mirror of
https://github.com/AsahiLinux/u-boot
synced 2024-11-30 08:31:03 +00:00
1a4596601f
Signed-off-by: Wolfgang Denk <wd@denx.de> [trini: Fixup common/cmd_io.c] Signed-off-by: Tom Rini <trini@ti.com>
1262 lines
36 KiB
C
1262 lines
36 KiB
C
/*
|
|
* Copyright (c) International Business Machines Corp., 2006
|
|
* Copyright (c) Nokia Corporation, 2006, 2007
|
|
*
|
|
* SPDX-License-Identifier: GPL-2.0+
|
|
*
|
|
* Author: Artem Bityutskiy (Битюцкий Артём)
|
|
*/
|
|
|
|
/*
|
|
* UBI input/output unit.
|
|
*
|
|
* This unit provides a uniform way to work with all kinds of the underlying
|
|
* MTD devices. It also implements handy functions for reading and writing UBI
|
|
* headers.
|
|
*
|
|
* We are trying to have a paranoid mindset and not to trust to what we read
|
|
* from the flash media in order to be more secure and robust. So this unit
|
|
* validates every single header it reads from the flash media.
|
|
*
|
|
* Some words about how the eraseblock headers are stored.
|
|
*
|
|
* The erase counter header is always stored at offset zero. By default, the
|
|
* VID header is stored after the EC header at the closest aligned offset
|
|
* (i.e. aligned to the minimum I/O unit size). Data starts next to the VID
|
|
* header at the closest aligned offset. But this default layout may be
|
|
* changed. For example, for different reasons (e.g., optimization) UBI may be
|
|
* asked to put the VID header at further offset, and even at an unaligned
|
|
* offset. Of course, if the offset of the VID header is unaligned, UBI adds
|
|
* proper padding in front of it. Data offset may also be changed but it has to
|
|
* be aligned.
|
|
*
|
|
* About minimal I/O units. In general, UBI assumes flash device model where
|
|
* there is only one minimal I/O unit size. E.g., in case of NOR flash it is 1,
|
|
* in case of NAND flash it is a NAND page, etc. This is reported by MTD in the
|
|
* @ubi->mtd->writesize field. But as an exception, UBI admits of using another
|
|
* (smaller) minimal I/O unit size for EC and VID headers to make it possible
|
|
* to do different optimizations.
|
|
*
|
|
* This is extremely useful in case of NAND flashes which admit of several
|
|
* write operations to one NAND page. In this case UBI can fit EC and VID
|
|
* headers at one NAND page. Thus, UBI may use "sub-page" size as the minimal
|
|
* I/O unit for the headers (the @ubi->hdrs_min_io_size field). But it still
|
|
* reports NAND page size (@ubi->min_io_size) as a minimal I/O unit for the UBI
|
|
* users.
|
|
*
|
|
* Example: some Samsung NANDs with 2KiB pages allow 4x 512-byte writes, so
|
|
* although the minimal I/O unit is 2K, UBI uses 512 bytes for EC and VID
|
|
* headers.
|
|
*
|
|
* Q: why not just to treat sub-page as a minimal I/O unit of this flash
|
|
* device, e.g., make @ubi->min_io_size = 512 in the example above?
|
|
*
|
|
* A: because when writing a sub-page, MTD still writes a full 2K page but the
|
|
* bytes which are no relevant to the sub-page are 0xFF. So, basically, writing
|
|
* 4x512 sub-pages is 4 times slower then writing one 2KiB NAND page. Thus, we
|
|
* prefer to use sub-pages only for EV and VID headers.
|
|
*
|
|
* As it was noted above, the VID header may start at a non-aligned offset.
|
|
* For example, in case of a 2KiB page NAND flash with a 512 bytes sub-page,
|
|
* the VID header may reside at offset 1984 which is the last 64 bytes of the
|
|
* last sub-page (EC header is always at offset zero). This causes some
|
|
* difficulties when reading and writing VID headers.
|
|
*
|
|
* Suppose we have a 64-byte buffer and we read a VID header at it. We change
|
|
* the data and want to write this VID header out. As we can only write in
|
|
* 512-byte chunks, we have to allocate one more buffer and copy our VID header
|
|
* to offset 448 of this buffer.
|
|
*
|
|
* The I/O unit does the following trick in order to avoid this extra copy.
|
|
* It always allocates a @ubi->vid_hdr_alsize bytes buffer for the VID header
|
|
* and returns a pointer to offset @ubi->vid_hdr_shift of this buffer. When the
|
|
* VID header is being written out, it shifts the VID header pointer back and
|
|
* writes the whole sub-page.
|
|
*/
|
|
|
|
#ifdef UBI_LINUX
|
|
#include <linux/crc32.h>
|
|
#include <linux/err.h>
|
|
#endif
|
|
|
|
#include <ubi_uboot.h>
|
|
#include "ubi.h"
|
|
|
|
#ifdef CONFIG_MTD_UBI_DEBUG_PARANOID
|
|
static int paranoid_check_not_bad(const struct ubi_device *ubi, int pnum);
|
|
static int paranoid_check_peb_ec_hdr(const struct ubi_device *ubi, int pnum);
|
|
static int paranoid_check_ec_hdr(const struct ubi_device *ubi, int pnum,
|
|
const struct ubi_ec_hdr *ec_hdr);
|
|
static int paranoid_check_peb_vid_hdr(const struct ubi_device *ubi, int pnum);
|
|
static int paranoid_check_vid_hdr(const struct ubi_device *ubi, int pnum,
|
|
const struct ubi_vid_hdr *vid_hdr);
|
|
static int paranoid_check_all_ff(struct ubi_device *ubi, int pnum, int offset,
|
|
int len);
|
|
#else
|
|
#define paranoid_check_not_bad(ubi, pnum) 0
|
|
#define paranoid_check_peb_ec_hdr(ubi, pnum) 0
|
|
#define paranoid_check_ec_hdr(ubi, pnum, ec_hdr) 0
|
|
#define paranoid_check_peb_vid_hdr(ubi, pnum) 0
|
|
#define paranoid_check_vid_hdr(ubi, pnum, vid_hdr) 0
|
|
#define paranoid_check_all_ff(ubi, pnum, offset, len) 0
|
|
#endif
|
|
|
|
/**
|
|
* ubi_io_read - read data from a physical eraseblock.
|
|
* @ubi: UBI device description object
|
|
* @buf: buffer where to store the read data
|
|
* @pnum: physical eraseblock number to read from
|
|
* @offset: offset within the physical eraseblock from where to read
|
|
* @len: how many bytes to read
|
|
*
|
|
* This function reads data from offset @offset of physical eraseblock @pnum
|
|
* and stores the read data in the @buf buffer. The following return codes are
|
|
* possible:
|
|
*
|
|
* o %0 if all the requested data were successfully read;
|
|
* o %UBI_IO_BITFLIPS if all the requested data were successfully read, but
|
|
* correctable bit-flips were detected; this is harmless but may indicate
|
|
* that this eraseblock may become bad soon (but do not have to);
|
|
* o %-EBADMSG if the MTD subsystem reported about data integrity problems, for
|
|
* example it can be an ECC error in case of NAND; this most probably means
|
|
* that the data is corrupted;
|
|
* o %-EIO if some I/O error occurred;
|
|
* o other negative error codes in case of other errors.
