mirror of
https://github.com/AsahiLinux/u-boot
synced 2025-01-11 20:59:01 +00:00
02e43537b3
Some architectures require their SPL loader at a fixed address within the first 16KB of the disk. To avoid an overlap with the partition entries of the EFI partition table, the first safe offset (in bytes, from the start of the device) for the entries can be set through CONFIG_EFI_PARTITION_ENTRIES_OFF (via Kconfig) When formatting a device with an EFI partition table, we may need to leave a gap between the GPT header (always in LBA 1) and the partition entries. The GPT header already contains a field to specify the on-disk location, which has so far always been set to LBA 2. With this change, a configurable offset will be translated into a LBA address indicating where to put the entries. Now also allows an override via device-tree using a config-node (see doc/device-tree-bindings/config.txt for documentation). Tested (exporting an internal MMC formatted with this) against Linux, MacOS X and Windows. Signed-off-by: Philipp Tomsich <philipp.tomsich@theobroma-systems.com> Reviewed-by: Simon Glass <sjg@chromium.org> [trini: __maybe_unused on config_offset to avoid warning] Signed-off-by: Tom Rini <trini@konsulko.com>
1001 lines
26 KiB
C
1001 lines
26 KiB
C
/*
|
|
* Copyright (C) 2008 RuggedCom, Inc.
|
|
* Richard Retanubun <RichardRetanubun@RuggedCom.com>
|
|
*
|
|
* SPDX-License-Identifier: GPL-2.0+
|
|
*/
|
|
|
|
/*
|
|
* NOTE:
|
|
* when CONFIG_SYS_64BIT_LBA is not defined, lbaint_t is 32 bits; this
|
|
* limits the maximum size of addressable storage to < 2 Terra Bytes
|
|
*/
|
|
#include <asm/unaligned.h>
|
|
#include <common.h>
|
|
#include <command.h>
|
|
#include <fdtdec.h>
|
|
#include <ide.h>
|
|
#include <inttypes.h>
|
|
#include <malloc.h>
|
|
#include <memalign.h>
|
|
#include <part_efi.h>
|
|
#include <linux/compiler.h>
|
|
#include <linux/ctype.h>
|
|
|
|
DECLARE_GLOBAL_DATA_PTR;
|
|
|
|
#ifdef HAVE_BLOCK_DEVICE
|
|
/**
|
|
* efi_crc32() - EFI version of crc32 function
|
|
* @buf: buffer to calculate crc32 of
|
|
* @len - length of buf
|
|
*
|
|
* Description: Returns EFI-style CRC32 value for @buf
|
|
*/
|
|
static inline u32 efi_crc32(const void *buf, u32 len)
|
|
{
|
|
return crc32(0, buf, len);
|
|
}
|
|
|
|
/*
|
|
* Private function prototypes
|
|
*/
|
|
|
|
static int pmbr_part_valid(struct partition *part);
|
|
static int is_pmbr_valid(legacy_mbr * mbr);
|
|
static int is_gpt_valid(struct blk_desc *dev_desc, u64 lba,
|
|
gpt_header *pgpt_head, gpt_entry **pgpt_pte);
|
|
static gpt_entry *alloc_read_gpt_entries(struct blk_desc *dev_desc,
|
|
gpt_header *pgpt_head);
|
|
