u-boot/arch/arm/mach-stm32mp/psci.c
Marek Vasut 715e709038 ARM: stm32: Add IWDG handling into PSCI suspend code
In case the IWDG is enabled by either U-Boot or Linux, the IWDG can never
be disabled again. That includes low power states, which means that if the
IWDG is enabled, the SoC would reset itself after a while in suspend via
the IWDG. This is not desired behavior.

It is possible to enable IWDG pre-timeout IRQ which is routed into the EXTI,
and use that IRQ to wake the CPU up before the IWDG timeout is reached and
reset is triggered. This pre-timeout IRQ can be used to reload the WDT and
then suspend the CPU again every once in a while.

Implement this functionality for both IWDG1 and IWDG2 by reading out all
the unmasked IRQs, comparing the list with currently pending IRQs in GICv3:
- If any IRQ is pending and it is NOT IWDG1 or IWDG2 pre-timeout IRQ,
  wake up and let OS handle the IRQs
- If IWDG1 or IWDG2 IRQ is pending and no other IRQ is pending,
  ping the respective IWDG and suspend again

This does not seem to have any adverse impact on power consumption in suspend.

Signed-off-by: Marek Vasut <marex@denx.de>
Reviewed-by: Patrick Delaunay <patrick.delaunay@foss.st.com>
2023-06-16 11:09:28 +02:00

808 lines
23 KiB
C

// SPDX-License-Identifier: GPL-2.0+ OR BSD-3-Clause
/*
* Copyright (C) 2018, STMicroelectronics - All Rights Reserved
*/
#include <config.h>
#include <common.h>
#include <asm/armv7.h>
#include <asm/cache.h>
#include <asm/gic.h>
#include <asm/io.h>
#include <asm/psci.h>
#include <asm/secure.h>
#include <hang.h>
#include <linux/bitops.h>
/* PWR */
#define PWR_CR3 0x0c
#define PWR_MPUCR 0x10
#define PWR_CR3_DDRSREN BIT(10)
#define PWR_CR3_DDRRETEN BIT(12)
#define PWR_MPUCR_PDDS BIT(0)
#define PWR_MPUCR_CSTDBYDIS BIT(3)
#define PWR_MPUCR_CSSF BIT(9)
/* RCC */
#define RCC_MSSCKSELR 0x48
#define RCC_DDRITFCR 0xd8
#define RCC_DDRITFCR_DDRC1EN BIT(0)
#define RCC_DDRITFCR_DDRC1LPEN BIT(1)
#define RCC_DDRITFCR_DDRC2EN BIT(2)
#define RCC_DDRITFCR_DDRC2LPEN BIT(3)
#define RCC_DDRITFCR_DDRPHYCEN BIT(4)
#define RCC_DDRITFCR_DDRPHYCLPEN BIT(5)
#define RCC_DDRITFCR_DDRCAPBEN BIT(6)
#define RCC_DDRITFCR_DDRCAPBLPEN BIT(7)
#define RCC_DDRITFCR_AXIDCGEN BIT(8)
#define RCC_DDRITFCR_DDRPHYCAPBEN BIT(9)
#define RCC_DDRITFCR_DDRPHYCAPBLPEN BIT(10)
#define RCC_DDRITFCR_DDRCKMOD_MASK GENMASK(22, 20)
#define RCC_DDRITFCR_GSKPCTRL BIT(24)
#define RCC_MP_SREQSETR 0x104
#define RCC_MP_SREQCLRR 0x108
#define RCC_MP_CIER 0x414
#define RCC_MP_CIFR 0x418
#define RCC_MP_CIFR_WKUPF BIT(20)
#define RCC_MCUDIVR 0x830
#define RCC_PLL3CR 0x880
#define RCC_PLL4CR 0x894
/* SYSCFG */
#define SYSCFG_CMPCR 0x20
#define SYSCFG_CMPCR_SW_CTRL BIT(2)
#define SYSCFG_CMPENSETR 0x24
#define SYSCFG_CMPENCLRR 0x28
#define SYSCFG_CMPENR_MPUEN BIT(0)