|
|
*/
|
|
int ubi_io_read(const struct ubi_device *ubi, void *buf, int pnum, int offset,
|
|
int len)
|
|
{
|
|
int err, retries = 0;
|
|
size_t read;
|
|
loff_t addr;
|
|
|
|
dbg_io("read %d bytes from PEB %d:%d", len, pnum, offset);
|
|
|
|
ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
|
|
ubi_assert(offset >= 0 && offset + len <= ubi->peb_size);
|
|
ubi_assert(len > 0);
|
|
|
|
err = paranoid_check_not_bad(ubi, pnum);
|
|
if (err)
|
|
return err > 0 ? -EINVAL : err;
|
|
|
|
addr = (loff_t)pnum * ubi->peb_size + offset;
|
|
retry:
|
|
err = mtd_read(ubi->mtd, addr, len, &read, buf);
|
|
if (err) {
|
|
if (err == -EUCLEAN) {
|
|
/*
|
|
* -EUCLEAN is reported if there was a bit-flip which
|
|
* was corrected, so this is harmless.
|
|
*/
|
|
ubi_msg("fixable bit-flip detected at PEB %d", pnum);
|
|
ubi_assert(len == read);
|
|
return UBI_IO_BITFLIPS;
|
|
}
|
|
|
|
if (read != len && retries++ < UBI_IO_RETRIES) {
|
|
dbg_io("error %d while reading %d bytes from PEB %d:%d, "
|
|
"read only %zd bytes, retry",
|
|
err, len, pnum, offset, read);
|
|
yield();
|
|
goto retry;
|
|
}
|
|
|
|
ubi_err("error %d while reading %d bytes from PEB %d:%d, "
|
|
"read %zd bytes", err, len, pnum, offset, read);
|
|
ubi_dbg_dump_stack();
|
|
|
|
/*
|
|
* The driver should never return -EBADMSG if it failed to read
|
|
* all the requested data. But some buggy drivers might do
|
|
* this, so we change it to -EIO.
|
|
*/
|
|
if (read != len && err == -EBADMSG) {
|
|
ubi_assert(0);
|
|
printk("%s[%d] not here\n", __func__, __LINE__);
|
|
/* err = -EIO; */
|
|
}
|
|
} else {
|
|
ubi_assert(len == read);
|
|
|
|
if (ubi_dbg_is_bitflip()) {
|
|
dbg_msg("bit-flip (emulated)");
|
|
err = UBI_IO_BITFLIPS;
|
|
}
|
|
}
|
|
|
|
return err;
|
|
}
|
|
|
|
/**
|
|
* ubi_io_write - write data to a physical eraseblock.
|
|
* @ubi: UBI device description object
|
|
* @buf: buffer with the data to write
|
|
* @pnum: physical eraseblock number to write to
|
|
* @offset: offset within the physical eraseblock where to write
|
|
* @len: how many bytes to write
|
|
*
|
|
* This function writes @len bytes of data from buffer @buf to offset @offset
|
|
* of physical eraseblock @pnum. If all the data were successfully written,
|
|
* zero is returned. If an error occurred, this function returns a negative
|
|
* error code. If %-EIO is returned, the physical eraseblock most probably went
|
|
* bad.
|
|
*
|
|
* Note, in case of an error, it is possible that something was still written
|
|
* to the flash media, but may be some garbage.
|
|
*/
|
|
int ubi_io_write(struct ubi_device *ubi, const void *buf, int pnum, int offset,
|
|
int len)
|
|
{
|
|
int err;
|
|
size_t written;
|
|
loff_t addr;
|
|
|
|
dbg_io("write %d bytes to PEB %d:%d", len, pnum, offset);
|
|
|
|
ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
|
|
ubi_assert(offset >= 0 && offset + len <= ubi->peb_size);
|
|
ubi_assert(offset % ubi->hdrs_min_io_size == 0);
|
|
ubi_assert(len > 0 && len % ubi->hdrs_min_io_size == 0);
|
|
|
|
if (ubi->ro_mode) {
|
|
ubi_err("read-only mode");
|
|
return -EROFS;
|
|
}
|
|
|
|
/* The below has to be compiled out if paranoid checks are disabled */
|
|
|
|
err = paranoid_check_not_bad(ubi, pnum);
|
|
if (err)
|
|
return err > 0 ? -EINVAL : err;
|
|
|
|
/* The area we are writing to has to contain all 0xFF bytes */
|
|
err = paranoid_check_all_ff(ubi, pnum, offset, len);
|
|
if (err)
|
|
return err > 0 ? -EINVAL : err;
|
|
|
|
if (offset >= ubi->leb_start) {
|
|
/*
|
|
* We write to the data area of the physical eraseblock. Make
|
|
* sure it has valid EC and VID headers.
|
|
*/
|
|
err = paranoid_check_peb_ec_hdr(ubi, pnum);
|
|
if (err)
|
|
return err > 0 ? -EINVAL : err;
|
|
err = paranoid_check_peb_vid_hdr(ubi, pnum);
|
|
if (err)
|
|
return err > 0 ? -EINVAL : err;
|
|
}
|
|
|
|
if (ubi_dbg_is_write_failure()) {
|
|
dbg_err("cannot write %d bytes to PEB %d:%d "
|
|
"(emulated)", len, pnum, offset);
|
|
ubi_dbg_dump_stack();
|
|
return -EIO;
|
|
}
|
|
|
|
addr = (loff_t)pnum * ubi->peb_size + offset;
|
|
err = mtd_write(ubi->mtd, addr, len, &written, buf);
|
|
if (err) {
|
|
ubi_err("error %d while writing %d bytes to PEB %d:%d, written"
|
|
" %zd bytes", err, len, pnum, offset, written);
|
|
ubi_dbg_dump_stack();
|
|
} else
|
|
ubi_assert(written == len);
|
|
|
|
return err;
|
|
}
|
|
|
|
/**
|
|
* erase_callback - MTD erasure call-back.
|
|
* @ei: MTD erase information object.
|
|
*
|
|
* Note, even though MTD erase interface is asynchronous, all the current
|
|
* implementations are synchronous anyway.
|
|
*/
|
|
static void erase_callback(struct erase_info *ei)
|
|
{
|
|
wake_up_interruptible((wait_queue_head_t *)ei->priv);
|
|
}
|
|
|
|
/**
|
|
* do_sync_erase - synchronously erase a physical eraseblock.
