u-boot/board/lpc2292sodimm/eth.c

884 lines
21 KiB
C

/*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 of
* the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston,
* MA 02111-1307 USA
*/
#include <config.h>
#include <common.h>
#include <net.h>
#include <asm/arch/hardware.h>
#include "spi.h"
/*
* Control Registers in Bank 0
*/
#define CTL_REG_ERDPTL 0x00
#define CTL_REG_ERDPTH 0x01
#define CTL_REG_EWRPTL 0x02
#define CTL_REG_EWRPTH 0x03
#define CTL_REG_ETXSTL 0x04
#define CTL_REG_ETXSTH 0x05
#define CTL_REG_ETXNDL 0x06
#define CTL_REG_ETXNDH 0x07
#define CTL_REG_ERXSTL 0x08
#define CTL_REG_ERXSTH 0x09
#define CTL_REG_ERXNDL 0x0A
#define CTL_REG_ERXNDA 0x0B
#define CTL_REG_ERXRDPTL 0x0C
#define CTL_REG_ERXRDPTH 0x0D
#define CTL_REG_ERXWRPTL 0x0E
#define CTL_REG_ERXWRPTH 0x0F
#define CTL_REG_EDMASTL 0x10
#define CTL_REG_EDMASTH 0x11
#define CTL_REG_EDMANDL 0x12
#define CTL_REG_EDMANDH 0x13
#define CTL_REG_EDMADSTL 0x14
#define CTL_REG_EDMADSTH 0x15
#define CTL_REG_EDMACSL 0x16
#define CTL_REG_EDMACSH 0x17
/* these are common in all banks */
#define CTL_REG_EIE 0x1B
#define CTL_REG_EIR 0x1C
#define CTL_REG_ESTAT 0x1D
#define CTL_REG_ECON2 0x1E
#define CTL_REG_ECON1 0x1F
/*
* Control Registers in Bank 1
*/
#define CTL_REG_EHT0 0x00
#define CTL_REG_EHT1 0x01
#define CTL_REG_EHT2 0x02
#define CTL_REG_EHT3 0x03
#define CTL_REG_EHT4 0x04
#define CTL_REG_EHT5 0x05
#define CTL_REG_EHT6 0x06
#define CTL_REG_EHT7 0x07
#define CTL_REG_EPMM0 0x08
#define CTL_REG_EPMM1 0x09
#define CTL_REG_EPMM2 0x0A
#define CTL_REG_EPMM3 0x0B
#define CTL_REG_EPMM4 0x0C
#define CTL_REG_EPMM5 0x0D
#define CTL_REG_EPMM6 0x0E
#define CTL_REG_EPMM7 0x0F
#define CTL_REG_EPMCSL 0x10
#define CTL_REG_EPMCSH 0x11
#define CTL_REG_EPMOL 0x14
#define CTL_REG_EPMOH 0x15
#define CTL_REG_EWOLIE 0x16
#define CTL_REG_EWOLIR 0x17
#define CTL_REG_ERXFCON 0x18
#define CTL_REG_EPKTCNT 0x19
/*
* Control Registers in Bank 2
*/
#define CTL_REG_MACON1 0x00
#define CTL_REG_MACON2 0x01
#define CTL_REG_MACON3 0x02
#define CTL_REG_MACON4 0x03
#define CTL_REG_MABBIPG 0x04
#define CTL_REG_MAIPGL 0x06
#define CTL_REG_MAIPGH 0x07
#define CTL_REG_MACLCON1 0x08
#define CTL_REG_MACLCON2 0x09
#define CTL_REG_MAMXFLL 0x0A
#define CTL_REG_MAMXFLH 0x0B
#define CTL_REG_MAPHSUP 0x0D
#define CTL_REG_MICON 0x11
#define CTL_REG_MICMD 0x12
#define CTL_REG_MIREGADR 0x14
#define CTL_REG_MIWRL 0x16
#define CTL_REG_MIWRH 0x17
#define CTL_REG_MIRDL 0x18
#define CTL_REG_MIRDH 0x19
/*
* Control Registers in Bank 3
*/
#define CTL_REG_MAADR1 0x00
#define CTL_REG_MAADR0 0x01
#define CTL_REG_MAADR3 0x02
#define CTL_REG_MAADR2 0x03
#define CTL_REG_MAADR5 0x04
#define CTL_REG_MAADR4 0x05
#define CTL_REG_EBSTSD 0x06
#define CTL_REG_EBSTCON 0x07
#define CTL_REG_EBSTCSL 0x08
#define CTL_REG_EBSTCSH 0x09
#define CTL_REG_MISTAT 0x0A
#define CTL_REG_EREVID 0x12
#define CTL_REG_ECOCON 0x15
#define CTL_REG_EFLOCON 0x17
