u-boot/arch/arm/mach-sunxi/dram_sun50i_h616.c
Andre Przywara f9d1324775 sunxi: clock: H6/H616: Fix PLL clock factor encodings
Most clock factors and dividers in the H6 PLLs use a "+1 encoding",
which we were missing on two occasions.

This fixes the MMC clock setup on the H6, which could be slightly off due
to the wrong parent frequency:
mmc 2 set mod-clk req 52000000 parent 1176000000 n 2 m 12 rate 49000000

Also the CPU frequency (PLL1) was a tad too high before.

For PLL5 (DRAM) we already accounted for this +1, but in the DRAM code
itself, not in the bit field macro. Move this there to be aligned with
what the other SoCs and other PLLs do.

Signed-off-by: Andre Przywara <andre.przywara@arm.com>
Reviewed-by: Jernej Skrabec <jernej.skrabec@gmail.com>
2021-07-10 01:22:09 +01:00

1023 lines
27 KiB
C

// SPDX-License-Identifier: GPL-2.0+
/*
* sun50i H616 platform dram controller driver
*
* While controller is very similar to that in H6, PHY is completely
* unknown. That's why this driver has plenty of magic numbers. Some
* meaning was nevertheless deduced from strings found in boot0 and
* known meaning of some dram parameters.
* This driver only supports DDR3 memory and omits logic for all
* other supported types supported by hardware.
*
* (C) Copyright 2020 Jernej Skrabec <jernej.skrabec@siol.net>
*
*/
#include <common.h>
#include <init.h>
#include <log.h>
#include <asm/io.h>
#include <asm/arch/clock.h>
#include <asm/arch/dram.h>
#include <asm/arch/cpu.h>
#include <linux/bitops.h>
#include <linux/delay.h>
#include <linux/kconfig.h>
enum {
MBUS_QOS_LOWEST = 0,
MBUS_QOS_LOW,
MBUS_QOS_HIGH,
MBUS_QOS_HIGHEST
};
inline void mbus_configure_port(u8 port,
bool bwlimit,
bool priority,
u8 qos,
u8 waittime,
u8 acs,
u16 bwl0,
u16 bwl1,
u16 bwl2)
{
struct sunxi_mctl_com_reg * const mctl_com =
(struct sunxi_mctl_com_reg *)SUNXI_DRAM_COM_BASE;
const u32 cfg0 = ( (bwlimit ? (1 << 0) : 0)
| (priority ? (1 << 1) : 0)
| ((qos & 0x3) << 2)
| ((waittime & 0xf) << 4)
| ((acs & 0xff) << 8)
| (bwl0 << 16) );
const u32 cfg1 = ((u32)bwl2 << 16) | (bwl1 & 0xffff);
debug("MBUS port %d cfg0 %08x cfg1 %08x\n", port, cfg0, cfg1);
writel_relaxed(cfg0, &mctl_com->master[port].cfg0);
writel_relaxed(cfg1, &mctl_com->master[port].cfg1);
}
#define MBUS_CONF(port, bwlimit, qos, acs, bwl0, bwl1, bwl2) \
mbus_configure_port(port, bwlimit, false, \
MBUS_QOS_ ## qos, 0, acs, bwl0, bwl1, bwl2)
static void mctl_set_master_priority(void)
{
struct sunxi_mctl_com_reg * const mctl_com =
(struct sunxi_mctl_com_reg *)SUNXI_DRAM_COM_BASE;
/* enable bandwidth limit windows and set windows size 1us */
writel(399, &mctl_com->tmr);
writel(BIT(16), &mctl_com->bwcr);
MBUS_CONF( 0, true, HIGHEST, 0, 256, 128, 100);
MBUS_CONF( 1, true, HIGH, 0, 1536, 1400, 256);
MBUS_CONF( 2, true, HIGHEST, 0, 512, 256, 96);
MBUS_CONF( 3, true, HIGH, 0, 256, 100, 80);
MBUS_CONF( 4, true, HIGH, 2, 8192, 5500, 5000);
MBUS_CONF( 5, true, HIGH, 2, 100, 64, 32);
MBUS_CONF( 6, true, HIGH, 2, 100, 64, 32);
MBUS_CONF( 8, true, HIGH, 0, 256, 128, 64);
MBUS_CONF(11, true, HIGH, 0, 256, 128, 100);
MBUS_CONF(14, true, HIGH, 0, 1024, 256, 64);
MBUS_CONF(16, true, HIGHEST, 6, 8192, 2800, 2400);
MBUS_CONF(21, true, HIGHEST, 6, 2048, 768, 512);
MBUS_CONF(25, true, HIGHEST, 0, 100, 64, 32);
MBUS_CONF(26, true, HIGH, 2, 8192, 5500, 5000);
MBUS_CONF(37, true, HIGH, 0, 256, 128, 64);
MBUS_CONF(38, true, HIGH, 2, 100, 64, 32);
MBUS_CONF(39, true, HIGH, 2, 8192, 5500, 5000);