static int is_pte_valid(gpt_entry * pte);
|
|
|
|
static char *print_efiname(gpt_entry *pte)
|
|
{
|
|
static char name[PARTNAME_SZ + 1];
|
|
int i;
|
|
for (i = 0; i < PARTNAME_SZ; i++) {
|
|
u8 c;
|
|
c = pte->partition_name[i] & 0xff;
|
|
c = (c && !isprint(c)) ? '.' : c;
|
|
name[i] = c;
|
|
}
|
|
name[PARTNAME_SZ] = 0;
|
|
return name;
|
|
}
|
|
|
|
static efi_guid_t system_guid = PARTITION_SYSTEM_GUID;
|
|
|
|
static inline int is_bootable(gpt_entry *p)
|
|
{
|
|
return p->attributes.fields.legacy_bios_bootable ||
|
|
!memcmp(&(p->partition_type_guid), &system_guid,
|
|
sizeof(efi_guid_t));
|
|
}
|
|
|
|
static int validate_gpt_header(gpt_header *gpt_h, lbaint_t lba,
|
|
lbaint_t lastlba)
|
|
{
|
|
uint32_t crc32_backup = 0;
|
|
uint32_t calc_crc32;
|
|
|
|
/* Check the GPT header signature */
|
|
if (le64_to_cpu(gpt_h->signature) != GPT_HEADER_SIGNATURE) {
|
|
printf("%s signature is wrong: 0x%llX != 0x%llX\n",
|
|
"GUID Partition Table Header",
|
|
le64_to_cpu(gpt_h->signature),
|
|
GPT_HEADER_SIGNATURE);
|
|
return -1;
|
|
}
|
|
|
|
/* Check the GUID Partition Table CRC */
|
|
memcpy(&crc32_backup, &gpt_h->header_crc32, sizeof(crc32_backup));
|
|
memset(&gpt_h->header_crc32, 0, sizeof(gpt_h->header_crc32));
|
|
|
|
calc_crc32 = efi_crc32((const unsigned char *)gpt_h,
|
|
le32_to_cpu(gpt_h->header_size));
|
|
|
|
memcpy(&gpt_h->header_crc32, &crc32_backup, sizeof(crc32_backup));
|
|
|
|
if (calc_crc32 != le32_to_cpu(crc32_backup)) {
|
|
printf("%s CRC is wrong: 0x%x != 0x%x\n",
|
|
"GUID Partition Table Header",
|
|
le32_to_cpu(crc32_backup), calc_crc32);
|
|
return -1;
|
|
}
|
|
|
|
/*
|
|
* Check that the my_lba entry points to the LBA that contains the GPT
|
|
*/
|
|
if (le64_to_cpu(gpt_h->my_lba) != lba) {
|
|
printf("GPT: my_lba incorrect: %llX != " LBAF "\n",
|
|
le64_to_cpu(gpt_h->my_lba),
|
|
lba);
|
|
return -1;
|
|
}
|
|
|
|
/*
|
|
* Check that the first_usable_lba and that the last_usable_lba are
|
|
* within the disk.
|
|
*/
|
|
if (le64_to_cpu(gpt_h->first_usable_lba) > lastlba) {
|
|
printf("GPT: first_usable_lba incorrect: %llX > " LBAF "\n",
|
|
le64_to_cpu(gpt_h->first_usable_lba), lastlba);
|
|
return -1;
|
|
}
|
|
if (le64_to_cpu(gpt_h->last_usable_lba) > lastlba) {
|
|
printf("GPT: last_usable_lba incorrect: %llX > " LBAF "\n",
|
|
le64_to_cpu(gpt_h->last_usable_lba), lastlba);
|
|
return -1;
|
|
}
|
|
|
|
debug("GPT: first_usable_lba: %llX last_usable_lba: %llX last lba: "
|
|
LBAF "\n", le64_to_cpu(gpt_h->first_usable_lba),
|
|
le64_to_cpu(gpt_h->last_usable_lba), lastlba);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int validate_gpt_entries(gpt_header *gpt_h, gpt_entry *gpt_e)