/* DDR Controller registers offsets */
#define DDRCTRL_STAT 0x004
#define DDRCTRL_PWRCTL 0x030
#define DDRCTRL_PWRTMG 0x034
#define DDRCTRL_HWLPCTL 0x038
#define DDRCTRL_DFIMISC 0x1b0
#define DDRCTRL_SWCTL 0x320
#define DDRCTRL_SWSTAT 0x324
#define DDRCTRL_PSTAT 0x3fc
#define DDRCTRL_PCTRL_0 0x490
#define DDRCTRL_PCTRL_1 0x540
/* DDR Controller Register fields */
#define DDRCTRL_STAT_OPERATING_MODE_MASK GENMASK(2, 0)
#define DDRCTRL_STAT_OPERATING_MODE_NORMAL 0x1
#define DDRCTRL_STAT_OPERATING_MODE_SR 0x3
#define DDRCTRL_STAT_SELFREF_TYPE_MASK GENMASK(5, 4)
#define DDRCTRL_STAT_SELFREF_TYPE_ASR (0x3 << 4)
#define DDRCTRL_STAT_SELFREF_TYPE_SR (0x2 << 4)
#define DDRCTRL_PWRCTL_SELFREF_EN BIT(0)
#define DDRCTRL_PWRCTL_EN_DFI_DRAM_CLK_DISABLE BIT(3)
#define DDRCTRL_PWRCTL_SELFREF_SW BIT(5)
#define DDRCTRL_PWRTMG_SELFREF_TO_X32_MASK GENMASK(23, 16)
#define DDRCTRL_PWRTMG_SELFREF_TO_X32_0 BIT(16)
#define DDRCTRL_HWLPCTL_HW_LP_EN BIT(0)
#define DDRCTRL_DFIMISC_DFI_INIT_COMPLETE_EN BIT(0)
#define DDRCTRL_SWCTL_SW_DONE BIT(0)
#define DDRCTRL_SWSTAT_SW_DONE_ACK BIT(0)
#define DDRCTRL_PSTAT_RD_PORT_BUSY_0 BIT(0)
#define DDRCTRL_PSTAT_RD_PORT_BUSY_1 BIT(1)
#define DDRCTRL_PSTAT_WR_PORT_BUSY_0 BIT(16)
#define DDRCTRL_PSTAT_WR_PORT_BUSY_1 BIT(17)
#define DDRCTRL_PCTRL_N_PORT_EN BIT(0)
/* DDR PHY registers offsets */
#define DDRPHYC_PIR 0x004
#define DDRPHYC_PGSR 0x00c
#define DDRPHYC_ACDLLCR 0x014
#define DDRPHYC_ACIOCR 0x024
#define DDRPHYC_DXCCR 0x028
#define DDRPHYC_DSGCR 0x02c
#define DDRPHYC_ZQ0CR0 0x180
#define DDRPHYC_DX0DLLCR 0x1cc
#define DDRPHYC_DX1DLLCR 0x20c
#define DDRPHYC_DX2DLLCR 0x24c
#define DDRPHYC_DX3DLLCR 0x28c
/* DDR PHY Register fields */
#define DDRPHYC_PIR_INIT BIT(0)
#define DDRPHYC_PIR_DLLSRST BIT(1)
#define DDRPHYC_PIR_DLLLOCK BIT(2)
#define DDRPHYC_PIR_ITMSRST BIT(4)
#define DDRPHYC_PGSR_IDONE BIT(0)
#define DDRPHYC_ACDLLCR_DLLSRST BIT(30)
#define DDRPHYC_ACDLLCR_DLLDIS BIT(31)
#define DDRPHYC_ACIOCR_ACOE BIT(1)
#define DDRPHYC_ACIOCR_ACPDD BIT(3)
#define DDRPHYC_ACIOCR_ACPDR BIT(4)
#define DDRPHYC_ACIOCR_CKPDD_MASK GENMASK(10, 8)
#define DDRPHYC_ACIOCR_CKPDD_0 BIT(8)
#define DDRPHYC_ACIOCR_CKPDR_MASK GENMASK(13, 11)
#define DDRPHYC_ACIOCR_CKPDR_0 BIT(11)
#define DDRPHYC_ACIOCR_CSPDD_MASK GENMASK(20, 18)
#define DDRPHYC_ACIOCR_CSPDD_0 BIT(18)
#define DDRPHYC_DXCCR_DXPDD BIT(2)
#define DDRPHYC_DXCCR_DXPDR BIT(3)
#define DDRPHYC_DSGCR_CKEPDD_MASK GENMASK(19, 16)
#define DDRPHYC_DSGCR_CKEPDD_0 BIT(16)
#define DDRPHYC_DSGCR_ODTPDD_MASK GENMASK(23, 20)
#define DDRPHYC_DSGCR_ODTPDD_0 BIT(20)
#define DDRPHYC_DSGCR_NL2PD BIT(24)
#define DDRPHYC_DSGCR_CKOE BIT(28)
#define DDRPHYC_ZQ0CRN_ZQPD BIT(31)
#define DDRPHYC_DXNDLLCR_DLLDIS BIT(31)
#define BOOT_API_A7_CORE0_MAGIC_NUMBER 0xca7face0
#define BOOT_API_A7_CORE1_MAGIC_NUMBER 0xca7face1