MBUS_CONF(40, true, HIGH, 2, 100, 64, 32);
dmb();
}
static void mctl_sys_init(struct dram_para *para)
{
struct sunxi_ccm_reg * const ccm =
(struct sunxi_ccm_reg *)SUNXI_CCM_BASE;
struct sunxi_mctl_com_reg * const mctl_com =
(struct sunxi_mctl_com_reg *)SUNXI_DRAM_COM_BASE;
struct sunxi_mctl_ctl_reg * const mctl_ctl =
(struct sunxi_mctl_ctl_reg *)SUNXI_DRAM_CTL0_BASE;
/* Put all DRAM-related blocks to reset state */
clrbits_le32(&ccm->mbus_cfg, MBUS_ENABLE);
clrbits_le32(&ccm->mbus_cfg, MBUS_RESET);
clrbits_le32(&ccm->dram_gate_reset, BIT(GATE_SHIFT));
udelay(5);
clrbits_le32(&ccm->dram_gate_reset, BIT(RESET_SHIFT));
clrbits_le32(&ccm->pll5_cfg, CCM_PLL5_CTRL_EN);
clrbits_le32(&ccm->dram_clk_cfg, DRAM_MOD_RESET);
udelay(5);
/* Set PLL5 rate to doubled DRAM clock rate */
writel(CCM_PLL5_CTRL_EN | CCM_PLL5_LOCK_EN | CCM_PLL5_OUT_EN |
CCM_PLL5_CTRL_N(para->clk * 2 / 24), &ccm->pll5_cfg);
mctl_await_completion(&ccm->pll5_cfg, CCM_PLL5_LOCK, CCM_PLL5_LOCK);
/* Configure DRAM mod clock */
writel(DRAM_CLK_SRC_PLL5, &ccm->dram_clk_cfg);
writel(BIT(RESET_SHIFT), &ccm->dram_gate_reset);
udelay(5);
setbits_le32(&ccm->dram_gate_reset, BIT(GATE_SHIFT));
/* Disable all channels */
writel(0, &mctl_com->maer0);
writel(0, &mctl_com->maer1);
writel(0, &mctl_com->maer2);
/* Configure MBUS and enable DRAM mod reset */
setbits_le32(&ccm->mbus_cfg, MBUS_RESET);
setbits_le32(&ccm->mbus_cfg, MBUS_ENABLE);
clrbits_le32(&mctl_com->unk_0x500, BIT(25));
setbits_le32(&ccm->dram_clk_cfg, DRAM_MOD_RESET);
udelay(5);
/* Unknown hack, which enables access of mctl_ctl regs */
writel(0x8000, &mctl_ctl->clken);
}
static void mctl_set_addrmap(struct dram_para *para)
{
struct sunxi_mctl_ctl_reg * const mctl_ctl =
(struct sunxi_mctl_ctl_reg *)SUNXI_DRAM_CTL0_BASE;
u8 cols = para->cols;
u8 rows = para->rows;
u8 ranks = para->ranks;
if (!para->bus_full_width)
cols -= 1;
/* Ranks */
if (ranks == 2)
mctl_ctl->addrmap[0] = rows + cols - 3;
else
mctl_ctl->addrmap[0] = 0x1F;
/* Banks, hardcoded to 8 banks now */
mctl_ctl->addrmap[1] = (cols - 2) | (cols - 2) << 8 | (cols - 2) << 16;
/* Columns */
mctl_ctl->addrmap[2] = 0;
switch (cols) {
case 7:
mctl_ctl->addrmap[3] = 0x1F1F1F00;
mctl_ctl->addrmap[4] = 0x1F1F;
break;
case 8:
mctl_ctl->addrmap[3] = 0x1F1F0000;
mctl_ctl->addrmap[4] = 0x1F1F;
break;
case 9:
mctl_ctl->addrmap[3] = 0x1F000000;
mctl_ctl->addrmap[4] = 0x1F1F;
break;
case 10:
mctl_ctl->addrmap[3] = 0;
mctl_ctl->addrmap[4] = 0x1F1F;
break;
case 11:
mctl_ctl->addrmap[3] = 0;
mctl_ctl->addrmap[4] = 0x1F00;
break;
case 12:
mctl_ctl->addrmap[3] = 0;
mctl_ctl->addrmap[4] = 0;
break;
default:
panic("Unsupported DRAM configuration: column number invalid\n");
}
/* Rows */
mctl_ctl->addrmap[5] = (cols - 3) | ((cols - 3) << 8) | ((cols - 3) << 16) | ((cols - 3) << 24);
switch (rows) {
case 13:
mctl_ctl->addrmap[6] = (cols - 3) | 0x0F0F0F00;
mctl_ctl->addrmap[7] = 0x0F0F;
break;
case 14:
mctl_ctl->addrmap[6] = (cols - 3) | ((cols - 3) << 8) | 0x0F0F0000;
mctl_ctl->addrmap[7] = 0x0F0F;
break;
case 15:
mctl_ctl->addrmap[6] = (cols - 3) | ((cols - 3) << 8) | ((cols - 3) << 16) | 0x0F000000;
mctl_ctl->addrmap[7] = 0x0F0F;
break;
case 16:
mctl_ctl->addrmap[6] = (cols - 3) | ((cols - 3) << 8) | ((cols - 3) << 16) | ((cols - 3) << 24);
mctl_ctl->addrmap[7] = 0x0F0F;
break;
case 17:
mctl_ctl->addrmap[6] = (cols - 3) | ((cols - 3) << 8) | ((cols - 3) << 16) | ((cols - 3) << 24);
mctl_ctl->addrmap[7] = (cols - 3) | 0x0F00;