|
|
{
|
|
uint32_t calc_crc32;
|
|
|
|
/* Check the GUID Partition Table Entry Array CRC */
|
|
calc_crc32 = efi_crc32((const unsigned char *)gpt_e,
|
|
le32_to_cpu(gpt_h->num_partition_entries) *
|
|
le32_to_cpu(gpt_h->sizeof_partition_entry));
|
|
|
|
if (calc_crc32 != le32_to_cpu(gpt_h->partition_entry_array_crc32)) {
|
|
printf("%s: 0x%x != 0x%x\n",
|
|
"GUID Partition Table Entry Array CRC is wrong",
|
|
le32_to_cpu(gpt_h->partition_entry_array_crc32),
|
|
calc_crc32);
|
|
return -1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void prepare_backup_gpt_header(gpt_header *gpt_h)
|
|
{
|
|
uint32_t calc_crc32;
|
|
uint64_t val;
|
|
|
|
/* recalculate the values for the Backup GPT Header */
|
|
val = le64_to_cpu(gpt_h->my_lba);
|
|
gpt_h->my_lba = gpt_h->alternate_lba;
|
|
gpt_h->alternate_lba = cpu_to_le64(val);
|
|
gpt_h->partition_entry_lba =
|
|
cpu_to_le64(le64_to_cpu(gpt_h->last_usable_lba) + 1);
|
|
gpt_h->header_crc32 = 0;
|
|
|
|
calc_crc32 = efi_crc32((const unsigned char *)gpt_h,
|
|
le32_to_cpu(gpt_h->header_size));
|
|
gpt_h->header_crc32 = cpu_to_le32(calc_crc32);
|
|
}
|
|
|
|
#if CONFIG_IS_ENABLED(EFI_PARTITION)
|
|
/*
|
|
* Public Functions (include/part.h)
|
|
*/
|
|
|
|
void part_print_efi(struct blk_desc *dev_desc)
|
|
{
|
|
ALLOC_CACHE_ALIGN_BUFFER_PAD(gpt_header, gpt_head, 1, dev_desc->blksz);
|
|
gpt_entry *gpt_pte = NULL;
|
|
int i = 0;
|
|
char uuid[37];
|
|
unsigned char *uuid_bin;
|
|
|
|
/* This function validates AND fills in the GPT header and PTE */
|
|
if (is_gpt_valid(dev_desc, GPT_PRIMARY_PARTITION_TABLE_LBA,
|
|
gpt_head, &gpt_pte) != 1) {
|
|
printf("%s: *** ERROR: Invalid GPT ***\n", __func__);
|
|
if (is_gpt_valid(dev_desc, (dev_desc->lba - 1),
|
|
gpt_head, &gpt_pte) != 1) {
|
|
printf("%s: *** ERROR: Invalid Backup GPT ***\n",
|
|
__func__);
|
|
return;
|
|
} else {
|
|
printf("%s: *** Using Backup GPT ***\n",
|
|
__func__);
|
|
}
|
|
}
|
|
|
|
debug("%s: gpt-entry at %p\n", __func__, gpt_pte);
|
|
|
|
printf("Part\tStart LBA\tEnd LBA\t\tName\n");
|
|
printf("\tAttributes\n");
|
|
printf("\tType GUID\n");
|
|
printf("\tPartition GUID\n");
|
|
|
|
for (i = 0; i < le32_to_cpu(gpt_head->num_partition_entries); i++) {
|
|
/* Stop at the first non valid PTE */
|
|
if (!is_pte_valid(&gpt_pte[i]))
|
|
break;
|
|
|
|
printf("%3d\t0x%08llx\t0x%08llx\t\"%s\"\n", (i + 1),
|
|
le64_to_cpu(gpt_pte[i].starting_lba),
|
|
le64_to_cpu(gpt_pte[i].ending_lba),
|
|
print_efiname(&gpt_pte[i]));
|
|
printf("\tattrs:\t0x%016llx\n", gpt_pte[i].attributes.raw);
|
|
uuid_bin = (unsigned char *)gpt_pte[i].partition_type_guid.b;