#define MPIDR_AFF0 GENMASK(7, 0)
#define RCC_MP_GRSTCSETR (STM32_RCC_BASE + 0x0404)
#define RCC_MP_GRSTCSETR_MPSYSRST BIT(0)
#define RCC_MP_GRSTCSETR_MPUP0RST BIT(4)
#define RCC_MP_GRSTCSETR_MPUP1RST BIT(5)
/* IWDG */
#define IWDG_KR 0x00
#define IWDG_KR_RELOAD_KEY 0xaaaa
#define IWDG_EWCR 0x14
#define IWDG_EWCR_EWIC BIT(14)
#define STM32MP1_PSCI_NR_CPUS 2
#if STM32MP1_PSCI_NR_CPUS > CONFIG_ARMV7_PSCI_NR_CPUS
#error "invalid value for CONFIG_ARMV7_PSCI_NR_CPUS"
#endif
u8 psci_state[STM32MP1_PSCI_NR_CPUS] __secure_data = {
PSCI_AFFINITY_LEVEL_ON,
PSCI_AFFINITY_LEVEL_OFF};
static u32 __secure_data cntfrq;
static u32 __secure cp15_read_cntfrq(void)
{
u32 frq;
asm volatile("mrc p15, 0, %0, c14, c0, 0" : "=r" (frq));
return frq;
}
static void __secure cp15_write_cntfrq(u32 frq)
{
asm volatile ("mcr p15, 0, %0, c14, c0, 0" : : "r" (frq));
}
static inline void psci_set_state(int cpu, u8 state)
{
psci_state[cpu] = state;
dsb();
isb();
}
static u32 __secure stm32mp_get_gicd_base_address(void)
{
u32 periphbase;
/* get the GIC base address from the CBAR register */
asm("mrc p15, 4, %0, c15, c0, 0\n" : "=r" (periphbase));
return (periphbase & CBAR_MASK) + GIC_DIST_OFFSET;
}
static void __secure stm32mp_raise_sgi0(int cpu)
{
u32 gic_dist_addr;
gic_dist_addr = stm32mp_get_gicd_base_address();
/* ask cpu with SGI0 */
writel((BIT(cpu) << 16), gic_dist_addr + GICD_SGIR);
}
void __secure psci_arch_cpu_entry(void)
{
u32 cpu = psci_get_cpu_id();
psci_set_state(cpu, PSCI_AFFINITY_LEVEL_ON);
/* write the saved cntfrq */
cp15_write_cntfrq(cntfrq);
/* reset magic in TAMP register */
writel(0xFFFFFFFF, TAMP_BACKUP_MAGIC_NUMBER);
}
s32 __secure psci_features(u32 function_id, u32 psci_fid)
{
switch (psci_fid) {
case ARM_PSCI_0_2_FN_PSCI_VERSION:
case ARM_PSCI_0_2_FN_CPU_OFF:
case ARM_PSCI_0_2_FN_CPU_ON:
case ARM_PSCI_0_2_FN_AFFINITY_INFO:
case ARM_PSCI_0_2_FN_MIGRATE_INFO_TYPE:
case ARM_PSCI_0_2_FN_SYSTEM_OFF:
case ARM_PSCI_0_2_FN_SYSTEM_RESET:
case ARM_PSCI_1_0_FN_SYSTEM_SUSPEND:
return 0x0;
}
return ARM_PSCI_RET_NI;
}
u32 __secure psci_version(void)
{
return ARM_PSCI_VER_1_0;
}
s32 __secure psci_affinity_info(u32 function_id, u32 target_affinity,
u32 lowest_affinity_level)
{
u32 cpu = target_affinity & MPIDR_AFF0;
if (lowest_affinity_level > 0)
return ARM_PSCI_RET_INVAL;
if (target_affinity & ~MPIDR_AFF0)
return ARM_PSCI_RET_INVAL;
if (cpu >= STM32MP1_PSCI_NR_CPUS)
return ARM_PSCI_RET_INVAL;
return psci_state[cpu];
}
u32 __secure psci_migrate_info_type(void)
{
/*
* in Power_State_Coordination_Interface_PDD_v1_1_DEN0022D.pdf
* return 2 = Trusted OS is either not present or does not require
* migration, system of this type does not require the caller
* to use the MIGRATE function.
* MIGRATE function calls return NOT_SUPPORTED.