break;
case 18:
mctl_ctl->addrmap[6] = (cols - 3) | ((cols - 3) << 8) | ((cols - 3) << 16) | ((cols - 3) << 24);
mctl_ctl->addrmap[7] = (cols - 3) | ((cols - 3) << 8);
break;
default:
panic("Unsupported DRAM configuration: row number invalid\n");
}
/* Bank groups, DDR4 only */
mctl_ctl->addrmap[8] = 0x3F3F;
}
static const u8 phy_init[] = {
0x07, 0x0b, 0x02, 0x16, 0x0d, 0x0e, 0x14, 0x19,
0x0a, 0x15, 0x03, 0x13, 0x04, 0x0c, 0x10, 0x06,
0x0f, 0x11, 0x1a, 0x01, 0x12, 0x17, 0x00, 0x08,
0x09, 0x05, 0x18
};
static void mctl_phy_configure_odt(void)
{
writel_relaxed(0xe, SUNXI_DRAM_PHY0_BASE + 0x388);
writel_relaxed(0xe, SUNXI_DRAM_PHY0_BASE + 0x38c);
writel_relaxed(0xe, SUNXI_DRAM_PHY0_BASE + 0x3c8);
writel_relaxed(0xe, SUNXI_DRAM_PHY0_BASE + 0x3cc);
writel_relaxed(0xe, SUNXI_DRAM_PHY0_BASE + 0x408);
writel_relaxed(0xe, SUNXI_DRAM_PHY0_BASE + 0x40c);
writel_relaxed(0xe, SUNXI_DRAM_PHY0_BASE + 0x448);
writel_relaxed(0xe, SUNXI_DRAM_PHY0_BASE + 0x44c);
writel_relaxed(0xe, SUNXI_DRAM_PHY0_BASE + 0x340);
writel_relaxed(0xe, SUNXI_DRAM_PHY0_BASE + 0x344);
writel_relaxed(0xe, SUNXI_DRAM_PHY0_BASE + 0x348);
writel_relaxed(0xe, SUNXI_DRAM_PHY0_BASE + 0x34c);
writel_relaxed(0x8, SUNXI_DRAM_PHY0_BASE + 0x380);
writel_relaxed(0x8, SUNXI_DRAM_PHY0_BASE + 0x384);
writel_relaxed(0x8, SUNXI_DRAM_PHY0_BASE + 0x3c0);
writel_relaxed(0x8, SUNXI_DRAM_PHY0_BASE + 0x3c4);
writel_relaxed(0x8, SUNXI_DRAM_PHY0_BASE + 0x400);
writel_relaxed(0x8, SUNXI_DRAM_PHY0_BASE + 0x404);
writel_relaxed(0x8, SUNXI_DRAM_PHY0_BASE + 0x440);
writel_relaxed(0x8, SUNXI_DRAM_PHY0_BASE + 0x444);
dmb();
}
static bool mctl_phy_write_leveling(struct dram_para *para)
{
bool result = true;
u32 val;
clrsetbits_le32(SUNXI_DRAM_PHY0_BASE + 8, 0xc0, 0x80);
writel(4, SUNXI_DRAM_PHY0_BASE + 0xc);
writel(0x40, SUNXI_DRAM_PHY0_BASE + 0x10);
setbits_le32(SUNXI_DRAM_PHY0_BASE + 8, 4);
if (para->bus_full_width)
val = 0xf;
else
val = 3;
mctl_await_completion((u32*)(SUNXI_DRAM_PHY0_BASE + 0x188), val, val);
clrbits_le32(SUNXI_DRAM_PHY0_BASE + 8, 4);
val = readl(SUNXI_DRAM_PHY0_BASE + 0x258);
if (val == 0 || val == 0x3f)
result = false;
val = readl(SUNXI_DRAM_PHY0_BASE + 0x25c);
if (val == 0 || val == 0x3f)
result = false;
val = readl(SUNXI_DRAM_PHY0_BASE + 0x318);
if (val == 0 || val == 0x3f)
result = false;
val = readl(SUNXI_DRAM_PHY0_BASE + 0x31c);
if (val == 0 || val == 0x3f)
result = false;
clrbits_le32(SUNXI_DRAM_PHY0_BASE + 8, 0xc0);
if (para->ranks == 2) {
clrsetbits_le32(SUNXI_DRAM_PHY0_BASE + 8, 0xc0, 0x40);
setbits_le32(SUNXI_DRAM_PHY0_BASE + 8, 4);
if (para->bus_full_width)
val = 0xf;
else
val = 3;
mctl_await_completion((u32*)(SUNXI_DRAM_PHY0_BASE + 0x188), val, val);
clrbits_le32(SUNXI_DRAM_PHY0_BASE + 8, 4);
}
clrbits_le32(SUNXI_DRAM_PHY0_BASE + 8, 0xc0);
return result;
}
static bool mctl_phy_read_calibration(struct dram_para *para)
{
bool result = true;
u32 val, tmp;
clrsetbits_le32(SUNXI_DRAM_PHY0_BASE + 8, 0x30, 0x20);
setbits_le32(SUNXI_DRAM_PHY0_BASE + 8, 1);
if (para->bus_full_width)
val = 0xf;
else
val = 3;
while ((readl(SUNXI_DRAM_PHY0_BASE + 0x184) & val) != val) {
if (readl(SUNXI_DRAM_PHY0_BASE + 0x184) & 0x20) {
result = false;
break;
}
}
clrbits_le32(SUNXI_DRAM_PHY0_BASE + 8, 1);
clrbits_le32(SUNXI_DRAM_PHY0_BASE + 8, 0x30);
if (para->ranks == 2) {
clrsetbits_le32(SUNXI_DRAM_PHY0_BASE + 8, 0x30, 0x10);
setbits_le32(SUNXI_DRAM_PHY0_BASE + 8, 1);
while ((readl(SUNXI_DRAM_PHY0_BASE + 0x184) & val) != val) {