#define CTL_REG_EPAUSL 0x18
#define CTL_REG_EPAUSH 0x19
/*
* PHY Register
*/
#define PHY_REG_PHID1 0x02
#define PHY_REG_PHID2 0x03
/*
* Receive Filter Register (ERXFCON) bits
*/
#define ENC_RFR_UCEN 0x80
#define ENC_RFR_ANDOR 0x40
#define ENC_RFR_CRCEN 0x20
#define ENC_RFR_PMEN 0x10
#define ENC_RFR_MPEN 0x08
#define ENC_RFR_HTEN 0x04
#define ENC_RFR_MCEN 0x02
#define ENC_RFR_BCEN 0x01
/*
* ECON1 Register Bits
*/
#define ENC_ECON1_TXRST 0x80
#define ENC_ECON1_RXRST 0x40
#define ENC_ECON1_DMAST 0x20
#define ENC_ECON1_CSUMEN 0x10
#define ENC_ECON1_TXRTS 0x08
#define ENC_ECON1_RXEN 0x04
#define ENC_ECON1_BSEL1 0x02
#define ENC_ECON1_BSEL0 0x01
/*
* ECON2 Register Bits
*/
#define ENC_ECON2_AUTOINC 0x80
#define ENC_ECON2_PKTDEC 0x40
#define ENC_ECON2_PWRSV 0x20
#define ENC_ECON2_VRPS 0x08
/*
* EIR Register Bits
*/
#define ENC_EIR_PKTIF 0x40
#define ENC_EIR_DMAIF 0x20
#define ENC_EIR_LINKIF 0x10
#define ENC_EIR_TXIF 0x08
#define ENC_EIR_WOLIF 0x04
#define ENC_EIR_TXERIF 0x02
#define ENC_EIR_RXERIF 0x01
/*
* ESTAT Register Bits
*/
#define ENC_ESTAT_INT 0x80
#define ENC_ESTAT_LATECOL 0x10
#define ENC_ESTAT_RXBUSY 0x04
#define ENC_ESTAT_TXABRT 0x02
#define ENC_ESTAT_CLKRDY 0x01
/*
* EIE Register Bits
*/
#define ENC_EIE_INTIE 0x80
#define ENC_EIE_PKTIE 0x40
#define ENC_EIE_DMAIE 0x20
#define ENC_EIE_LINKIE 0x10
#define ENC_EIE_TXIE 0x08
#define ENC_EIE_WOLIE 0x04
#define ENC_EIE_TXERIE 0x02
#define ENC_EIE_RXERIE 0x01
/*
* MACON1 Register Bits
*/
#define ENC_MACON1_LOOPBK 0x10
#define ENC_MACON1_TXPAUS 0x08
#define ENC_MACON1_RXPAUS 0x04
#define ENC_MACON1_PASSALL 0x02
#define ENC_MACON1_MARXEN 0x01
/*
* MACON2 Register Bits
*/
#define ENC_MACON2_MARST 0x80
#define ENC_MACON2_RNDRST 0x40
#define ENC_MACON2_MARXRST 0x08
#define ENC_MACON2_RFUNRST 0x04
#define ENC_MACON2_MATXRST 0x02
#define ENC_MACON2_TFUNRST 0x01
/*
* MACON3 Register Bits
*/
#define ENC_MACON3_PADCFG2 0x80
#define ENC_MACON3_PADCFG1 0x40
#define ENC_MACON3_PADCFG0 0x20
#define ENC_MACON3_TXCRCEN 0x10
#define ENC_MACON3_PHDRLEN 0x08
#define ENC_MACON3_HFRMEN 0x04
#define ENC_MACON3_FRMLNEN 0x02
#define ENC_MACON3_FULDPX 0x01
/*
* MICMD Register Bits
*/
#define ENC_MICMD_MIISCAN 0x02
#define ENC_MICMD_MIIRD 0x01
/*
* MISTAT Register Bits
*/
#define ENC_MISTAT_NVALID 0x04
#define ENC_MISTAT_SCAN 0x02
#define ENC_MISTAT_BUSY 0x01
/*
* PHID1 and PHID2 values
*/
#define ENC_PHID1_VALUE 0x0083
#define ENC_PHID2_VALUE 0x1400
#define ENC_PHID2_MASK 0xFC00
#define ENC_SPI_SLAVE_CS 0x00010000 /* pin P1.16 */
#define ENC_RESET 0x00020000 /* pin P1.17 */
#define FAILSAFE_VALUE 5000
/*
* Controller memory layout:
*
* 0x0000 - 0x17ff 6k bytes receive buffer
* 0x1800 - 0x1fff 2k bytes transmit buffer
*/
/* Use the lower memory for receiver buffer. See errata pt. 5 */
#define ENC_RX_BUF_START 0x0000
#define ENC_TX_BUF_START 0x1800
/* maximum frame length */
#define ENC_MAX_FRM_LEN 1518