|
|
* @ubi: UBI device description object
|
|
* @pnum: the physical eraseblock number to erase
|
|
*
|
|
* This function synchronously erases physical eraseblock @pnum and returns
|
|
* zero in case of success and a negative error code in case of failure. If
|
|
* %-EIO is returned, the physical eraseblock most probably went bad.
|
|
*/
|
|
static int do_sync_erase(struct ubi_device *ubi, int pnum)
|
|
{
|
|
int err, retries = 0;
|
|
struct erase_info ei;
|
|
wait_queue_head_t wq;
|
|
|
|
dbg_io("erase PEB %d", pnum);
|
|
|
|
retry:
|
|
init_waitqueue_head(&wq);
|
|
memset(&ei, 0, sizeof(struct erase_info));
|
|
|
|
ei.mtd = ubi->mtd;
|
|
ei.addr = (loff_t)pnum * ubi->peb_size;
|
|
ei.len = ubi->peb_size;
|
|
ei.callback = erase_callback;
|
|
ei.priv = (unsigned long)&wq;
|
|
|
|
err = mtd_erase(ubi->mtd, &ei);
|
|
if (err) {
|
|
if (retries++ < UBI_IO_RETRIES) {
|
|
dbg_io("error %d while erasing PEB %d, retry",
|
|
err, pnum);
|
|
yield();
|
|
goto retry;
|
|
}
|
|
ubi_err("cannot erase PEB %d, error %d", pnum, err);
|
|
ubi_dbg_dump_stack();
|
|
return err;
|
|
}
|
|
|
|
err = wait_event_interruptible(wq, ei.state == MTD_ERASE_DONE ||
|
|
ei.state == MTD_ERASE_FAILED);
|
|
if (err) {
|
|
ubi_err("interrupted PEB %d erasure", pnum);
|
|
return -EINTR;
|
|
}
|
|
|
|
if (ei.state == MTD_ERASE_FAILED) {
|
|
if (retries++ < UBI_IO_RETRIES) {
|
|
dbg_io("error while erasing PEB %d, retry", pnum);
|
|
yield();
|
|
goto retry;
|
|
}
|
|
ubi_err("cannot erase PEB %d", pnum);
|
|
ubi_dbg_dump_stack();
|
|
return -EIO;
|
|
}
|
|
|
|
err = paranoid_check_all_ff(ubi, pnum, 0, ubi->peb_size);
|
|
if (err)
|
|
return err > 0 ? -EINVAL : err;
|
|
|
|
if (ubi_dbg_is_erase_failure() && !err) {
|
|
dbg_err("cannot erase PEB %d (emulated)", pnum);
|
|
return -EIO;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* check_pattern - check if buffer contains only a certain byte pattern.
|
|
* @buf: buffer to check
|
|
* @patt: the pattern to check
|
|
* @size: buffer size in bytes
|
|
*
|
|
* This function returns %1 in there are only @patt bytes in @buf, and %0 if
|
|
* something else was also found.
|
|
*/
|
|
static int check_pattern(const void *buf, uint8_t patt, int size)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < size; i++)
|
|
if (((const uint8_t *)buf)[i] != patt)
|
|
return 0;
|
|
return 1;
|
|
}
|
|
|
|
/* Patterns to write to a physical eraseblock when torturing it */
|
|
static uint8_t patterns[] = {0xa5, 0x5a, 0x0};
|
|
|
|
/**
|
|
* torture_peb - test a supposedly bad physical eraseblock.
|
|
* @ubi: UBI device description object
|
|
* @pnum: the physical eraseblock number to test
|
|
*
|
|
* This function returns %-EIO if the physical eraseblock did not pass the
|
|
* test, a positive number of erase operations done if the test was
|
|
* successfully passed, and other negative error codes in case of other errors.
|
|
*/
|
|
static int torture_peb(struct ubi_device *ubi, int pnum)
|
|
{
|
|
int err, i, patt_count;
|
|
|
|
patt_count = ARRAY_SIZE(patterns);
|
|
ubi_assert(patt_count > 0);
|
|
|
|
mutex_lock(&ubi->buf_mutex);
|
|
for (i = 0; i < patt_count; i++) {
|
|
err = do_sync_erase(ubi, pnum);
|
|
if (err)
|
|
goto out;
|
|
|
|
/* Make sure the PEB contains only 0xFF bytes */
|
|
err = ubi_io_read(ubi, ubi->peb_buf1, pnum, 0, ubi->peb_size);
|
|
if (err)
|
|
goto out;
|
|
|
|
err = check_pattern(ubi->peb_buf1, 0xFF, ubi->peb_size);
|
|
if (err == 0) {
|
|
ubi_err("erased PEB %d, but a non-0xFF byte found",
|
|
pnum);
|
|
err = -EIO;
|
|
goto out;
|
|
}
|
|
|
|
/* Write a pattern and check it */
|
|
memset(ubi->peb_buf1, patterns[i], ubi->peb_size);
|
|
err = ubi_io_write(ubi, ubi->peb_buf1, pnum, 0, ubi->peb_size);
|
|
if (err)
|
|
goto out;
|
|
|
|
memset(ubi->peb_buf1, ~patterns[i], ubi->peb_size);
|
|
err = ubi_io_read(ubi, ubi->peb_buf1, pnum, 0, ubi->peb_size);
|
|
if (err)
|
|
goto out;
|
|
|
|
err = check_pattern(ubi->peb_buf1, patterns[i], ubi->peb_size);
|
|
if (err == 0) {
|
|
ubi_err("pattern %x checking failed for PEB %d",
|
|
patterns[i], pnum);
|
|
err = -EIO;
|
|
goto out;
|
|
}
|
|
}
|
|
|
|
err = patt_count;
|
|
|
|
out:
|
|
mutex_unlock(&ubi->buf_mutex);
|
|
if (err == UBI_IO_BITFLIPS || err == -EBADMSG) {
|
|
/*
|
|
* If a bit-flip or data integrity error was detected, the test
|
|
* has not passed because it happened on a freshly erased
|
|
* physical eraseblock which means something is wrong with it.
|
|
*/
|
|
ubi_err("read problems on freshly erased PEB %d, must be bad",
|
|
pnum);
|
|
err = -EIO;
|
|
}
|
|
return err;
|
|
}
|
|
|
|
/**
|
|
* ubi_io_sync_erase - synchronously erase a physical eraseblock.
|
|
* @ubi: UBI device description object
|
|
* @pnum: physical eraseblock number to erase
|
|
* @torture: if this physical eraseblock has to be tortured
|
|
*
|
|
* This function synchronously erases physical eraseblock @pnum. If @torture
|
|
* flag is not zero, the physical eraseblock is checked by means of writing
|
|
* different patterns to it and reading them back. If the torturing is enabled,
|
|
* the physical eraseblock is erased more then once.