if (readl(SUNXI_DRAM_PHY0_BASE + 0x184) & 0x20) {
result = false;
break;
}
}
setbits_le32(SUNXI_DRAM_PHY0_BASE + 8, 1);
}
clrbits_le32(SUNXI_DRAM_PHY0_BASE + 8, 0x30);
val = readl(SUNXI_DRAM_PHY0_BASE + 0x274) & 7;
tmp = readl(SUNXI_DRAM_PHY0_BASE + 0x26c) & 7;
if (val < tmp)
val = tmp;
tmp = readl(SUNXI_DRAM_PHY0_BASE + 0x32c) & 7;
if (val < tmp)
val = tmp;
tmp = readl(SUNXI_DRAM_PHY0_BASE + 0x334) & 7;
if (val < tmp)
val = tmp;
clrsetbits_le32(SUNXI_DRAM_PHY0_BASE + 0x38, 0x7, (val + 2) & 7);
setbits_le32(SUNXI_DRAM_PHY0_BASE + 4, 0x20);
return result;
}
static bool mctl_phy_read_training(struct dram_para *para)
{
u32 val1, val2, *ptr1, *ptr2;
bool result = true;
int i;
clrsetbits_le32(SUNXI_DRAM_PHY0_BASE + 0x198, 3, 2);
clrsetbits_le32(SUNXI_DRAM_PHY0_BASE + 0x804, 0x3f, 0xf);
clrsetbits_le32(SUNXI_DRAM_PHY0_BASE + 0x808, 0x3f, 0xf);
clrsetbits_le32(SUNXI_DRAM_PHY0_BASE + 0xa04, 0x3f, 0xf);
clrsetbits_le32(SUNXI_DRAM_PHY0_BASE + 0xa08, 0x3f, 0xf);
setbits_le32(SUNXI_DRAM_PHY0_BASE + 0x190, 6);
setbits_le32(SUNXI_DRAM_PHY0_BASE + 0x190, 1);
mctl_await_completion((u32*)(SUNXI_DRAM_PHY0_BASE + 0x840), 0xc, 0xc);
if (readl(SUNXI_DRAM_PHY0_BASE + 0x840) & 3)
result = false;
if (para->bus_full_width) {
mctl_await_completion((u32*)(SUNXI_DRAM_PHY0_BASE + 0xa40), 0xc, 0xc);
if (readl(SUNXI_DRAM_PHY0_BASE + 0xa40) & 3)
result = false;
}
ptr1 = (u32*)(SUNXI_DRAM_PHY0_BASE + 0x898);
ptr2 = (u32*)(SUNXI_DRAM_PHY0_BASE + 0x850);
for (i = 0; i < 9; i++) {
val1 = readl(&ptr1[i]);
val2 = readl(&ptr2[i]);
if (val1 - val2 <= 6)
result = false;
}
ptr1 = (u32*)(SUNXI_DRAM_PHY0_BASE + 0x8bc);
ptr2 = (u32*)(SUNXI_DRAM_PHY0_BASE + 0x874);
for (i = 0; i < 9; i++) {
val1 = readl(&ptr1[i]);
val2 = readl(&ptr2[i]);
if (val1 - val2 <= 6)
result = false;
}
if (para->bus_full_width) {
ptr1 = (u32*)(SUNXI_DRAM_PHY0_BASE + 0xa98);
ptr2 = (u32*)(SUNXI_DRAM_PHY0_BASE + 0xa50);
for (i = 0; i < 9; i++) {
val1 = readl(&ptr1[i]);
val2 = readl(&ptr2[i]);
if (val1 - val2 <= 6)
result = false;
}
ptr1 = (u32*)(SUNXI_DRAM_PHY0_BASE + 0xabc);
ptr2 = (u32*)(SUNXI_DRAM_PHY0_BASE + 0xa74);
for (i = 0; i < 9; i++) {
val1 = readl(&ptr1[i]);
val2 = readl(&ptr2[i]);
if (val1 - val2 <= 6)
result = false;
}
}
clrbits_le32(SUNXI_DRAM_PHY0_BASE + 0x190, 3);
if (para->ranks == 2) {
/* maybe last parameter should be 1? */
clrsetbits_le32(SUNXI_DRAM_PHY0_BASE + 0x198, 3, 2);
setbits_le32(SUNXI_DRAM_PHY0_BASE + 0x190, 6);
setbits_le32(SUNXI_DRAM_PHY0_BASE + 0x190, 1);
mctl_await_completion((u32*)(SUNXI_DRAM_PHY0_BASE + 0x840), 0xc, 0xc);
if (readl(SUNXI_DRAM_PHY0_BASE + 0x840) & 3)
result = false;
if (para->bus_full_width) {
mctl_await_completion((u32*)(SUNXI_DRAM_PHY0_BASE + 0xa40), 0xc, 0xc);
if (readl(SUNXI_DRAM_PHY0_BASE + 0xa40) & 3)
result = false;
}
clrbits_le32(SUNXI_DRAM_PHY0_BASE + 0x190, 3);
}
clrbits_le32(SUNXI_DRAM_PHY0_BASE + 0x198, 3);
return result;
}
static bool mctl_phy_write_training(struct dram_para *para)
{
u32 val1, val2, *ptr1, *ptr2;
bool result = true;
int i;
writel(0, SUNXI_DRAM_PHY0_BASE + 0x134);
writel(0, SUNXI_DRAM_PHY0_BASE + 0x138);
writel(0, SUNXI_DRAM_PHY0_BASE + 0x19c);
writel(0, SUNXI_DRAM_PHY0_BASE + 0x1a0);
clrsetbits_le32(SUNXI_DRAM_PHY0_BASE + 0x198, 0xc, 8);
setbits_le32(SUNXI_DRAM_PHY0_BASE + 0x190, 0x10);
setbits_le32(SUNXI_DRAM_PHY0_BASE + 0x190, 0x20);
mctl_await_completion((u32*)(SUNXI_DRAM_PHY0_BASE + 0x8e0), 3, 3);
if (readl(SUNXI_DRAM_PHY0_BASE + 0x8e0) & 0xc)