#define enc_enable() PUT32(IO1CLR, ENC_SPI_SLAVE_CS)
#define enc_disable() PUT32(IO1SET, ENC_SPI_SLAVE_CS)
#define enc_cfg_spi() spi_set_cfg(0, 0, 0); spi_set_clock(8);
static unsigned char encReadReg(unsigned char regNo);
static void encWriteReg(unsigned char regNo, unsigned char data);
static void encWriteRegRetry(unsigned char regNo, unsigned char data, int c);
static void encReadBuff(unsigned short length, unsigned char *pBuff);
static void encWriteBuff(unsigned short length, unsigned char *pBuff);
static void encBitSet(unsigned char regNo, unsigned char data);
static void encBitClr(unsigned char regNo, unsigned char data);
static void encReset(void);
static void encInit(unsigned char *pEthAddr);
static unsigned short phyRead(unsigned char addr);
static void encPoll(void);
static void encRx(void);
#define m_nic_read(reg) encReadReg(reg)
#define m_nic_write(reg, data) encWriteReg(reg, data)
#define m_nic_write_retry(reg, data, count) encWriteRegRetry(reg, data, count)
#define m_nic_read_data(len, buf) encReadBuff((len), (buf))
#define m_nic_write_data(len, buf) encWriteBuff((len), (buf))
/* bit field set */
#define m_nic_bfs(reg, data) encBitSet(reg, data)
/* bit field clear */
#define m_nic_bfc(reg, data) encBitClr(reg, data)
static unsigned char bank = 0; /* current bank in enc28j60 */
static unsigned char next_pointer_lsb;
static unsigned char next_pointer_msb;
static unsigned char buffer[ENC_MAX_FRM_LEN];
static int rxResetCounter = 0;
#define RX_RESET_COUNTER 1000;
/*-----------------------------------------------------------------------------
* Returns 0 when failes otherwize 1
*/
int eth_init(bd_t *bis)
{
/* configure GPIO */
(*((volatile unsigned long *) IO1DIR)) |= ENC_SPI_SLAVE_CS;
(*((volatile unsigned long *) IO1DIR)) |= ENC_RESET;
/* CS and RESET active low */
PUT32(IO1SET, ENC_SPI_SLAVE_CS);
PUT32(IO1SET, ENC_RESET);
spi_init();
/* initialize controller */
encReset();
encInit(bis->bi_enetaddr);
m_nic_bfs(CTL_REG_ECON1, ENC_ECON1_RXEN); /* enable receive */
return 0;
}
int eth_send(volatile void *packet, int length)
{
/* check frame length, etc. */
/* TODO: */
/* switch to bank 0 */
m_nic_bfc(CTL_REG_ECON1, (ENC_ECON1_BSEL1 | ENC_ECON1_BSEL0));
/* set EWRPT */
m_nic_write(CTL_REG_EWRPTL, (ENC_TX_BUF_START & 0xff));
m_nic_write(CTL_REG_EWRPTH, (ENC_TX_BUF_START >> 8));
/* set ETXST */
m_nic_write(CTL_REG_ETXSTL, ENC_TX_BUF_START & 0xFF);
m_nic_write(CTL_REG_ETXSTH, ENC_TX_BUF_START >> 8);
/* write packet */
m_nic_write_data(length, (unsigned char*)packet);
/* set ETXND */
m_nic_write(CTL_REG_ETXNDL, (length + ENC_TX_BUF_START) & 0xFF);
m_nic_write(CTL_REG_ETXNDH, (length + ENC_TX_BUF_START) >> 8);
/* set ECON1.TXRTS */
m_nic_bfs(CTL_REG_ECON1, ENC_ECON1_TXRTS);
return 0;
}
/*****************************************************************************
* This function resets the receiver only. This function may be called from
* interrupt-context.