|
|
*
|
|
* This function returns the number of erasures made in case of success, %-EIO
|
|
* if the erasure failed or the torturing test failed, and other negative error
|
|
* codes in case of other errors. Note, %-EIO means that the physical
|
|
* eraseblock is bad.
|
|
*/
|
|
int ubi_io_sync_erase(struct ubi_device *ubi, int pnum, int torture)
|
|
{
|
|
int err, ret = 0;
|
|
|
|
ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
|
|
|
|
err = paranoid_check_not_bad(ubi, pnum);
|
|
if (err != 0)
|
|
return err > 0 ? -EINVAL : err;
|
|
|
|
if (ubi->ro_mode) {
|
|
ubi_err("read-only mode");
|
|
return -EROFS;
|
|
}
|
|
|
|
if (torture) {
|
|
ret = torture_peb(ubi, pnum);
|
|
if (ret < 0)
|
|
return ret;
|
|
}
|
|
|
|
err = do_sync_erase(ubi, pnum);
|
|
if (err)
|
|
return err;
|
|
|
|
return ret + 1;
|
|
}
|
|
|
|
/**
|
|
* ubi_io_is_bad - check if a physical eraseblock is bad.
|
|
* @ubi: UBI device description object
|
|
* @pnum: the physical eraseblock number to check
|
|
*
|
|
* This function returns a positive number if the physical eraseblock is bad,
|
|
* zero if not, and a negative error code if an error occurred.
|
|
*/
|
|
int ubi_io_is_bad(const struct ubi_device *ubi, int pnum)
|
|
{
|
|
struct mtd_info *mtd = ubi->mtd;
|
|
|
|
ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
|
|
|
|
if (ubi->bad_allowed) {
|
|
int ret;
|
|
|
|
ret = mtd_block_isbad(mtd, (loff_t)pnum * ubi->peb_size);
|
|
if (ret < 0)
|
|
ubi_err("error %d while checking if PEB %d is bad",
|
|
ret, pnum);
|
|
else if (ret)
|
|
dbg_io("PEB %d is bad", pnum);
|
|
return ret;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* ubi_io_mark_bad - mark a physical eraseblock as bad.
|
|
* @ubi: UBI device description object
|
|
* @pnum: the physical eraseblock number to mark
|
|
*
|
|
* This function returns zero in case of success and a negative error code in
|
|
* case of failure.
|
|
*/
|
|
int ubi_io_mark_bad(const struct ubi_device *ubi, int pnum)
|
|
{
|
|
int err;
|
|
struct mtd_info *mtd = ubi->mtd;
|
|
|
|
ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
|
|
|
|
if (ubi->ro_mode) {
|
|
ubi_err("read-only mode");
|
|
return -EROFS;
|
|
}
|
|
|
|
if (!ubi->bad_allowed)
|
|
return 0;
|
|
|
|
err = mtd_block_markbad(mtd, (loff_t)pnum * ubi->peb_size);
|
|
if (err)
|
|
ubi_err("cannot mark PEB %d bad, error %d", pnum, err);
|
|
return err;
|
|
}
|
|
|
|
/**
|
|
* validate_ec_hdr - validate an erase counter header.
|
|
* @ubi: UBI device description object
|
|
* @ec_hdr: the erase counter header to check
|
|
*
|
|
* This function returns zero if the erase counter header is OK, and %1 if
|
|
* not.
|
|
*/
|
|
static int validate_ec_hdr(const struct ubi_device *ubi,
|
|
const struct ubi_ec_hdr *ec_hdr)
|
|
{
|
|
long long ec;
|
|
int vid_hdr_offset, leb_start;
|
|
|
|
ec = be64_to_cpu(ec_hdr->ec);
|
|
vid_hdr_offset = be32_to_cpu(ec_hdr->vid_hdr_offset);
|
|
leb_start = be32_to_cpu(ec_hdr->data_offset);
|
|
|
|
if (ec_hdr->version != UBI_VERSION) {
|
|
ubi_err("node with incompatible UBI version found: "
|
|
"this UBI version is %d, image version is %d",
|
|
UBI_VERSION, (int)ec_hdr->version);
|
|
goto bad;
|
|
}
|
|
|
|
if (vid_hdr_offset != ubi->vid_hdr_offset) {
|
|
ubi_err("bad VID header offset %d, expected %d",
|
|
vid_hdr_offset, ubi->vid_hdr_offset);
|
|
goto bad;
|
|
}
|
|
|
|
if (leb_start != ubi->leb_start) {
|
|
ubi_err("bad data offset %d, expected %d",
|
|
leb_start, ubi->leb_start);
|
|
goto bad;
|
|
}
|
|
|
|
if (ec < 0 || ec > UBI_MAX_ERASECOUNTER) {
|
|
ubi_err("bad erase counter %lld", ec);
|
|
goto bad;
|
|
}
|
|
|
|
return 0;
|
|
|
|
bad:
|
|
ubi_err("bad EC header");
|
|
ubi_dbg_dump_ec_hdr(ec_hdr);
|
|
ubi_dbg_dump_stack();
|
|
return 1;
|
|
}
|
|
|
|
/**
|
|
* ubi_io_read_ec_hdr - read and check an erase counter header.
|
|
* @ubi: UBI device description object
|
|
* @pnum: physical eraseblock to read from
|
|
* @ec_hdr: a &struct ubi_ec_hdr object where to store the read erase counter
|
|
* header
|
|
* @verbose: be verbose if the header is corrupted or was not found
|
|
*
|
|
* This function reads erase counter header from physical eraseblock @pnum and
|
|
* stores it in @ec_hdr. This function also checks CRC checksum of the read
|
|
* erase counter header. The following codes may be returned:
|
|
*
|
|
* o %0 if the CRC checksum is correct and the header was successfully read;
|
|
* o %UBI_IO_BITFLIPS if the CRC is correct, but bit-flips were detected
|
|
* and corrected by the flash driver; this is harmless but may indicate that
|
|
* this eraseblock may become bad soon (but may be not);
|
|
* o %UBI_IO_BAD_EC_HDR if the erase counter header is corrupted (a CRC error);
|
|
* o %UBI_IO_PEB_EMPTY if the physical eraseblock is empty;
|
|
* o a negative error code in case of failure.
|
|
*/
|
|
int ubi_io_read_ec_hdr(struct ubi_device *ubi, int pnum,
|
|
struct ubi_ec_hdr *ec_hdr, int verbose)
|
|
{
|
|
int err, read_err = 0;
|
|
uint32_t crc, magic, hdr_crc;
|
|
|
|
dbg_io("read EC header from PEB %d", pnum);
|
|
ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
|
|
if (UBI_IO_DEBUG)
|
|
verbose = 1;
|
|
|
|
err = ubi_io_read(ubi, ec_hdr, pnum, 0, UBI_EC_HDR_SIZE);
|
|
if (err) {
|
|
if (err != UBI_IO_BITFLIPS && err != -EBADMSG)
|
|
return err;
|
|
|
|
/*
|
|
* We read all the data, but either a correctable bit-flip
|
|
* occurred, or MTD reported about some data integrity error,
|
|
* like an ECC error in case of NAND. The former is harmless,
|
|
* the later may mean that the read data is corrupted. But we
|
|
* have a CRC check-sum and we will detect this. If the EC
|
|
* header is still OK, we just report this as there was a
|
|
* bit-flip.