*/
return 2;
}
s32 __secure psci_cpu_on(u32 function_id, u32 target_cpu, u32 pc,
u32 context_id)
{
u32 cpu = target_cpu & MPIDR_AFF0;
if (target_cpu & ~MPIDR_AFF0)
return ARM_PSCI_RET_INVAL;
if (cpu >= STM32MP1_PSCI_NR_CPUS)
return ARM_PSCI_RET_INVAL;
if (psci_state[cpu] == PSCI_AFFINITY_LEVEL_ON)
return ARM_PSCI_RET_ALREADY_ON;
/* read and save cntfrq of current cpu to write on target cpu */
cntfrq = cp15_read_cntfrq();
/* reset magic in TAMP register */
if (readl(TAMP_BACKUP_MAGIC_NUMBER))
writel(0xFFFFFFFF, TAMP_BACKUP_MAGIC_NUMBER);
/*
* ROM code need a first SGI0 after core reset
* core is ready when magic is set to 0 in ROM code
*/
while (readl(TAMP_BACKUP_MAGIC_NUMBER))
stm32mp_raise_sgi0(cpu);
/* store target PC and context id*/
psci_save(cpu, pc, context_id);
/* write entrypoint in backup RAM register */
writel((u32)&psci_cpu_entry, TAMP_BACKUP_BRANCH_ADDRESS);
psci_set_state(cpu, PSCI_AFFINITY_LEVEL_ON_PENDING);
/* write magic number in backup register */
if (cpu == 0x01)
writel(BOOT_API_A7_CORE1_MAGIC_NUMBER,
TAMP_BACKUP_MAGIC_NUMBER);
else
writel(BOOT_API_A7_CORE0_MAGIC_NUMBER,
TAMP_BACKUP_MAGIC_NUMBER);
/* Generate an IT to start the core */
stm32mp_raise_sgi0(cpu);
return ARM_PSCI_RET_SUCCESS;
}
s32 __secure psci_cpu_off(void)
{
u32 cpu;
cpu = psci_get_cpu_id();
psci_cpu_off_common();
psci_set_state(cpu, PSCI_AFFINITY_LEVEL_OFF);
/* reset core: wfi is managed by BootRom */
if (cpu == 0x01)
writel(RCC_MP_GRSTCSETR_MPUP1RST, RCC_MP_GRSTCSETR);
else
writel(RCC_MP_GRSTCSETR_MPUP0RST, RCC_MP_GRSTCSETR);
/* just waiting reset */
while (1)
wfi();
}
void __secure psci_system_reset(void)
{
/* System reset */
writel(RCC_MP_GRSTCSETR_MPSYSRST, RCC_MP_GRSTCSETR);
/* just waiting reset */
while (1)
wfi();
}
void __secure psci_system_off(void)
{
/* System Off is not managed, waiting user power off
* TODO: handle I2C write in PMIC Main Control register bit 0 = SWOFF
*/
while (1)
wfi();
}
static void __secure secure_udelay(unsigned int delay)
{
u32 freq = cp15_read_cntfrq() / 1000000;
u64 start, end;
delay *= freq;
asm volatile("mrrc p15, 0, %Q0, %R0, c14" : "=r" (start));
for (;;) {
asm volatile("mrrc p15, 0, %Q0, %R0, c14" : "=r" (end));
if ((end - start) > delay)
break;
}
}
static int __secure secure_waitbits(u32 reg, u32 mask, u32 val)
{
u32 freq = cp15_read_cntfrq() / 1000000;
u32 delay = 500 * freq; /* 500 us */
u64 start, end;
u32 tmp;
asm volatile("mrrc p15, 0, %Q0, %R0, c14" : "=r" (start));
for (;;) {
tmp = readl(reg);
tmp &= mask;
if ((tmp & val) == val)
return 0;
asm volatile("mrrc p15, 0, %Q0, %R0, c14" : "=r" (end));
if ((end - start) > delay)
return -ETIMEDOUT;
}
}
static void __secure ddr_sr_mode_ssr(u32 *saved_pwrctl)
{
setbits_le32(STM32_RCC_BASE + RCC_DDRITFCR,
RCC_DDRITFCR_DDRC1LPEN | RCC_DDRITFCR_DDRC1EN |
RCC_DDRITFCR_DDRC2LPEN | RCC_DDRITFCR_DDRC2EN |
RCC_DDRITFCR_DDRCAPBLPEN | RCC_DDRITFCR_DDRPHYCAPBLPEN |
RCC_DDRITFCR_DDRCAPBEN | RCC_DDRITFCR_DDRPHYCAPBEN |
RCC_DDRITFCR_DDRPHYCEN);
clrbits_le32(STM32_RCC_BASE + RCC_DDRITFCR,
RCC_DDRITFCR_AXIDCGEN | RCC_DDRITFCR_DDRCKMOD_MASK);
/* Disable HW LP interface of uMCTL2 */
clrbits_le32(STM32_DDRCTRL_BASE + DDRCTRL_HWLPCTL,
DDRCTRL_HWLPCTL_HW_LP_EN);
/* Configure Automatic LP modes of uMCTL2 */
clrsetbits_le32(STM32_DDRCTRL_BASE + DDRCTRL_PWRTMG,
DDRCTRL_PWRTMG_SELFREF_TO_X32_MASK,
DDRCTRL_PWRTMG_SELFREF_TO_X32_0);
/* Save PWRCTL register to restart ASR after suspend (if applicable) */
*saved_pwrctl = readl(STM32_DDRCTRL_BASE + DDRCTRL_PWRCTL);
/*
* Disable Clock disable with LP modes
* (used in RUN mode for LPDDR2 with specific timing).