*/
static void encReceiverReset(void)
{
unsigned char econ1;
econ1 = m_nic_read(CTL_REG_ECON1);
if((econ1 & ENC_ECON1_RXRST) == 0) {
m_nic_bfs(CTL_REG_ECON1, ENC_ECON1_RXRST);
rxResetCounter = RX_RESET_COUNTER;
}
}
/*****************************************************************************
* receiver reset timer
*/
static void encReceiverResetCallback(void)
{
m_nic_bfc(CTL_REG_ECON1, ENC_ECON1_RXRST);
m_nic_bfs(CTL_REG_ECON1, ENC_ECON1_RXEN); /* enable receive */
}
/*-----------------------------------------------------------------------------
* Check for received packets. Call NetReceive for each packet. The return
* value is ignored by the caller.
*/
int eth_rx(void)
{
if(rxResetCounter > 0 && --rxResetCounter == 0)
{
encReceiverResetCallback();
}
encPoll();
return 0;
}
void eth_halt(void)
{
m_nic_bfc(CTL_REG_ECON1, ENC_ECON1_RXEN); /* disable receive */
}
/*****************************************************************************/
static void encPoll(void)
{
unsigned char eir_reg;
volatile unsigned char estat_reg;
unsigned char pkt_cnt;
/* clear global interrupt enable bit in enc28j60 */
m_nic_bfc(CTL_REG_EIE, ENC_EIE_INTIE);
estat_reg = m_nic_read(CTL_REG_ESTAT);
eir_reg = m_nic_read(CTL_REG_EIR);
if (eir_reg & ENC_EIR_TXIF){
/* clear TXIF bit in EIR */
m_nic_bfc(CTL_REG_EIR, ENC_EIR_TXIF);
}
/* We have to use pktcnt and not pktif bit, see errata pt. 6 */
/* move to bank 1 */
m_nic_bfc(CTL_REG_ECON1, ENC_ECON1_BSEL1);
m_nic_bfs(CTL_REG_ECON1, ENC_ECON1_BSEL0);
/* read pktcnt */
pkt_cnt = m_nic_read(CTL_REG_EPKTCNT);
if (pkt_cnt > 0) {
if ((eir_reg & ENC_EIR_PKTIF) == 0) {
/*printf("encPoll: pkt cnt > 0, but pktif not set\n"); */
}
encRx();
/* clear PKTIF bit in EIR, this should not need to be done but it
seems like we get problems if we do not */
m_nic_bfc(CTL_REG_EIR, ENC_EIR_PKTIF);
}
if (eir_reg & ENC_EIR_RXERIF) {
printf("encPoll: rx error\n");
m_nic_bfc(CTL_REG_EIR, ENC_EIR_RXERIF);
}
if (eir_reg & ENC_EIR_TXERIF) {
printf("encPoll: tx error\n");
m_nic_bfc(CTL_REG_EIR, ENC_EIR_TXERIF);
}
/* set global interrupt enable bit in enc28j60 */
m_nic_bfs(CTL_REG_EIE, ENC_EIE_INTIE);
}
static void encRx(void)
{
unsigned short pkt_len;
unsigned short copy_len;
unsigned short status;
unsigned char eir_reg;
unsigned char pkt_cnt = 0;
/* switch to bank 0 */
m_nic_bfc(CTL_REG_ECON1, (ENC_ECON1_BSEL1 | ENC_ECON1_BSEL0));
m_nic_write(CTL_REG_ERDPTL, next_pointer_lsb);
m_nic_write(CTL_REG_ERDPTH, next_pointer_msb);
do {
m_nic_read_data(6, buffer);
next_pointer_lsb = buffer[0];
next_pointer_msb = buffer[1];
pkt_len = buffer[2];
pkt_len |= (unsigned short)buffer[3] << 8;
status = buffer[4];
status |= (unsigned short)buffer[5] << 8;
if (pkt_len <= ENC_MAX_FRM_LEN) {
copy_len = pkt_len;
} else {
copy_len = 0;
/* p_priv->stats.rx_dropped++; */
/* we will drop this packet */
}
if ((status & (1L << 7)) == 0) { /* check Received Ok bit */
copy_len = 0;
/* p_priv->stats.rx_errors++; */
}
if (copy_len > 0) {