|
|
*/
|
|
read_err = err;
|
|
}
|
|
|
|
magic = be32_to_cpu(ec_hdr->magic);
|
|
if (magic != UBI_EC_HDR_MAGIC) {
|
|
/*
|
|
* The magic field is wrong. Let's check if we have read all
|
|
* 0xFF. If yes, this physical eraseblock is assumed to be
|
|
* empty.
|
|
*
|
|
* But if there was a read error, we do not test it for all
|
|
* 0xFFs. Even if it does contain all 0xFFs, this error
|
|
* indicates that something is still wrong with this physical
|
|
* eraseblock and we anyway cannot treat it as empty.
|
|
*/
|
|
if (read_err != -EBADMSG &&
|
|
check_pattern(ec_hdr, 0xFF, UBI_EC_HDR_SIZE)) {
|
|
/* The physical eraseblock is supposedly empty */
|
|
|
|
/*
|
|
* The below is just a paranoid check, it has to be
|
|
* compiled out if paranoid checks are disabled.
|
|
*/
|
|
err = paranoid_check_all_ff(ubi, pnum, 0,
|
|
ubi->peb_size);
|
|
if (err)
|
|
return err > 0 ? UBI_IO_BAD_EC_HDR : err;
|
|
|
|
if (verbose)
|
|
ubi_warn("no EC header found at PEB %d, "
|
|
"only 0xFF bytes", pnum);
|
|
return UBI_IO_PEB_EMPTY;
|
|
}
|
|
|
|
/*
|
|
* This is not a valid erase counter header, and these are not
|
|
* 0xFF bytes. Report that the header is corrupted.
|
|
*/
|
|
if (verbose) {
|
|
ubi_warn("bad magic number at PEB %d: %08x instead of "
|
|
"%08x", pnum, magic, UBI_EC_HDR_MAGIC);
|
|
ubi_dbg_dump_ec_hdr(ec_hdr);
|
|
}
|
|
return UBI_IO_BAD_EC_HDR;
|
|
}
|
|
|
|
crc = crc32(UBI_CRC32_INIT, ec_hdr, UBI_EC_HDR_SIZE_CRC);
|
|
hdr_crc = be32_to_cpu(ec_hdr->hdr_crc);
|
|
|
|
if (hdr_crc != crc) {
|
|
if (verbose) {
|
|
ubi_warn("bad EC header CRC at PEB %d, calculated %#08x,"
|
|
" read %#08x", pnum, crc, hdr_crc);
|
|
ubi_dbg_dump_ec_hdr(ec_hdr);
|
|
}
|
|
return UBI_IO_BAD_EC_HDR;
|
|
}
|
|
|
|
/* And of course validate what has just been read from the media */
|
|
err = validate_ec_hdr(ubi, ec_hdr);
|
|
if (err) {
|
|
ubi_err("validation failed for PEB %d", pnum);
|
|
return -EINVAL;
|
|
}
|
|
|
|
return read_err ? UBI_IO_BITFLIPS : 0;
|
|
}
|
|
|
|
/**
|
|
* ubi_io_write_ec_hdr - write an erase counter header.
|
|
* @ubi: UBI device description object
|
|
* @pnum: physical eraseblock to write to
|
|
* @ec_hdr: the erase counter header to write
|
|
*
|
|
* This function writes erase counter header described by @ec_hdr to physical
|
|
* eraseblock @pnum. It also fills most fields of @ec_hdr before writing, so
|
|
* the caller do not have to fill them. Callers must only fill the @ec_hdr->ec
|
|
* field.
|
|
*
|
|
* This function returns zero in case of success and a negative error code in
|
|
* case of failure. If %-EIO is returned, the physical eraseblock most probably
|
|
* went bad.
|
|
*/
|
|
int ubi_io_write_ec_hdr(struct ubi_device *ubi, int pnum,
|
|
struct ubi_ec_hdr *ec_hdr)
|
|
{
|
|
int err;
|
|
uint32_t crc;
|
|
|
|
dbg_io("write EC header to PEB %d", pnum);
|
|
ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
|
|
|
|
ec_hdr->magic = cpu_to_be32(UBI_EC_HDR_MAGIC);
|
|
ec_hdr->version = UBI_VERSION;
|
|
ec_hdr->vid_hdr_offset = cpu_to_be32(ubi->vid_hdr_offset);
|
|
ec_hdr->data_offset = cpu_to_be32(ubi->leb_start);
|
|
crc = crc32(UBI_CRC32_INIT, ec_hdr, UBI_EC_HDR_SIZE_CRC);
|
|
ec_hdr->hdr_crc = cpu_to_be32(crc);
|
|
|
|
err = paranoid_check_ec_hdr(ubi, pnum, ec_hdr);
|
|
if (err)
|
|
return -EINVAL;
|
|
|
|
err = ubi_io_write(ubi, ec_hdr, pnum, 0, ubi->ec_hdr_alsize);
|
|
return err;
|
|
}
|
|
|
|
/**
|
|
* validate_vid_hdr - validate a volume identifier header.
|
|
* @ubi: UBI device description object
|
|
* @vid_hdr: the volume identifier header to check
|
|
*
|
|
* This function checks that data stored in the volume identifier header
|
|
* @vid_hdr. Returns zero if the VID header is OK and %1 if not.