result = false;
if (para->bus_full_width) {
mctl_await_completion((u32*)(SUNXI_DRAM_PHY0_BASE + 0xae0), 3, 3);
if (readl(SUNXI_DRAM_PHY0_BASE + 0xae0) & 0xc)
result = false;
}
ptr1 = (u32*)(SUNXI_DRAM_PHY0_BASE + 0x938);
ptr2 = (u32*)(SUNXI_DRAM_PHY0_BASE + 0x8f0);
for (i = 0; i < 9; i++) {
val1 = readl(&ptr1[i]);
val2 = readl(&ptr2[i]);
if (val1 - val2 <= 6)
result = false;
}
ptr1 = (u32*)(SUNXI_DRAM_PHY0_BASE + 0x95c);
ptr2 = (u32*)(SUNXI_DRAM_PHY0_BASE + 0x914);
for (i = 0; i < 9; i++) {
val1 = readl(&ptr1[i]);
val2 = readl(&ptr2[i]);
if (val1 - val2 <= 6)
result = false;
}
if (para->bus_full_width) {
ptr1 = (u32*)(SUNXI_DRAM_PHY0_BASE + 0xb38);
ptr2 = (u32*)(SUNXI_DRAM_PHY0_BASE + 0xaf0);
for (i = 0; i < 9; i++) {
val1 = readl(&ptr1[i]);
val2 = readl(&ptr2[i]);
if (val1 - val2 <= 6)
result = false;
}
ptr1 = (u32*)(SUNXI_DRAM_PHY0_BASE + 0xb5c);
ptr2 = (u32*)(SUNXI_DRAM_PHY0_BASE + 0xb14);
for (i = 0; i < 9; i++) {
val1 = readl(&ptr1[i]);
val2 = readl(&ptr2[i]);
if (val1 - val2 <= 6)
result = false;
}
}
clrbits_le32(SUNXI_DRAM_PHY0_BASE + 0x190, 0x60);
if (para->ranks == 2) {
clrsetbits_le32(SUNXI_DRAM_PHY0_BASE + 0x198, 0xc, 4);
setbits_le32(SUNXI_DRAM_PHY0_BASE + 0x190, 0x10);
setbits_le32(SUNXI_DRAM_PHY0_BASE + 0x190, 0x20);
mctl_await_completion((u32*)(SUNXI_DRAM_PHY0_BASE + 0x8e0), 3, 3);
if (readl(SUNXI_DRAM_PHY0_BASE + 0x8e0) & 0xc)
result = false;
if (para->bus_full_width) {
mctl_await_completion((u32*)(SUNXI_DRAM_PHY0_BASE + 0xae0), 3, 3);
if (readl(SUNXI_DRAM_PHY0_BASE + 0xae0) & 0xc)
result = false;
}
clrbits_le32(SUNXI_DRAM_PHY0_BASE + 0x190, 0x60);
}
clrbits_le32(SUNXI_DRAM_PHY0_BASE + 0x198, 0xc);
return result;
}
static bool mctl_phy_bit_delay_compensation(struct dram_para *para)
{
u32 *ptr;
int i;
clrbits_le32(SUNXI_DRAM_PHY0_BASE + 0x60, 1);
setbits_le32(SUNXI_DRAM_PHY0_BASE + 8, 8);
clrbits_le32(SUNXI_DRAM_PHY0_BASE + 0x190, 0x10);
ptr = (u32*)(SUNXI_DRAM_PHY0_BASE + 0x484);
for (i = 0; i < 9; i++) {
writel_relaxed(0x16, ptr);
writel_relaxed(0x16, ptr + 0x30);
ptr += 2;
}
writel_relaxed(0x1c, SUNXI_DRAM_PHY0_BASE + 0x4d0);
writel_relaxed(0x1c, SUNXI_DRAM_PHY0_BASE + 0x590);
writel_relaxed(0x1c, SUNXI_DRAM_PHY0_BASE + 0x4cc);
writel_relaxed(0x1c, SUNXI_DRAM_PHY0_BASE + 0x58c);
ptr = (u32*)(SUNXI_DRAM_PHY0_BASE + 0x4d8);
for (i = 0; i < 9; i++) {
writel_relaxed(0x1a, ptr);
writel_relaxed(0x1a, ptr + 0x30);
ptr += 2;
}
writel_relaxed(0x1e, SUNXI_DRAM_PHY0_BASE + 0x524);
writel_relaxed(0x1e, SUNXI_DRAM_PHY0_BASE + 0x5e4);
writel_relaxed(0x1e, SUNXI_DRAM_PHY0_BASE + 0x520);
writel_relaxed(0x1e, SUNXI_DRAM_PHY0_BASE + 0x5e0);
ptr = (u32*)(SUNXI_DRAM_PHY0_BASE + 0x604);
for (i = 0; i < 9; i++) {
writel_relaxed(0x1a, ptr);
writel_relaxed(0x1a, ptr + 0x30);
ptr += 2;
}
writel_relaxed(0x1e, SUNXI_DRAM_PHY0_BASE + 0x650);
writel_relaxed(0x1e, SUNXI_DRAM_PHY0_BASE + 0x710);
writel_relaxed(0x1e, SUNXI_DRAM_PHY0_BASE + 0x64c);
writel_relaxed(0x1e, SUNXI_DRAM_PHY0_BASE + 0x70c);
ptr = (u32*)(SUNXI_DRAM_PHY0_BASE + 0x658);
for (i = 0; i < 9; i++) {
writel_relaxed(0x1a, ptr);
writel_relaxed(0x1a, ptr + 0x30);
ptr += 2;
}
writel_relaxed(0x1e, SUNXI_DRAM_PHY0_BASE + 0x6a4);
writel_relaxed(0x1e, SUNXI_DRAM_PHY0_BASE + 0x764);
writel_relaxed(0x1e, SUNXI_DRAM_PHY0_BASE + 0x6a0);
writel_relaxed(0x1e, SUNXI_DRAM_PHY0_BASE + 0x760);
dmb();
setbits_le32(SUNXI_DRAM_PHY0_BASE + 0x60, 1);
/* second part */
clrbits_le32(SUNXI_DRAM_PHY0_BASE + 0x54, 0x80);