m_nic_read_data(copy_len, buffer);
}
/* advance read pointer to next pointer */
m_nic_write(CTL_REG_ERDPTL, next_pointer_lsb);
m_nic_write(CTL_REG_ERDPTH, next_pointer_msb);
/* decrease packet counter */
m_nic_bfs(CTL_REG_ECON2, ENC_ECON2_PKTDEC);
/* move to bank 1 */
m_nic_bfc(CTL_REG_ECON1, ENC_ECON1_BSEL1);
m_nic_bfs(CTL_REG_ECON1, ENC_ECON1_BSEL0);
/* read pktcnt */
pkt_cnt = m_nic_read(CTL_REG_EPKTCNT);
/* switch to bank 0 */
m_nic_bfc(CTL_REG_ECON1, (ENC_ECON1_BSEL1 | ENC_ECON1_BSEL0));
if (copy_len == 0) {
eir_reg = m_nic_read(CTL_REG_EIR);
encReceiverReset();
printf("eth_rx: copy_len=0\n");
continue;
}
NetReceive((unsigned char *)buffer, pkt_len);
eir_reg = m_nic_read(CTL_REG_EIR);
} while (pkt_cnt); /* Use EPKTCNT not EIR.PKTIF flag, see errata pt. 6 */
m_nic_write(CTL_REG_ERXRDPTL, next_pointer_lsb);
m_nic_write(CTL_REG_ERXRDPTH, next_pointer_msb);
}
static void encWriteReg(unsigned char regNo, unsigned char data)
{
spi_lock();
enc_cfg_spi();
enc_enable();
spi_write(0x40 | regNo); /* write in regNo */
spi_write(data);
enc_disable();
enc_enable();
spi_write(0x1f); /* write reg 0x1f */
enc_disable();
spi_unlock();
}
static void encWriteRegRetry(unsigned char regNo, unsigned char data, int c)
{
unsigned char readback;
int i;
spi_lock();
for (i = 0; i < c; i++) {
enc_cfg_spi();
enc_enable();
spi_write(0x40 | regNo); /* write in regNo */
spi_write(data);
enc_disable();
enc_enable();
spi_write(0x1f); /* write reg 0x1f */
enc_disable();
spi_unlock(); /* we must unlock spi first */
readback = encReadReg(regNo);
spi_lock();
if (readback == data)
break;
}
spi_unlock();
if (i == c) {
printf("enc28j60: write reg %d failed\n", regNo);
}
}
static unsigned char encReadReg(unsigned char regNo)
{
unsigned char rxByte;
spi_lock();
enc_cfg_spi();
enc_enable();
spi_write(0x1f); /* read reg 0x1f */
bank = spi_read() & 0x3;
enc_disable();
enc_enable();
spi_write(regNo);
rxByte = spi_read();
/* check if MAC or MII register */
if (((bank == 2) && (regNo <= 0x1a)) ||
((bank == 3) && (regNo <= 0x05 || regNo == 0x0a))) {
/* ignore first byte and read another byte */
rxByte = spi_read();
}
enc_disable();
spi_unlock();
return rxByte;
}
static void encReadBuff(unsigned short length, unsigned char *pBuff)
{
spi_lock();
enc_cfg_spi();
enc_enable();
spi_write(0x20 | 0x1a); /* read buffer memory */
while(length--) {
if(pBuff != NULL)
*pBuff++ = spi_read();
else
spi_write(0);
}
enc_disable();
spi_unlock();
}
static void encWriteBuff(unsigned short length,
unsigned char *pBuff)
{
spi_lock();
enc_cfg_spi();
enc_enable();
spi_write(0x60 | 0x1a); /* write buffer memory */
spi_write(0x00); /* control byte */
while(length--)
spi_write(*pBuff++);
enc_disable();
spi_unlock();
}
static void encBitSet(unsigned char regNo, unsigned char data)
{
spi_lock();
enc_cfg_spi();
enc_enable();
spi_write(0x80 | regNo); /* bit field set */
spi_write(data);
enc_disable();
spi_unlock();
}
static void encBitClr(unsigned char regNo, unsigned char data)
{
spi_lock();