*/
clrbits_le32(STM32_DDRCTRL_BASE + DDRCTRL_PWRCTL,
DDRCTRL_PWRCTL_EN_DFI_DRAM_CLK_DISABLE);
/* Disable automatic Self-Refresh mode */
clrbits_le32(STM32_DDRCTRL_BASE + DDRCTRL_PWRCTL,
DDRCTRL_PWRCTL_SELFREF_EN);
}
static void __secure ddr_sr_mode_restore(u32 saved_pwrctl)
{
saved_pwrctl &= DDRCTRL_PWRCTL_EN_DFI_DRAM_CLK_DISABLE |
DDRCTRL_PWRCTL_SELFREF_EN;
/* Restore ASR mode in case it was enabled before suspend. */
setbits_le32(STM32_DDRCTRL_BASE + DDRCTRL_PWRCTL, saved_pwrctl);
}
static int __secure ddr_sw_self_refresh_in(void)
{
int ret;
clrbits_le32(STM32_RCC_BASE + RCC_DDRITFCR, RCC_DDRITFCR_AXIDCGEN);
/* Blocks AXI ports from taking anymore transactions */
clrbits_le32(STM32_DDRCTRL_BASE + DDRCTRL_PCTRL_0,
DDRCTRL_PCTRL_N_PORT_EN);
clrbits_le32(STM32_DDRCTRL_BASE + DDRCTRL_PCTRL_1,
DDRCTRL_PCTRL_N_PORT_EN);
/*
* Waits unit all AXI ports are idle
* Poll PSTAT.rd_port_busy_n = 0
* Poll PSTAT.wr_port_busy_n = 0
*/
ret = secure_waitbits(STM32_DDRCTRL_BASE + DDRCTRL_PSTAT,
DDRCTRL_PSTAT_RD_PORT_BUSY_0 |
DDRCTRL_PSTAT_RD_PORT_BUSY_1 |
DDRCTRL_PSTAT_WR_PORT_BUSY_0 |
DDRCTRL_PSTAT_WR_PORT_BUSY_1, 0);
if (ret)
goto pstat_failed;
/* SW Self-Refresh entry */
setbits_le32(STM32_DDRCTRL_BASE + DDRCTRL_PWRCTL, DDRCTRL_PWRCTL_SELFREF_SW);
/*
* Wait operating mode change in self-refresh mode
* with STAT.operating_mode[1:0]==11.
* Ensure transition to self-refresh was due to software
* by checking also that STAT.selfref_type[1:0]=2.
*/
ret = secure_waitbits(STM32_DDRCTRL_BASE + DDRCTRL_STAT,
DDRCTRL_STAT_OPERATING_MODE_MASK |
DDRCTRL_STAT_SELFREF_TYPE_MASK,
DDRCTRL_STAT_OPERATING_MODE_SR |
DDRCTRL_STAT_SELFREF_TYPE_SR);
if (ret)
goto selfref_sw_failed;
/* IOs powering down (PUBL registers) */
setbits_le32(STM32_DDRPHYC_BASE + DDRPHYC_ACIOCR, DDRPHYC_ACIOCR_ACPDD);
setbits_le32(STM32_DDRPHYC_BASE + DDRPHYC_ACIOCR, DDRPHYC_ACIOCR_ACPDR);
clrsetbits_le32(STM32_DDRPHYC_BASE + DDRPHYC_ACIOCR,
DDRPHYC_ACIOCR_CKPDD_MASK,
DDRPHYC_ACIOCR_CKPDD_0);
clrsetbits_le32(STM32_DDRPHYC_BASE + DDRPHYC_ACIOCR,
DDRPHYC_ACIOCR_CKPDR_MASK,
DDRPHYC_ACIOCR_CKPDR_0);
clrsetbits_le32(STM32_DDRPHYC_BASE + DDRPHYC_ACIOCR,
DDRPHYC_ACIOCR_CSPDD_MASK,
DDRPHYC_ACIOCR_CSPDD_0);
/* Disable command/address output driver */
clrbits_le32(STM32_DDRPHYC_BASE + DDRPHYC_ACIOCR, DDRPHYC_ACIOCR_ACOE);
setbits_le32(STM32_DDRPHYC_BASE + DDRPHYC_DXCCR, DDRPHYC_DXCCR_DXPDD);
setbits_le32(STM32_DDRPHYC_BASE + DDRPHYC_DXCCR, DDRPHYC_DXCCR_DXPDR);
clrsetbits_le32(STM32_DDRPHYC_BASE + DDRPHYC_DSGCR,
DDRPHYC_DSGCR_ODTPDD_MASK,
DDRPHYC_DSGCR_ODTPDD_0);
setbits_le32(STM32_DDRPHYC_BASE + DDRPHYC_DSGCR, DDRPHYC_DSGCR_NL2PD);
clrsetbits_le32(STM32_DDRPHYC_BASE + DDRPHYC_DSGCR,
DDRPHYC_DSGCR_CKEPDD_MASK,
DDRPHYC_DSGCR_CKEPDD_0);
/* Disable PZQ cell (PUBL register) */
setbits_le32(STM32_DDRPHYC_BASE + DDRPHYC_ZQ0CR0, DDRPHYC_ZQ0CRN_ZQPD);
/* Set latch */