|
|
uuid_bin_to_str(uuid_bin, uuid, UUID_STR_FORMAT_GUID);
|
|
printf("\ttype:\t%s\n", uuid);
|
|
#ifdef CONFIG_PARTITION_TYPE_GUID
|
|
if (!uuid_guid_get_str(uuid_bin, uuid))
|
|
printf("\ttype:\t%s\n", uuid);
|
|
#endif
|
|
uuid_bin = (unsigned char *)gpt_pte[i].unique_partition_guid.b;
|
|
uuid_bin_to_str(uuid_bin, uuid, UUID_STR_FORMAT_GUID);
|
|
printf("\tguid:\t%s\n", uuid);
|
|
}
|
|
|
|
/* Remember to free pte */
|
|
free(gpt_pte);
|
|
return;
|
|
}
|
|
|
|
int part_get_info_efi(struct blk_desc *dev_desc, int part,
|
|
disk_partition_t *info)
|
|
{
|
|
ALLOC_CACHE_ALIGN_BUFFER_PAD(gpt_header, gpt_head, 1, dev_desc->blksz);
|
|
gpt_entry *gpt_pte = NULL;
|
|
|
|
/* "part" argument must be at least 1 */
|
|
if (part < 1) {
|
|
printf("%s: Invalid Argument(s)\n", __func__);
|
|
return -1;
|
|
}
|
|
|
|
/* This function validates AND fills in the GPT header and PTE */
|
|
if (is_gpt_valid(dev_desc, GPT_PRIMARY_PARTITION_TABLE_LBA,
|
|
gpt_head, &gpt_pte) != 1) {
|
|
printf("%s: *** ERROR: Invalid GPT ***\n", __func__);
|
|
if (is_gpt_valid(dev_desc, (dev_desc->lba - 1),
|
|
gpt_head, &gpt_pte) != 1) {
|
|
printf("%s: *** ERROR: Invalid Backup GPT ***\n",
|
|
__func__);
|
|
return -1;
|
|
} else {
|
|
printf("%s: *** Using Backup GPT ***\n",
|
|
__func__);
|
|
}
|
|
}
|
|
|
|
if (part > le32_to_cpu(gpt_head->num_partition_entries) ||
|
|
!is_pte_valid(&gpt_pte[part - 1])) {
|
|
debug("%s: *** ERROR: Invalid partition number %d ***\n",
|
|
__func__, part);
|
|
free(gpt_pte);
|
|
return -1;
|
|
}
|
|
|
|
/* The 'lbaint_t' casting may limit the maximum disk size to 2 TB */
|
|
info->start = (lbaint_t)le64_to_cpu(gpt_pte[part - 1].starting_lba);
|
|
/* The ending LBA is inclusive, to calculate size, add 1 to it */
|
|
info->size = (lbaint_t)le64_to_cpu(gpt_pte[part - 1].ending_lba) + 1
|
|
- info->start;
|
|
info->blksz = dev_desc->blksz;
|
|
|
|
sprintf((char *)info->name, "%s",
|
|
print_efiname(&gpt_pte[part - 1]));
|
|
strcpy((char *)info->type, "U-Boot");
|
|
info->bootable = is_bootable(&gpt_pte[part - 1]);
|
|
#if CONFIG_IS_ENABLED(PARTITION_UUIDS)
|
|
uuid_bin_to_str(gpt_pte[part - 1].unique_partition_guid.b, info->uuid,
|
|
UUID_STR_FORMAT_GUID);
|
|
#endif
|
|
#ifdef CONFIG_PARTITION_TYPE_GUID
|
|
uuid_bin_to_str(gpt_pte[part - 1].partition_type_guid.b,
|
|
info->type_guid, UUID_STR_FORMAT_GUID);
|
|
#endif
|
|
|
|
debug("%s: start 0x" LBAF ", size 0x" LBAF ", name %s\n", __func__,
|
|
info->start, info->size, info->name);
|
|
|
|
/* Remember to free pte */
|
|
free(gpt_pte);
|
|
return 0;
|
|
}
|
|
|
|
static int part_test_efi(struct blk_desc *dev_desc)
|
|