enc_cfg_spi();
enc_enable();
spi_write(0xA0 | regNo); /* bit field clear */
spi_write(data);
enc_disable();
spi_unlock();
}
static void encReset(void)
{
spi_lock();
enc_cfg_spi();
enc_enable();
spi_write(0xff); /* soft reset */
enc_disable();
spi_unlock();
/* sleep 1 ms. See errata pt. 2 */
udelay(1000);
#if 0
(*((volatile unsigned long*)IO1CLR)) &= ENC_RESET;
mdelay(5);
(*((volatile unsigned long*)IO1SET)) &= ENC_RESET;
#endif
}
static void encInit(unsigned char *pEthAddr)
{
unsigned short phid1 = 0;
unsigned short phid2 = 0;
/* switch to bank 0 */
m_nic_bfc(CTL_REG_ECON1, (ENC_ECON1_BSEL1 | ENC_ECON1_BSEL0));
/*
* Setup the buffer space. The reset values are valid for the
* other pointers.
*/
#if 0
/* We shall not write to ERXST, see errata pt. 5. Instead we
have to make sure that ENC_RX_BUS_START is 0. */
m_nic_write_retry(CTL_REG_ERXSTL, (ENC_RX_BUF_START & 0xFF), 1);
m_nic_write_retry(CTL_REG_ERXSTH, (ENC_RX_BUF_START >> 8), 1);
#endif
m_nic_write_retry(CTL_REG_ERDPTL, (ENC_RX_BUF_START & 0xFF), 1);
m_nic_write_retry(CTL_REG_ERDPTH, (ENC_RX_BUF_START >> 8), 1);
next_pointer_lsb = (ENC_RX_BUF_START & 0xFF);
next_pointer_msb = (ENC_RX_BUF_START >> 8);
/*
* For tracking purposes, the ERXRDPT registers should be programmed with
* the same value. This is the read pointer.
*/
m_nic_write(CTL_REG_ERXRDPTL, (ENC_RX_BUF_START & 0xFF));
m_nic_write_retry(CTL_REG_ERXRDPTH, (ENC_RX_BUF_START >> 8), 1);
/* Setup receive filters. */
/* move to bank 1 */
m_nic_bfc(CTL_REG_ECON1, ENC_ECON1_BSEL1);
m_nic_bfs(CTL_REG_ECON1, ENC_ECON1_BSEL0);
/* OR-filtering, Unicast, CRC-check and broadcast */
m_nic_write_retry(CTL_REG_ERXFCON,
(ENC_RFR_UCEN|ENC_RFR_CRCEN|ENC_RFR_BCEN), 1);
/* Wait for Oscillator Start-up Timer (OST). */
while((m_nic_read(CTL_REG_ESTAT) & ENC_ESTAT_CLKRDY) == 0) {
static int cnt = 0;
if(cnt++ >= 1000){
cnt = 0;
}
}
/* verify identification */
phid1 = phyRead(PHY_REG_PHID1);
phid2 = phyRead(PHY_REG_PHID2);
if(phid1 != ENC_PHID1_VALUE
|| (phid2 & ENC_PHID2_MASK) != ENC_PHID2_VALUE) {
printf("ERROR: failed to identify controller\n");
printf("phid1 = %x, phid2 = %x\n",
phid1, (phid2&ENC_PHID2_MASK));
printf("should be phid1 = %x, phid2 = %x\n",
ENC_PHID1_VALUE, ENC_PHID2_VALUE);
}
/*
* --- MAC Initialization ---
*/
/* Pull MAC out of Reset */
/* switch to bank 2 */
m_nic_bfc(CTL_REG_ECON1, ENC_ECON1_BSEL0);
m_nic_bfs(CTL_REG_ECON1, ENC_ECON1_BSEL1);
/* clear MAC reset bits */
m_nic_write_retry(CTL_REG_MACON2, 0, 1);
/* enable MAC to receive frames */
m_nic_write_retry(CTL_REG_MACON1, ENC_MACON1_MARXEN, 10);
/* configure pad, tx-crc and duplex */
/* TODO maybe enable FRMLNEN */
m_nic_write_retry(CTL_REG_MACON3, (ENC_MACON3_PADCFG0|ENC_MACON3_TXCRCEN),
10);
/* set maximum frame length */
m_nic_write_retry(CTL_REG_MAMXFLL, (ENC_MAX_FRM_LEN & 0xff), 10);
m_nic_write_retry(CTL_REG_MAMXFLH, (ENC_MAX_FRM_LEN >> 8), 10);
/*
* Set MAC back-to-back inter-packet gap. Recommended 0x12 for half duplex
* and 0x15 for full duplex.