clrbits_le32(STM32_DDRPHYC_BASE + DDRPHYC_DSGCR, DDRPHYC_DSGCR_CKOE);
/* Additional delay to avoid early latch */
secure_udelay(10);
/* Activate sw retention in PWRCTRL */
setbits_le32(STM32_PWR_BASE + PWR_CR3, PWR_CR3_DDRRETEN);
/* Switch controller clocks (uMCTL2/PUBL) to DLL ref clock */
setbits_le32(STM32_RCC_BASE + RCC_DDRITFCR, RCC_DDRITFCR_GSKPCTRL);
/* Disable all DLLs: GLITCH window */
setbits_le32(STM32_DDRPHYC_BASE + DDRPHYC_ACDLLCR, DDRPHYC_ACDLLCR_DLLDIS);
setbits_le32(STM32_DDRPHYC_BASE + DDRPHYC_DX0DLLCR, DDRPHYC_DXNDLLCR_DLLDIS);
setbits_le32(STM32_DDRPHYC_BASE + DDRPHYC_DX1DLLCR, DDRPHYC_DXNDLLCR_DLLDIS);
setbits_le32(STM32_DDRPHYC_BASE + DDRPHYC_DX2DLLCR, DDRPHYC_DXNDLLCR_DLLDIS);
setbits_le32(STM32_DDRPHYC_BASE + DDRPHYC_DX3DLLCR, DDRPHYC_DXNDLLCR_DLLDIS);
/* Switch controller clocks (uMCTL2/PUBL) to DLL output clock */
clrbits_le32(STM32_RCC_BASE + RCC_DDRITFCR, RCC_DDRITFCR_GSKPCTRL);
/* Deactivate all DDR clocks */
clrbits_le32(STM32_RCC_BASE + RCC_DDRITFCR,
RCC_DDRITFCR_DDRC1EN | RCC_DDRITFCR_DDRC2EN |
RCC_DDRITFCR_DDRCAPBEN | RCC_DDRITFCR_DDRPHYCAPBEN);
return 0;
selfref_sw_failed:
/* This bit should be cleared to restore DDR in its previous state */
clrbits_le32(STM32_DDRCTRL_BASE + DDRCTRL_PWRCTL,
DDRCTRL_PWRCTL_SELFREF_SW);
pstat_failed:
setbits_le32(STM32_DDRCTRL_BASE + DDRCTRL_PCTRL_0,
DDRCTRL_PCTRL_N_PORT_EN);
setbits_le32(STM32_DDRCTRL_BASE + DDRCTRL_PCTRL_1,
DDRCTRL_PCTRL_N_PORT_EN);
return -EINVAL;
};
static void __secure ddr_sw_self_refresh_exit(void)
{
int ret;
/* Enable all clocks */
setbits_le32(STM32_RCC_BASE + RCC_DDRITFCR,
RCC_DDRITFCR_DDRC1EN | RCC_DDRITFCR_DDRC2EN |
RCC_DDRITFCR_DDRPHYCEN | RCC_DDRITFCR_DDRPHYCAPBEN |
RCC_DDRITFCR_DDRCAPBEN);
/* Handshake */
clrbits_le32(STM32_DDRCTRL_BASE + DDRCTRL_SWCTL, DDRCTRL_SWCTL_SW_DONE);
/* Mask dfi_init_complete_en */
clrbits_le32(STM32_DDRCTRL_BASE + DDRCTRL_DFIMISC,
DDRCTRL_DFIMISC_DFI_INIT_COMPLETE_EN);
/* Ack */
setbits_le32(STM32_DDRCTRL_BASE + DDRCTRL_SWCTL, DDRCTRL_SWCTL_SW_DONE);
ret = secure_waitbits(STM32_DDRCTRL_BASE + DDRCTRL_SWSTAT,
DDRCTRL_SWSTAT_SW_DONE_ACK,
DDRCTRL_SWSTAT_SW_DONE_ACK);
if (ret)
hang();
/* Switch controller clocks (uMCTL2/PUBL) to DLL ref clock */
setbits_le32(STM32_RCC_BASE + RCC_DDRITFCR, RCC_DDRITFCR_GSKPCTRL);
/* Enable all DLLs: GLITCH window */
clrbits_le32(STM32_DDRPHYC_BASE + DDRPHYC_ACDLLCR,
DDRPHYC_ACDLLCR_DLLDIS);
clrbits_le32(STM32_DDRPHYC_BASE + DDRPHYC_DX0DLLCR, DDRPHYC_DXNDLLCR_DLLDIS);
clrbits_le32(STM32_DDRPHYC_BASE + DDRPHYC_DX1DLLCR, DDRPHYC_DXNDLLCR_DLLDIS);
clrbits_le32(STM32_DDRPHYC_BASE + DDRPHYC_DX2DLLCR, DDRPHYC_DXNDLLCR_DLLDIS);
clrbits_le32(STM32_DDRPHYC_BASE + DDRPHYC_DX3DLLCR, DDRPHYC_DXNDLLCR_DLLDIS);
/* Additional delay to avoid early DLL clock switch */
secure_udelay(50);
/* Switch controller clocks (uMCTL2/PUBL) to DLL ref clock */
clrbits_le32(STM32_RCC_BASE + RCC_DDRITFCR, RCC_DDRITFCR_GSKPCTRL);