|
|
*/
|
|
static int validate_vid_hdr(const struct ubi_device *ubi,
|
|
const struct ubi_vid_hdr *vid_hdr)
|
|
{
|
|
int vol_type = vid_hdr->vol_type;
|
|
int copy_flag = vid_hdr->copy_flag;
|
|
int vol_id = be32_to_cpu(vid_hdr->vol_id);
|
|
int lnum = be32_to_cpu(vid_hdr->lnum);
|
|
int compat = vid_hdr->compat;
|
|
int data_size = be32_to_cpu(vid_hdr->data_size);
|
|
int used_ebs = be32_to_cpu(vid_hdr->used_ebs);
|
|
int data_pad = be32_to_cpu(vid_hdr->data_pad);
|
|
int data_crc = be32_to_cpu(vid_hdr->data_crc);
|
|
int usable_leb_size = ubi->leb_size - data_pad;
|
|
|
|
if (copy_flag != 0 && copy_flag != 1) {
|
|
dbg_err("bad copy_flag");
|
|
goto bad;
|
|
}
|
|
|
|
if (vol_id < 0 || lnum < 0 || data_size < 0 || used_ebs < 0 ||
|
|
data_pad < 0) {
|
|
dbg_err("negative values");
|
|
goto bad;
|
|
}
|
|
|
|
if (vol_id >= UBI_MAX_VOLUMES && vol_id < UBI_INTERNAL_VOL_START) {
|
|
dbg_err("bad vol_id");
|
|
goto bad;
|
|
}
|
|
|
|
if (vol_id < UBI_INTERNAL_VOL_START && compat != 0) {
|
|
dbg_err("bad compat");
|
|
goto bad;
|
|
}
|
|
|
|
if (vol_id >= UBI_INTERNAL_VOL_START && compat != UBI_COMPAT_DELETE &&
|
|
compat != UBI_COMPAT_RO && compat != UBI_COMPAT_PRESERVE &&
|
|
compat != UBI_COMPAT_REJECT) {
|
|
dbg_err("bad compat");
|
|
goto bad;
|
|
}
|
|
|
|
if (vol_type != UBI_VID_DYNAMIC && vol_type != UBI_VID_STATIC) {
|
|
dbg_err("bad vol_type");
|
|
goto bad;
|
|
}
|
|
|
|
if (data_pad >= ubi->leb_size / 2) {
|
|
dbg_err("bad data_pad");
|
|
goto bad;
|
|
}
|
|
|
|
if (vol_type == UBI_VID_STATIC) {
|
|
/*
|
|
* Although from high-level point of view static volumes may
|
|
* contain zero bytes of data, but no VID headers can contain
|
|
* zero at these fields, because they empty volumes do not have
|
|
* mapped logical eraseblocks.
|
|
*/
|
|
if (used_ebs == 0) {
|
|
dbg_err("zero used_ebs");
|
|
goto bad;
|
|
}
|
|
if (data_size == 0) {
|
|
dbg_err("zero data_size");
|
|
goto bad;
|
|
}
|
|
if (lnum < used_ebs - 1) {
|
|
if (data_size != usable_leb_size) {
|
|
dbg_err("bad data_size");
|
|
goto bad;
|
|
}
|
|
} else if (lnum == used_ebs - 1) {
|
|
if (data_size == 0) {
|
|
dbg_err("bad data_size at last LEB");
|
|
goto bad;
|
|
}
|
|
} else {
|
|
dbg_err("too high lnum");
|
|
goto bad;
|
|
}
|
|
} else {
|
|
if (copy_flag == 0) {
|
|
if (data_crc != 0) {
|
|
dbg_err("non-zero data CRC");
|
|
goto bad;
|
|
}
|
|
if (data_size != 0) {
|
|
dbg_err("non-zero data_size");
|
|
goto bad;
|
|
}
|
|
} else {
|
|
if (data_size == 0) {
|
|
dbg_err("zero data_size of copy");
|
|
goto bad;
|
|
}
|
|
}
|
|
if (used_ebs != 0) {
|
|
dbg_err("bad used_ebs");
|
|
goto bad;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
|
|
bad:
|
|
ubi_err("bad VID header");
|
|
ubi_dbg_dump_vid_hdr(vid_hdr);
|
|
ubi_dbg_dump_stack();
|
|
return 1;
|
|
}
|
|
|
|
/**
|
|
* ubi_io_read_vid_hdr - read and check a volume identifier header.
|
|
* @ubi: UBI device description object
|
|
* @pnum: physical eraseblock number to read from
|
|
* @vid_hdr: &struct ubi_vid_hdr object where to store the read volume
|
|
* identifier header
|
|
* @verbose: be verbose if the header is corrupted or wasn't found
|
|
*
|
|
* This function reads the volume identifier header from physical eraseblock
|
|
* @pnum and stores it in @vid_hdr. It also checks CRC checksum of the read
|
|
* volume identifier header. The following codes may be returned:
|
|
*
|
|
* o %0 if the CRC checksum is correct and the header was successfully read;
|
|
* o %UBI_IO_BITFLIPS if the CRC is correct, but bit-flips were detected
|
|
* and corrected by the flash driver; this is harmless but may indicate that
|
|
* this eraseblock may become bad soon;
|
|
* o %UBI_IO_BAD_VID_HRD if the volume identifier header is corrupted (a CRC
|
|
* error detected);
|
|
* o %UBI_IO_PEB_FREE if the physical eraseblock is free (i.e., there is no VID
|
|
* header there);
|
|
* o a negative error code in case of failure.
|
|
*/
|
|
int ubi_io_read_vid_hdr(struct ubi_device *ubi, int pnum,
|
|
struct ubi_vid_hdr *vid_hdr, int verbose)
|
|
{
|
|
int err, read_err = 0;
|
|
uint32_t crc, magic, hdr_crc;
|
|
void *p;
|
|
|
|
dbg_io("read VID header from PEB %d", pnum);
|
|
ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
|
|
if (UBI_IO_DEBUG)
|
|
verbose = 1;
|
|
|
|
p = (char *)vid_hdr - ubi->vid_hdr_shift;
|
|
err = ubi_io_read(ubi, p, pnum, ubi->vid_hdr_aloffset,
|
|
ubi->vid_hdr_alsize);
|
|
if (err) {
|
|
if (err != UBI_IO_BITFLIPS && err != -EBADMSG)
|
|
return err;
|
|
|
|
/*
|
|
* We read all the data, but either a correctable bit-flip
|
|
* occurred, or MTD reported about some data integrity error,
|
|
* like an ECC error in case of NAND. The former is harmless,
|
|
* the later may mean the read data is corrupted. But we have a
|
|
* CRC check-sum and we will identify this. If the VID header is
|
|
* still OK, we just report this as there was a bit-flip.
|
|
*/
|
|
read_err = err;
|
|
}
|
|
|
|
magic = be32_to_cpu(vid_hdr->magic);
|
|
if (magic != UBI_VID_HDR_MAGIC) {
|
|
/*
|
|
* If we have read all 0xFF bytes, the VID header probably does
|
|
* not exist and the physical eraseblock is assumed to be free.
|
|
*
|
|
* But if there was a read error, we do not test the data for
|
|
* 0xFFs. Even if it does contain all 0xFFs, this error
|
|
* indicates that something is still wrong with this physical
|
|
* eraseblock and it cannot be regarded as free.
|
|
*/
|
|
if (read_err != -EBADMSG &&
|
|
check_pattern(vid_hdr, 0xFF, UBI_VID_HDR_SIZE)) {
|
|
/* The physical eraseblock is supposedly free */
|
|
|
|
/*
|
|
* The below is just a paranoid check, it has to be
|
|
* compiled out if paranoid checks are disabled.