*/
m_nic_write_retry(CTL_REG_MABBIPG, 0x12, 10);
/* Set (low byte) Non-Back-to_Back Inter-Packet Gap. Recommended 0x12 */
m_nic_write_retry(CTL_REG_MAIPGL, 0x12, 10);
/*
* Set (high byte) Non-Back-to_Back Inter-Packet Gap. Recommended
* 0x0c for half-duplex. Nothing for full-duplex
*/
m_nic_write_retry(CTL_REG_MAIPGH, 0x0C, 10);
/* set MAC address */
/* switch to bank 3 */
m_nic_bfs(CTL_REG_ECON1, (ENC_ECON1_BSEL0|ENC_ECON1_BSEL1));
m_nic_write_retry(CTL_REG_MAADR0, pEthAddr[5], 1);
m_nic_write_retry(CTL_REG_MAADR1, pEthAddr[4], 1);
m_nic_write_retry(CTL_REG_MAADR2, pEthAddr[3], 1);
m_nic_write_retry(CTL_REG_MAADR3, pEthAddr[2], 1);
m_nic_write_retry(CTL_REG_MAADR4, pEthAddr[1], 1);
m_nic_write_retry(CTL_REG_MAADR5, pEthAddr[0], 1);
/*
* Receive settings
*/
/* auto-increment RX-pointer when reading a received packet */
m_nic_bfs(CTL_REG_ECON2, ENC_ECON2_AUTOINC);
/* enable interrupts */
m_nic_bfs(CTL_REG_EIE, ENC_EIE_PKTIE);
m_nic_bfs(CTL_REG_EIE, ENC_EIE_TXIE);
m_nic_bfs(CTL_REG_EIE, ENC_EIE_RXERIE);
m_nic_bfs(CTL_REG_EIE, ENC_EIE_TXERIE);
m_nic_bfs(CTL_REG_EIE, ENC_EIE_INTIE);
}
/*****************************************************************************
*
* Description:
* Read PHY registers.
*
* NOTE! This function will change to Bank 2.
*
* Params:
* [in] addr address of the register to read
*
* Returns:
* The value in the register
*/
static unsigned short phyRead(unsigned char addr)
{
unsigned short ret = 0;
/* move to bank 2 */
m_nic_bfc(CTL_REG_ECON1, ENC_ECON1_BSEL0);
m_nic_bfs(CTL_REG_ECON1, ENC_ECON1_BSEL1);
/* write address to MIREGADR */
m_nic_write(CTL_REG_MIREGADR, addr);
/* set MICMD.MIIRD */
m_nic_write(CTL_REG_MICMD, ENC_MICMD_MIIRD);
/* poll MISTAT.BUSY bit until operation is complete */
while((m_nic_read(CTL_REG_MISTAT) & ENC_MISTAT_BUSY) != 0) {
static int cnt = 0;
if(cnt++ >= 1000) {
/* GJ - this seems extremely dangerous! */
/* printf("#"); */
cnt = 0;
}
}
/* clear MICMD.MIIRD */
m_nic_write(CTL_REG_MICMD, 0);
ret = (m_nic_read(CTL_REG_MIRDH) << 8);
ret |= (m_nic_read(CTL_REG_MIRDL) & 0xFF);
return ret;
}