clrbits_le32(STM32_DDRPHYC_BASE + DDRPHYC_ACDLLCR, DDRPHYC_ACDLLCR_DLLSRST);
secure_udelay(10);
setbits_le32(STM32_DDRPHYC_BASE + DDRPHYC_ACDLLCR, DDRPHYC_ACDLLCR_DLLSRST);
/* PHY partial init: (DLL lock and ITM reset) */
writel(DDRPHYC_PIR_DLLSRST | DDRPHYC_PIR_DLLLOCK |
DDRPHYC_PIR_ITMSRST | DDRPHYC_PIR_INIT,
STM32_DDRPHYC_BASE + DDRPHYC_PIR);
/* Need to wait at least 10 clock cycles before accessing PGSR */
secure_udelay(1);
/* Pool end of init */
ret = secure_waitbits(STM32_DDRPHYC_BASE + DDRPHYC_PGSR,
DDRPHYC_PGSR_IDONE, DDRPHYC_PGSR_IDONE);
if (ret)
hang();
/* Handshake */
clrbits_le32(STM32_DDRCTRL_BASE + DDRCTRL_SWCTL, DDRCTRL_SWCTL_SW_DONE);
/* Unmask dfi_init_complete_en to uMCTL2 */
setbits_le32(STM32_DDRCTRL_BASE + DDRCTRL_DFIMISC, DDRCTRL_DFIMISC_DFI_INIT_COMPLETE_EN);
/* Ack */
setbits_le32(STM32_DDRCTRL_BASE + DDRCTRL_SWCTL, DDRCTRL_SWCTL_SW_DONE);
ret = secure_waitbits(STM32_DDRCTRL_BASE + DDRCTRL_SWSTAT,
DDRCTRL_SWSTAT_SW_DONE_ACK,
DDRCTRL_SWSTAT_SW_DONE_ACK);
if (ret)
hang();
/* Deactivate sw retention in PWR */
clrbits_le32(STM32_PWR_BASE + PWR_CR3, PWR_CR3_DDRRETEN);
/* Enable PZQ cell (PUBL register) */
clrbits_le32(STM32_DDRPHYC_BASE + DDRPHYC_ZQ0CR0, DDRPHYC_ZQ0CRN_ZQPD);
/* Enable pad drivers */
clrbits_le32(STM32_DDRPHYC_BASE + DDRPHYC_ACIOCR, DDRPHYC_ACIOCR_ACPDD);
/* Enable command/address output driver */
setbits_le32(STM32_DDRPHYC_BASE + DDRPHYC_ACIOCR, DDRPHYC_ACIOCR_ACOE);
clrbits_le32(STM32_DDRPHYC_BASE + DDRPHYC_ACIOCR, DDRPHYC_ACIOCR_CKPDD_MASK);
clrbits_le32(STM32_DDRPHYC_BASE + DDRPHYC_ACIOCR, DDRPHYC_ACIOCR_CSPDD_MASK);
clrbits_le32(STM32_DDRPHYC_BASE + DDRPHYC_DXCCR, DDRPHYC_DXCCR_DXPDD);
clrbits_le32(STM32_DDRPHYC_BASE + DDRPHYC_DXCCR, DDRPHYC_DXCCR_DXPDR);
/* Release latch */
setbits_le32(STM32_DDRPHYC_BASE + DDRPHYC_DSGCR, DDRPHYC_DSGCR_CKOE);
clrbits_le32(STM32_DDRPHYC_BASE + DDRPHYC_DSGCR, DDRPHYC_DSGCR_ODTPDD_MASK);
clrbits_le32(STM32_DDRPHYC_BASE + DDRPHYC_DSGCR, DDRPHYC_DSGCR_NL2PD);
clrbits_le32(STM32_DDRPHYC_BASE + DDRPHYC_DSGCR, DDRPHYC_DSGCR_CKEPDD_MASK);
/* Remove selfrefresh */
clrbits_le32(STM32_DDRCTRL_BASE + DDRCTRL_PWRCTL, DDRCTRL_PWRCTL_SELFREF_SW);
/* Wait operating_mode == normal */
ret = secure_waitbits(STM32_DDRCTRL_BASE + DDRCTRL_STAT,
DDRCTRL_STAT_OPERATING_MODE_MASK,
DDRCTRL_STAT_OPERATING_MODE_NORMAL);
if (ret)
hang();
/* AXI ports are no longer blocked from taking transactions */
setbits_le32(STM32_DDRCTRL_BASE + DDRCTRL_PCTRL_0, DDRCTRL_PCTRL_N_PORT_EN);
setbits_le32(STM32_DDRCTRL_BASE + DDRCTRL_PCTRL_1, DDRCTRL_PCTRL_N_PORT_EN);
setbits_le32(STM32_RCC_BASE + RCC_DDRITFCR, RCC_DDRITFCR_AXIDCGEN);
}
void __secure psci_system_suspend(u32 __always_unused function_id,
u32 ep, u32 context_id)
{
u32 saved_mcudivr, saved_pll3cr, saved_pll4cr, saved_mssckselr;
u32 gicd_addr = stm32mp_get_gicd_base_address();
bool iwdg1_wake = false;