|
|
*/
|
|
err = paranoid_check_all_ff(ubi, pnum, ubi->leb_start,
|
|
ubi->leb_size);
|
|
if (err)
|
|
return err > 0 ? UBI_IO_BAD_VID_HDR : err;
|
|
|
|
if (verbose)
|
|
ubi_warn("no VID header found at PEB %d, "
|
|
"only 0xFF bytes", pnum);
|
|
return UBI_IO_PEB_FREE;
|
|
}
|
|
|
|
/*
|
|
* This is not a valid VID header, and these are not 0xFF
|
|
* bytes. Report that the header is corrupted.
|
|
*/
|
|
if (verbose) {
|
|
ubi_warn("bad magic number at PEB %d: %08x instead of "
|
|
"%08x", pnum, magic, UBI_VID_HDR_MAGIC);
|
|
ubi_dbg_dump_vid_hdr(vid_hdr);
|
|
}
|
|
return UBI_IO_BAD_VID_HDR;
|
|
}
|
|
|
|
crc = crc32(UBI_CRC32_INIT, vid_hdr, UBI_VID_HDR_SIZE_CRC);
|
|
hdr_crc = be32_to_cpu(vid_hdr->hdr_crc);
|
|
|
|
if (hdr_crc != crc) {
|
|
if (verbose) {
|
|
ubi_warn("bad CRC at PEB %d, calculated %#08x, "
|
|
"read %#08x", pnum, crc, hdr_crc);
|
|
ubi_dbg_dump_vid_hdr(vid_hdr);
|
|
}
|
|
return UBI_IO_BAD_VID_HDR;
|
|
}
|
|
|
|
/* Validate the VID header that we have just read */
|
|
err = validate_vid_hdr(ubi, vid_hdr);
|
|
if (err) {
|
|
ubi_err("validation failed for PEB %d", pnum);
|
|
return -EINVAL;
|
|
}
|
|
|
|
return read_err ? UBI_IO_BITFLIPS : 0;
|
|
}
|
|
|
|
/**
|
|
* ubi_io_write_vid_hdr - write a volume identifier header.
|
|
* @ubi: UBI device description object
|
|
* @pnum: the physical eraseblock number to write to
|
|
* @vid_hdr: the volume identifier header to write
|
|
*
|
|
* This function writes the volume identifier header described by @vid_hdr to
|
|
* physical eraseblock @pnum. This function automatically fills the
|
|
* @vid_hdr->magic and the @vid_hdr->version fields, as well as calculates
|
|
* header CRC checksum and stores it at vid_hdr->hdr_crc.
|
|
*
|
|
* This function returns zero in case of success and a negative error code in
|
|
* case of failure. If %-EIO is returned, the physical eraseblock probably went
|
|
* bad.
|
|
*/
|
|
int ubi_io_write_vid_hdr(struct ubi_device *ubi, int pnum,
|
|
struct ubi_vid_hdr *vid_hdr)
|
|
{
|
|
int err;
|
|
uint32_t crc;
|
|
void *p;
|
|
|
|
dbg_io("write VID header to PEB %d", pnum);
|
|
ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
|
|
|
|
err = paranoid_check_peb_ec_hdr(ubi, pnum);
|
|
if (err)
|
|
return err > 0 ? -EINVAL: err;
|
|
|
|
vid_hdr->magic = cpu_to_be32(UBI_VID_HDR_MAGIC);
|
|
vid_hdr->version = UBI_VERSION;
|
|
crc = crc32(UBI_CRC32_INIT, vid_hdr, UBI_VID_HDR_SIZE_CRC);
|
|
vid_hdr->hdr_crc = cpu_to_be32(crc);
|
|
|
|
err = paranoid_check_vid_hdr(ubi, pnum, vid_hdr);
|
|
if (err)
|
|
return -EINVAL;
|
|
|
|
p = (char *)vid_hdr - ubi->vid_hdr_shift;
|
|
err = ubi_io_write(ubi, p, pnum, ubi->vid_hdr_aloffset,
|
|
ubi->vid_hdr_alsize);
|
|
return err;
|
|
}
|
|
|
|
#ifdef CONFIG_MTD_UBI_DEBUG_PARANOID
|
|
|
|
/**
|
|
* paranoid_check_not_bad - ensure that a physical eraseblock is not bad.
|
|
* @ubi: UBI device description object
|
|
* @pnum: physical eraseblock number to check
|
|
*
|
|
* This function returns zero if the physical eraseblock is good, a positive
|
|
* number if it is bad and a negative error code if an error occurred.
|
|
*/
|
|
static int paranoid_check_not_bad(const struct ubi_device *ubi, int pnum)
|
|
{
|
|
int err;
|
|
|
|
err = ubi_io_is_bad(ubi, pnum);
|
|
if (!err)
|
|
return err;
|
|
|
|
ubi_err("paranoid check failed for PEB %d", pnum);
|
|
ubi_dbg_dump_stack();
|
|
return err;
|
|
}
|
|
|
|
/**
|
|
* paranoid_check_ec_hdr - check if an erase counter header is all right.
|
|
* @ubi: UBI device description object
|
|
* @pnum: physical eraseblock number the erase counter header belongs to
|
|
* @ec_hdr: the erase counter header to check
|
|
*
|
|
* This function returns zero if the erase counter header contains valid
|
|
* values, and %1 if not.
|
|
*/
|
|
static int paranoid_check_ec_hdr(const struct ubi_device *ubi, int pnum,
|
|
const struct ubi_ec_hdr *ec_hdr)
|
|
{
|
|
int err;
|
|
uint32_t magic;
|
|
|
|
magic = be32_to_cpu(ec_hdr->magic);
|
|
if (magic != UBI_EC_HDR_MAGIC) {
|
|
ubi_err("bad magic %#08x, must be %#08x",
|
|
magic, UBI_EC_HDR_MAGIC);
|
|
goto fail;
|
|
}
|
|
|
|
err = validate_ec_hdr(ubi, ec_hdr);
|
|
if (err) {
|
|
ubi_err("paranoid check failed for PEB %d", pnum);
|
|
goto fail;
|
|
}
|
|
|
|
return 0;
|
|
|
|
fail:
|
|
ubi_dbg_dump_ec_hdr(ec_hdr);
|
|
ubi_dbg_dump_stack();
|
|
return 1;
|
|
}
|
|
|
|
/**
|
|
* paranoid_check_peb_ec_hdr - check that the erase counter header of a
|
|
* physical eraseblock is in-place and is all right.
|
|
* @ubi: UBI device description object
|
|
* @pnum: the physical eraseblock number to check
|
|
*
|
|
* This function returns zero if the erase counter header is all right, %1 if
|
|
* not, and a negative error code if an error occurred.