clrbits_le32(SUNXI_DRAM_PHY0_BASE + 0x190, 4);
ptr = (u32*)(SUNXI_DRAM_PHY0_BASE + 0x480);
for (i = 0; i < 9; i++) {
writel_relaxed(0x10, ptr);
writel_relaxed(0x10, ptr + 0x30);
ptr += 2;
}
writel_relaxed(0x18, SUNXI_DRAM_PHY0_BASE + 0x528);
writel_relaxed(0x18, SUNXI_DRAM_PHY0_BASE + 0x5e8);
writel_relaxed(0x18, SUNXI_DRAM_PHY0_BASE + 0x4c8);
writel_relaxed(0x18, SUNXI_DRAM_PHY0_BASE + 0x588);
ptr = (u32*)(SUNXI_DRAM_PHY0_BASE + 0x4d4);
for (i = 0; i < 9; i++) {
writel_relaxed(0x12, ptr);
writel_relaxed(0x12, ptr + 0x30);
ptr += 2;
}
writel_relaxed(0x1a, SUNXI_DRAM_PHY0_BASE + 0x52c);
writel_relaxed(0x1a, SUNXI_DRAM_PHY0_BASE + 0x5ec);
writel_relaxed(0x1a, SUNXI_DRAM_PHY0_BASE + 0x51c);
writel_relaxed(0x1a, SUNXI_DRAM_PHY0_BASE + 0x5dc);
ptr = (u32*)(SUNXI_DRAM_PHY0_BASE + 0x600);
for (i = 0; i < 9; i++) {
writel_relaxed(0x12, ptr);
writel_relaxed(0x12, ptr + 0x30);
ptr += 2;
}
writel_relaxed(0x1a, SUNXI_DRAM_PHY0_BASE + 0x6a8);
writel_relaxed(0x1a, SUNXI_DRAM_PHY0_BASE + 0x768);
writel_relaxed(0x1a, SUNXI_DRAM_PHY0_BASE + 0x648);
writel_relaxed(0x1a, SUNXI_DRAM_PHY0_BASE + 0x708);
ptr = (u32*)(SUNXI_DRAM_PHY0_BASE + 0x654);
for (i = 0; i < 9; i++) {
writel_relaxed(0x14, ptr);
writel_relaxed(0x14, ptr + 0x30);
ptr += 2;
}
writel_relaxed(0x1c, SUNXI_DRAM_PHY0_BASE + 0x6ac);
writel_relaxed(0x1c, SUNXI_DRAM_PHY0_BASE + 0x76c);
writel_relaxed(0x1c, SUNXI_DRAM_PHY0_BASE + 0x69c);
writel_relaxed(0x1c, SUNXI_DRAM_PHY0_BASE + 0x75c);
dmb();
setbits_le32(SUNXI_DRAM_PHY0_BASE + 0x54, 0x80);
return true;
}
static bool mctl_phy_init(struct dram_para *para)
{
struct sunxi_mctl_com_reg * const mctl_com =
(struct sunxi_mctl_com_reg *)SUNXI_DRAM_COM_BASE;
struct sunxi_mctl_ctl_reg * const mctl_ctl =
(struct sunxi_mctl_ctl_reg *)SUNXI_DRAM_CTL0_BASE;
u32 val, *ptr;
int i;
if (para->bus_full_width)
val = 0xf;
else
val = 3;
clrsetbits_le32(SUNXI_DRAM_PHY0_BASE + 0x3c, 0xf, val);
writel(0xd, SUNXI_DRAM_PHY0_BASE + 0x14);
writel(0xd, SUNXI_DRAM_PHY0_BASE + 0x35c);
writel(0xd, SUNXI_DRAM_PHY0_BASE + 0x368);
writel(0xd, SUNXI_DRAM_PHY0_BASE + 0x374);
writel(0, SUNXI_DRAM_PHY0_BASE + 0x18);
writel(0, SUNXI_DRAM_PHY0_BASE + 0x360);
writel(0, SUNXI_DRAM_PHY0_BASE + 0x36c);
writel(0, SUNXI_DRAM_PHY0_BASE + 0x378);
writel(9, SUNXI_DRAM_PHY0_BASE + 0x1c);
writel(9, SUNXI_DRAM_PHY0_BASE + 0x364);
writel(9, SUNXI_DRAM_PHY0_BASE + 0x370);
writel(9, SUNXI_DRAM_PHY0_BASE + 0x37c);
ptr = (u32*)(SUNXI_DRAM_PHY0_BASE + 0xc0);
for (i = 0; i < ARRAY_SIZE(phy_init); i++)
writel(phy_init[i], &ptr[i]);
if (IS_ENABLED(CONFIG_DRAM_SUN50I_H616_UNKNOWN_FEATURE)) {
ptr = (u32*)(SUNXI_DRAM_PHY0_BASE + 0x780);
for (i = 0; i < 32; i++)
writel(0x16, &ptr[i]);
writel(0xe, SUNXI_DRAM_PHY0_BASE + 0x78c);
writel(0xe, SUNXI_DRAM_PHY0_BASE + 0x7a4);
writel(0xe, SUNXI_DRAM_PHY0_BASE + 0x7b8);
writel(0x8, SUNXI_DRAM_PHY0_BASE + 0x7d4);
writel(0xe, SUNXI_DRAM_PHY0_BASE + 0x7dc);
writel(0xe, SUNXI_DRAM_PHY0_BASE + 0x7e0);
}
writel(0x80, SUNXI_DRAM_PHY0_BASE + 0x3dc);
writel(0x80, SUNXI_DRAM_PHY0_BASE + 0x45c);
if (IS_ENABLED(DRAM_ODT_EN))
mctl_phy_configure_odt();
clrsetbits_le32(SUNXI_DRAM_PHY0_BASE + 4, 7, 0xa);
if (para->clk <= 672)
writel(0xf, SUNXI_DRAM_PHY0_BASE + 0x20);
if (para->clk > 500) {
clrbits_le32(SUNXI_DRAM_PHY0_BASE + 0x144, BIT(7));
clrbits_le32(SUNXI_DRAM_PHY0_BASE + 0x14c, 0xe0);
} else {
setbits_le32(SUNXI_DRAM_PHY0_BASE + 0x144, BIT(7));
clrsetbits_le32(SUNXI_DRAM_PHY0_BASE + 0x14c, 0xe0, 0x20);
}
