n",
|
|
table[SPIN_TABLE_ELEM_ENTRY_ADDR_IDX]);
|
|
printf(" status - 0x%016llx\n",
|
|
table[SPIN_TABLE_ELEM_STATUS_IDX]);
|
|
printf(" lpid - 0x%016llx\n",
|
|
table[SPIN_TABLE_ELEM_LPID_IDX]);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
int cpu_release(u32 nr, int argc, char *const argv[])
|
|
{
|
|
u64 boot_addr;
|
|
u64 *table = get_spin_tbl_addr();
|
|
int pos;
|
|
int ret;
|
|
|
|
boot_addr = simple_strtoull(argv[0], NULL, 16);
|
|
|
|
if (check_psci()) {
|
|
/* SPIN Table is used */
|
|
pos = core_to_pos(nr);
|
|
if (pos <= 0)
|
|
return -1;
|
|
|
|
table += pos * WORDS_PER_SPIN_TABLE_ENTRY;
|
|
table[SPIN_TABLE_ELEM_ENTRY_ADDR_IDX] = boot_addr;
|
|
flush_dcache_range((unsigned long)table,
|
|
(unsigned long)table + SPIN_TABLE_ELEM_SIZE);
|
|
asm volatile("dsb st");
|
|
|
|
/*
|
|
* The secondary CPUs polling the spin-table above for a non-zero
|
|
* value. To save power "wfe" is called. Thus call "sev" here to
|
|
* wake the CPUs and let them check the spin-table again (see
|
|
* slave_cpu loop in lowlevel.S)
|
|
*/
|
|
asm volatile("sev");
|
|
} else {
|
|
/* Use PSCI to kick the core */
|
|
printf("begin to kick cpu core #%d to address %llx\n",
|
|
nr, boot_addr);
|
|
ret = invoke_psci_fn(PSCI_0_2_FN64_CPU_ON, nr, boot_addr, 0);
|
|
if (ret)
|
|
return -1;
|
|
}
|
|
|
|
return 0;
|
|
}
|