|
|
*/
|
|
static int paranoid_check_peb_ec_hdr(const struct ubi_device *ubi, int pnum)
|
|
{
|
|
int err;
|
|
uint32_t crc, hdr_crc;
|
|
struct ubi_ec_hdr *ec_hdr;
|
|
|
|
ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS);
|
|
if (!ec_hdr)
|
|
return -ENOMEM;
|
|
|
|
err = ubi_io_read(ubi, ec_hdr, pnum, 0, UBI_EC_HDR_SIZE);
|
|
if (err && err != UBI_IO_BITFLIPS && err != -EBADMSG)
|
|
goto exit;
|
|
|
|
crc = crc32(UBI_CRC32_INIT, ec_hdr, UBI_EC_HDR_SIZE_CRC);
|
|
hdr_crc = be32_to_cpu(ec_hdr->hdr_crc);
|
|
if (hdr_crc != crc) {
|
|
ubi_err("bad CRC, calculated %#08x, read %#08x", crc, hdr_crc);
|
|
ubi_err("paranoid check failed for PEB %d", pnum);
|
|
ubi_dbg_dump_ec_hdr(ec_hdr);
|
|
ubi_dbg_dump_stack();
|
|
err = 1;
|
|
goto exit;
|
|
}
|
|
|
|
err = paranoid_check_ec_hdr(ubi, pnum, ec_hdr);
|
|
|
|
exit:
|
|
kfree(ec_hdr);
|
|
return err;
|
|
}
|
|
|
|
/**
|
|
* paranoid_check_vid_hdr - check that a volume identifier header is all right.
|
|
* @ubi: UBI device description object
|
|
* @pnum: physical eraseblock number the volume identifier header belongs to
|
|
* @vid_hdr: the volume identifier header to check
|
|
*
|
|
* This function returns zero if the volume identifier header is all right, and
|
|
* %1 if not.
|
|
*/
|
|
static int paranoid_check_vid_hdr(const struct ubi_device *ubi, int pnum,
|
|
const struct ubi_vid_hdr *vid_hdr)
|
|
{
|
|
int err;
|
|
uint32_t magic;
|
|
|
|
magic = be32_to_cpu(vid_hdr->magic);
|
|
if (magic != UBI_VID_HDR_MAGIC) {
|
|
ubi_err("bad VID header magic %#08x at PEB %d, must be %#08x",
|
|
magic, pnum, UBI_VID_HDR_MAGIC);
|
|
goto fail;
|
|
}
|
|
|
|
err = validate_vid_hdr(ubi, vid_hdr);
|
|
if (err) {
|
|
ubi_err("paranoid check failed for PEB %d", pnum);
|
|
goto fail;
|
|
}
|
|
|
|
return err;
|
|
|
|
fail:
|
|
ubi_err("paranoid check failed for PEB %d", pnum);
|
|
ubi_dbg_dump_vid_hdr(vid_hdr);
|
|
ubi_dbg_dump_stack();
|
|
return 1;
|
|
|
|
}
|
|
|
|
/**
|
|
* paranoid_check_peb_vid_hdr - check that the volume identifier header of a
|
|
* physical eraseblock is in-place and is all right.
|
|
* @ubi: UBI device description object
|
|
* @pnum: the physical eraseblock number to check
|
|
*
|
|
* This function returns zero if the volume identifier header is all right,
|
|
* %1 if not, and a negative error code if an error occurred.
|
|
*/
|
|
static int paranoid_check_peb_vid_hdr(const struct ubi_device *ubi, int pnum)
|
|
{
|
|
int err;
|
|
uint32_t crc, hdr_crc;
|
|
struct ubi_vid_hdr *vid_hdr;
|
|
void *p;
|
|
|
|
vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS);
|
|
if (!vid_hdr)
|
|
return -ENOMEM;
|
|
|
|
p = (char *)vid_hdr - ubi->vid_hdr_shift;
|
|
err = ubi_io_read(ubi, p, pnum, ubi->vid_hdr_aloffset,
|
|
ubi->vid_hdr_alsize);
|
|
if (err && err != UBI_IO_BITFLIPS && err != -EBADMSG)
|
|
goto exit;
|
|
|
|
crc = crc32(UBI_CRC32_INIT, vid_hdr, UBI_EC_HDR_SIZE_CRC);
|
|
hdr_crc = be32_to_cpu(vid_hdr->hdr_crc);
|
|
if (hdr_crc != crc) {
|
|
ubi_err("bad VID header CRC at PEB %d, calculated %#08x, "
|
|
"read %#08x", pnum, crc, hdr_crc);
|
|
ubi_err("paranoid check failed for PEB %d", pnum);
|
|
ubi_dbg_dump_vid_hdr(vid_hdr);
|
|
ubi_dbg_dump_stack();
|
|
err = 1;
|
|
goto exit;
|
|
}
|
|
|
|
err = paranoid_check_vid_hdr(ubi, pnum, vid_hdr);
|
|
|
|
exit:
|
|
ubi_free_vid_hdr(ubi, vid_hdr);
|
|
return err;
|
|
}
|
|
|
|
/**
|
|
* paranoid_check_all_ff - check that a region of flash is empty.
|
|
* @ubi: UBI device description object
|
|
* @pnum: the physical eraseblock number to check
|
|
* @offset: the starting offset within the physical eraseblock to check
|
|
* @len: the length of the region to check
|
|
*
|
|
* This function returns zero if only 0xFF bytes are present at offset
|
|
* @offset of the physical eraseblock @pnum, %1 if not, and a negative error
|
|
* code if an error occurred.
|
|
*/
|
|
static int paranoid_check_all_ff(struct ubi_device *ubi, int pnum, int offset,
|
|
int len)
|
|
{
|
|
size_t read;
|
|
int err;
|
|
loff_t addr = (loff_t)pnum * ubi->peb_size + offset;
|
|
|
|
mutex_lock(&ubi->dbg_buf_mutex);
|
|
err = mtd_read(ubi->mtd, addr, len, &read, ubi->dbg_peb_buf);
|
|
if (err && err != -EUCLEAN) {
|
|
ubi_err("error %d while reading %d bytes from PEB %d:%d, "
|
|
"read %zd bytes", err, len, pnum, offset, read);
|
|
goto error;
|
|
}
|
|
|
|
err = check_pattern(ubi->dbg_peb_buf, 0xFF, len);
|
|
if (err == 0) {
|
|
ubi_err("flash region at PEB %d:%d, length %d does not "
|
|
"contain all 0xFF bytes", pnum, offset, len);
|
|
goto fail;
|
|
}
|
|
mutex_unlock(&ubi->dbg_buf_mutex);
|
|
|
|
return 0;
|
|
|
|
fail:
|
|
ubi_err("paranoid check failed for PEB %d", pnum);
|
|
dbg_msg("hex dump of the %d-%d region", offset, offset + len);
|
|
print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 32, 1,
|
|
ubi->dbg_peb_buf, len, 1);
|
|
err = 1;
|
|
error:
|
|
ubi_dbg_dump_stack();
|
|
mutex_unlock(&ubi->dbg_buf_mutex);
|
|
return err;
|
|
}
|
|
|
|
#endif /* CONFIG_MTD_UBI_DEBUG_PARANOID */
|