clrbits_le32(SUNXI_DRAM_PHY0_BASE + 0x14c, 8);
mctl_await_completion((u32*)(SUNXI_DRAM_PHY0_BASE + 0x180), 4, 4);
writel(0x37, SUNXI_DRAM_PHY0_BASE + 0x58);
clrbits_le32(&mctl_com->unk_0x500, 0x200);
writel(0, &mctl_ctl->swctl);
setbits_le32(&mctl_ctl->dfimisc, 1);
/* start DFI init */
setbits_le32(&mctl_ctl->dfimisc, 0x20);
writel(1, &mctl_ctl->swctl);
mctl_await_completion(&mctl_ctl->swstat, 1, 1);
/* poll DFI init complete */
mctl_await_completion(&mctl_ctl->dfistat, 1, 1);
writel(0, &mctl_ctl->swctl);
clrbits_le32(&mctl_ctl->dfimisc, 0x20);
clrbits_le32(&mctl_ctl->pwrctl, 0x20);
writel(1, &mctl_ctl->swctl);
mctl_await_completion(&mctl_ctl->swstat, 1, 1);
mctl_await_completion(&mctl_ctl->statr, 3, 1);
writel(0, &mctl_ctl->swctl);
clrbits_le32(&mctl_ctl->dfimisc, 1);
writel(1, &mctl_ctl->swctl);
mctl_await_completion(&mctl_ctl->swstat, 1, 1);
writel(0x1f14, &mctl_ctl->mrctrl1);
writel(0x80000030, &mctl_ctl->mrctrl0);
mctl_await_completion(&mctl_ctl->mrctrl0, BIT(31), 0);
writel(4, &mctl_ctl->mrctrl1);
writel(0x80001030, &mctl_ctl->mrctrl0);
mctl_await_completion(&mctl_ctl->mrctrl0, BIT(31), 0);
writel(0x20, &mctl_ctl->mrctrl1);
writel(0x80002030, &mctl_ctl->mrctrl0);
mctl_await_completion(&mctl_ctl->mrctrl0, BIT(31), 0);
writel(0, &mctl_ctl->mrctrl1);
writel(0x80003030, &mctl_ctl->mrctrl0);
mctl_await_completion(&mctl_ctl->mrctrl0, BIT(31), 0);
writel(0, SUNXI_DRAM_PHY0_BASE + 0x54);
writel(0, &mctl_ctl->swctl);
clrbits_le32(&mctl_ctl->rfshctl3, 1);
writel(1, &mctl_ctl->swctl);
if (IS_ENABLED(CONFIG_DRAM_SUN50I_H616_WRITE_LEVELING)) {
for (i = 0; i < 5; i++)
if (mctl_phy_write_leveling(para))
break;
if (i == 5) {
debug("write leveling failed!\n");
return false;
}
}
if (IS_ENABLED(CONFIG_DRAM_SUN50I_H616_READ_CALIBRATION)) {
for (i = 0; i < 5; i++)
if (mctl_phy_read_calibration(para))
break;
if (i == 5) {
debug("read calibration failed!\n");
return false;
}
}
if (IS_ENABLED(CONFIG_DRAM_SUN50I_H616_READ_TRAINING)) {
for (i = 0; i < 5; i++)
if (mctl_phy_read_training(para))
break;
if (i == 5) {
debug("read training failed!\n");
return false;
}
}
if (IS_ENABLED(CONFIG_DRAM_SUN50I_H616_WRITE_TRAINING)) {
for (i = 0; i < 5; i++)
if (mctl_phy_write_training(para))
break;
if (i == 5) {
debug("write training failed!\n");
return false;
}
}
if (IS_ENABLED(CONFIG_DRAM_SUN50I_H616_BIT_DELAY_COMPENSATION))
mctl_phy_bit_delay_compensation(para);
clrbits_le32(SUNXI_DRAM_PHY0_BASE + 0x60, 4);
return true;
}
static bool mctl_ctrl_init(struct dram_para *para)
{
struct sunxi_mctl_com_reg * const mctl_com =
(struct sunxi_mctl_com_reg *)SUNXI_DRAM_COM_BASE;
struct sunxi_mctl_ctl_reg * const mctl_ctl =
(struct sunxi_mctl_ctl_reg *)SUNXI_DRAM_CTL0_BASE;
u32 reg_val;
clrsetbits_le32(&mctl_com->unk_0x500, BIT(24), 0x200);
writel(0x8000, &mctl_ctl->clken);
setbits_le32(&mctl_com->unk_0x008, 0xff00);
clrsetbits_le32(&mctl_ctl->sched[0], 0xff00, 0x3000);
writel(0, &mctl_ctl->hwlpctl);
setbits_le32(&mctl_com->unk_0x008, 0xff00);
reg_val = MSTR_BURST_LENGTH(8) | MSTR_ACTIVE_RANKS(para->ranks);
reg_val |= MSTR_DEVICETYPE_DDR3 | MSTR_2TMODE;
if (para->bus_full_width)
reg_val |= MSTR_BUSWIDTH_FULL;
else
reg_val |= MSTR_BUSWIDTH_HALF;
writel(BIT(31) | BIT(30) | reg_val, &mctl_ctl->mstr);
if (para->ranks == 2)
writel(0x0303, &mctl_ctl->odtmap);
else
writel(0x0201, &mctl_ctl->odtmap);
writel(0x06000400, &mctl_ctl->odtcfg);
writel(0x06000400, &mctl_ctl->unk_0x2240);
writel(0x06000400, &mctl_ctl->unk_0x3240);