{
|
|
ALLOC_CACHE_ALIGN_BUFFER_PAD(legacy_mbr, legacymbr, 1, dev_desc->blksz);
|
|
|
|
/* Read legacy MBR from block 0 and validate it */
|
|
if ((blk_dread(dev_desc, 0, 1, (ulong *)legacymbr) != 1)
|
|
|| (is_pmbr_valid(legacymbr) != 1)) {
|
|
return -1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* set_protective_mbr(): Set the EFI protective MBR
|
|
* @param dev_desc - block device descriptor
|
|
*
|
|
* @return - zero on success, otherwise error
|
|
*/
|
|
static int set_protective_mbr(struct blk_desc *dev_desc)
|
|
{
|
|
/* Setup the Protective MBR */
|
|
ALLOC_CACHE_ALIGN_BUFFER(legacy_mbr, p_mbr, 1);
|
|
memset(p_mbr, 0, sizeof(*p_mbr));
|
|
|
|
if (p_mbr == NULL) {
|
|
printf("%s: calloc failed!\n", __func__);
|
|
return -1;
|
|
}
|
|
|
|
/* Read MBR to backup boot code if it exists */
|
|
if (blk_dread(dev_desc, 0, 1, p_mbr) != 1) {
|
|
error("** Can't read from device %d **\n", dev_desc->devnum);
|
|
return -1;
|
|
}
|
|
|
|
/* Append signature */
|
|
p_mbr->signature = MSDOS_MBR_SIGNATURE;
|
|
p_mbr->partition_record[0].sys_ind = EFI_PMBR_OSTYPE_EFI_GPT;
|
|
p_mbr->partition_record[0].start_sect = 1;
|
|
p_mbr->partition_record[0].nr_sects = (u32) dev_desc->lba - 1;
|
|
|
|
/* Write MBR sector to the MMC device */
|
|
if (blk_dwrite(dev_desc, 0, 1, p_mbr) != 1) {
|
|
printf("** Can't write to device %d **\n",
|
|
dev_desc->devnum);
|
|
return -1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
int write_gpt_table(struct blk_desc *dev_desc,
|
|
gpt_header *gpt_h, gpt_entry *gpt_e)
|
|
{
|
|
const int pte_blk_cnt = BLOCK_CNT((gpt_h->num_partition_entries
|
|
* sizeof(gpt_entry)), dev_desc);
|
|
u32 calc_crc32;
|
|
|
|
debug("max lba: %x\n", (u32) dev_desc->lba);
|
|
/* Setup the Protective MBR */
|
|
if (set_protective_mbr(dev_desc) < 0)
|
|
goto err;
|
|
|
|
/* Generate CRC for the Primary GPT Header */
|
|
calc_crc32 = efi_crc32((const unsigned char *)gpt_e,
|
|
le32_to_cpu(gpt_h->num_partition_entries) *
|
|
le32_to_cpu(gpt_h->sizeof_partition_entry));
|
|
gpt_h->partition_entry_array_crc32 = cpu_to_le32(calc_crc32);
|
|
|
|
calc_crc32 = efi_crc32((const unsigned char *)gpt_h,
|
|
le32_to_cpu(gpt_h->header_size));
|
|
gpt_h->header_crc32 = cpu_to_le32(calc_crc32);
|
|
|
|
/* Write the First GPT to the block right after the Legacy MBR */
|
|
if (blk_dwrite(dev_desc, 1, 1, gpt_h) != 1)
|
|
goto err;
|
|
|
|
if (blk_dwrite(dev_desc, le64_to_cpu(gpt_h->partition_entry_lba),
|
|
pte_blk_cnt, gpt_e) != pte_blk_cnt)
|
|
goto err;
|
|
|
|
prepare_backup_gpt_header(gpt_h);
|
|
|
|
if (blk_dwrite(dev_desc, (lbaint_t)le64_to_cpu(gpt_h->last_usable_lba)
|
|