bool iwdg2_wake = false;
bool other_wake = false;
u32 saved_pwrctl, reg;
u32 gic_enabled[8];
u32 irqs;
int i;
/* Cache enable mask of all 256 SPI */
for (i = 0; i < ARRAY_SIZE(gic_enabled); i++)
gic_enabled[i] = readl(gicd_addr + GICD_ISENABLERn + 0x4 + 4 * i);
/* Disable IO compensation */
/* Place current APSRC/ANSRC into RAPSRC/RANSRC */
reg = readl(STM32_SYSCFG_BASE + SYSCFG_CMPCR);
reg >>= 8;
reg &= 0xff << 16;
reg |= SYSCFG_CMPCR_SW_CTRL;
writel(reg, STM32_SYSCFG_BASE + SYSCFG_CMPCR);
writel(SYSCFG_CMPENR_MPUEN, STM32_SYSCFG_BASE + SYSCFG_CMPENCLRR);
writel(RCC_MP_CIFR_WKUPF, STM32_RCC_BASE + RCC_MP_CIFR);
setbits_le32(STM32_RCC_BASE + RCC_MP_CIER, RCC_MP_CIFR_WKUPF);
setbits_le32(STM32_PWR_BASE + PWR_MPUCR,
PWR_MPUCR_CSSF | PWR_MPUCR_CSTDBYDIS | PWR_MPUCR_PDDS);
saved_mcudivr = readl(STM32_RCC_BASE + RCC_MCUDIVR);
saved_pll3cr = readl(STM32_RCC_BASE + RCC_PLL3CR);
saved_pll4cr = readl(STM32_RCC_BASE + RCC_PLL4CR);
saved_mssckselr = readl(STM32_RCC_BASE + RCC_MSSCKSELR);
psci_v7_flush_dcache_all();
ddr_sr_mode_ssr(&saved_pwrctl);
ddr_sw_self_refresh_in();
setbits_le32(STM32_PWR_BASE + PWR_CR3, PWR_CR3_DDRSREN);
writel(0x3, STM32_RCC_BASE + RCC_MP_SREQSETR);
/* Ping the IWDG before entering suspend */
iwdg1_wake = !!(gic_enabled[4] & BIT(22)); /* SPI 150 */
iwdg2_wake = !!(gic_enabled[4] & BIT(23)); /* SPI 151 */
for (;;) {
/* Ping IWDG1 and ACK pretimer IRQ */
if (iwdg1_wake) {
writel(IWDG_KR_RELOAD_KEY, STM32_IWDG1_BASE + IWDG_KR);
writel(IWDG_EWCR_EWIC, STM32_IWDG1_BASE + IWDG_EWCR);
}
/* Ping IWDG2 and ACK pretimer IRQ */
if (iwdg2_wake) {
writel(IWDG_KR_RELOAD_KEY, STM32_IWDG2_BASE + IWDG_KR);
writel(IWDG_EWCR_EWIC, STM32_IWDG2_BASE + IWDG_EWCR);
}
iwdg1_wake = false;
iwdg2_wake = false;
/* Zzz, enter stop mode */
asm volatile(
"isb\n"
"dsb\n"
"wfi\n");
/* Determine the wake up source */
for (i = 0; i < ARRAY_SIZE(gic_enabled); i++) {
irqs = readl(gicd_addr + GICR_IGROUPMODRn + 0x4 + 4 * i);
irqs &= gic_enabled[i];
if (!irqs)
continue;
/* Test whether IWDG pretimeout triggered the wake up. */
if (i == 4) { /* SPI Num 128..159 */
iwdg1_wake = !!(irqs & BIT(22)); /* SPI 150 */
iwdg2_wake = !!(irqs & BIT(23)); /* SPI 151 */
irqs &= ~(BIT(22) | BIT(23));
}
/* Test whether there is any other wake up trigger. */
if (irqs) {
other_wake = true;
break;
}
}
/* Other wake up triggers pending, let OS deal with all of it. */
if (other_wake)
break;
}
writel(0x3, STM32_RCC_BASE + RCC_MP_SREQCLRR);
ddr_sw_self_refresh_exit();
ddr_sr_mode_restore(saved_pwrctl);
writel(saved_mcudivr, STM32_RCC_BASE + RCC_MCUDIVR);
writel(saved_pll3cr, STM32_RCC_BASE + RCC_PLL3CR);
writel(saved_pll4cr, STM32_RCC_BASE + RCC_PLL4CR);
writel(saved_mssckselr, STM32_RCC_BASE + RCC_MSSCKSELR);
writel(SYSCFG_CMPENR_MPUEN, STM32_SYSCFG_BASE + SYSCFG_CMPENSETR);
clrbits_le32(STM32_SYSCFG_BASE + SYSCFG_CMPCR, SYSCFG_CMPCR_SW_CTRL);
}