writel(0x06000400, &mctl_ctl->unk_0x4240);
setbits_le32(&mctl_com->cr, BIT(31));
mctl_set_addrmap(para);
mctl_set_timing_params(para);
writel(0, &mctl_ctl->pwrctl);
setbits_le32(&mctl_ctl->dfiupd[0], BIT(31) | BIT(30));
setbits_le32(&mctl_ctl->zqctl[0], BIT(31) | BIT(30));
setbits_le32(&mctl_ctl->unk_0x2180, BIT(31) | BIT(30));
setbits_le32(&mctl_ctl->unk_0x3180, BIT(31) | BIT(30));
setbits_le32(&mctl_ctl->unk_0x4180, BIT(31) | BIT(30));
setbits_le32(&mctl_ctl->rfshctl3, BIT(0));
clrbits_le32(&mctl_ctl->dfimisc, BIT(0));
writel(0, &mctl_com->maer0);
writel(0, &mctl_com->maer1);
writel(0, &mctl_com->maer2);
writel(0x20, &mctl_ctl->pwrctl);
setbits_le32(&mctl_ctl->clken, BIT(8));
clrsetbits_le32(&mctl_com->unk_0x500, BIT(24), 0x300);
/* this write seems to enable PHY MMIO region */
setbits_le32(&mctl_com->unk_0x500, BIT(24));
if (!mctl_phy_init(para))
return false;
writel(0, &mctl_ctl->swctl);
clrbits_le32(&mctl_ctl->rfshctl3, BIT(0));
setbits_le32(&mctl_com->unk_0x014, BIT(31));
writel(0xffffffff, &mctl_com->maer0);
writel(0x7ff, &mctl_com->maer1);
writel(0xffff, &mctl_com->maer2);
writel(1, &mctl_ctl->swctl);
mctl_await_completion(&mctl_ctl->swstat, 1, 1);
return true;
}
static bool mctl_core_init(struct dram_para *para)
{
mctl_sys_init(para);
return mctl_ctrl_init(para);
}
static void mctl_auto_detect_rank_width(struct dram_para *para)
{
/* this is minimum size that it's supported */
para->cols = 8;
para->rows = 13;
/*
* Strategy here is to test most demanding combination first and least
* demanding last, otherwise HW might not be fully utilized. For
* example, half bus width and rank = 1 combination would also work
* on HW with full bus width and rank = 2, but only 1/4 RAM would be
* visible.
*/
debug("testing 32-bit width, rank = 2\n");
para->bus_full_width = 1;
para->ranks = 2;
if (mctl_core_init(para))
return;
debug("testing 32-bit width, rank = 1\n");
para->bus_full_width = 1;
para->ranks = 1;
if (mctl_core_init(para))
return;
debug("testing 16-bit width, rank = 2\n");
para->bus_full_width = 0;
para->ranks = 2;
if (mctl_core_init(para))
return;
debug("testing 16-bit width, rank = 1\n");
para->bus_full_width = 0;
para->ranks = 1;
if (mctl_core_init(para))
return;
panic("This DRAM setup is currently not supported.\n");
}
static void mctl_auto_detect_dram_size(struct dram_para *para)
{
/* detect row address bits */
para->cols = 8;
para->rows = 18;
mctl_core_init(para);
for (para->rows = 13; para->rows < 18; para->rows++) {
/* 8 banks, 8 bit per byte and 16/32 bit width */
if (mctl_mem_matches((1 << (para->rows + para->cols +
4 + para->bus_full_width))))
break;
}
/* detect column address bits */
para->cols = 11;
mctl_core_init(para);
for (para->cols = 8; para->cols < 11; para->cols++) {
/* 8 bits per byte and 16/32 bit width */
if (mctl_mem_matches(1 << (para->cols + 1 +
para->bus_full_width)))
break;
}
}
static unsigned long mctl_calc_size(struct dram_para *para)
{
u8 width = para->bus_full_width ? 4 : 2;
/* 8 banks */
return (1ULL << (para->cols + para->rows + 3)) * width * para->ranks;
}
unsigned long sunxi_dram_init(void)
{
struct dram_para para = {
.clk = CONFIG_DRAM_CLK,
.type = SUNXI_DRAM_TYPE_DDR3,
};
unsigned long size;
setbits_le32(0x7010310, BIT(8));
clrbits_le32(0x7010318, 0x3f);
mctl_auto_detect_rank_width(&para);
mctl_auto_detect_dram_size(&para);
mctl_core_init(&para);
size = mctl_calc_size(&para);
mctl_set_master_priority();
return size;
};