+ 1, pte_blk_cnt, gpt_e) != pte_blk_cnt)
|
|
goto err;
|
|
|
|
if (blk_dwrite(dev_desc, (lbaint_t)le64_to_cpu(gpt_h->my_lba), 1,
|
|
gpt_h) != 1)
|
|
goto err;
|
|
|
|
debug("GPT successfully written to block device!\n");
|
|
return 0;
|
|
|
|
err:
|
|
printf("** Can't write to device %d **\n", dev_desc->devnum);
|
|
return -1;
|
|
}
|
|
|
|
int gpt_fill_pte(gpt_header *gpt_h, gpt_entry *gpt_e,
|
|
disk_partition_t *partitions, int parts)
|
|
{
|
|
lbaint_t offset = (lbaint_t)le64_to_cpu(gpt_h->first_usable_lba);
|
|
lbaint_t start;
|
|
lbaint_t last_usable_lba = (lbaint_t)
|
|
le64_to_cpu(gpt_h->last_usable_lba);
|
|
int i, k;
|
|
size_t efiname_len, dosname_len;
|
|
#if CONFIG_IS_ENABLED(PARTITION_UUIDS)
|
|
char *str_uuid;
|
|
unsigned char *bin_uuid;
|
|
#endif
|
|
#ifdef CONFIG_PARTITION_TYPE_GUID
|
|
char *str_type_guid;
|
|
unsigned char *bin_type_guid;
|
|
#endif
|
|
|
|
for (i = 0; i < parts; i++) {
|
|
/* partition starting lba */
|
|
start = partitions[i].start;
|
|
if (start && (start < offset)) {
|
|
printf("Partition overlap\n");
|
|
return -1;
|
|
}
|
|
if (start) {
|
|
gpt_e[i].starting_lba = cpu_to_le64(start);
|
|
offset = start + partitions[i].size;
|
|
} else {
|
|
gpt_e[i].starting_lba = cpu_to_le64(offset);
|
|
offset += partitions[i].size;
|
|
}
|
|
if (offset > (last_usable_lba + 1)) {
|
|
printf("Partitions layout exceds disk size\n");
|
|
return -1;
|
|
}
|
|
/* partition ending lba */
|
|
if ((i == parts - 1) && (partitions[i].size == 0))
|
|
/* extend the last partition to maximuim */
|
|
gpt_e[i].ending_lba = gpt_h->last_usable_lba;
|
|
else
|
|
gpt_e[i].ending_lba = cpu_to_le64(offset - 1);
|
|
|
|
#ifdef CONFIG_PARTITION_TYPE_GUID
|
|
str_type_guid = partitions[i].type_guid;
|
|
bin_type_guid = gpt_e[i].partition_type_guid.b;
|
|
if (strlen(str_type_guid)) {
|
|
if (uuid_str_to_bin(str_type_guid, bin_type_guid,
|
|
UUID_STR_FORMAT_GUID)) {
|
|
printf("Partition no. %d: invalid type guid: %s\n",
|
|
i, str_type_guid);
|
|
return -1;
|
|
}
|
|
} else {
|
|
/* default partition type GUID */
|
|
memcpy(bin_type_guid,
|
|
&PARTITION_BASIC_DATA_GUID, 16);
|
|
}
|
|
#else
|
|
/* partition type GUID */
|
|
memcpy(gpt_e[i].partition_type_guid.b,
|
|
&PARTITION_BASIC_DATA_GUID, 16);
|
|
#endif
|
|
|
|
#if CONFIG_IS_ENABLED(PARTITION_UUIDS)
|
|
str_uuid = partitions[i].uuid;
|
|
bin_uuid = gpt_e[i].unique_partition_guid.b;
|
|
|
|
if (uuid_str_to_bin(str_uuid, bin_uuid, UUID_STR_FORMAT_GUID)) {
|
|
printf("Partition no. %d: invalid guid: %s\n",
|
|
i, str_uuid);
|
|
return -1;
|
|
}
|
|
#endif
|
|
|
|
/* partition attributes */
|
|
memset(&gpt_e[i].attributes, 0,
|
|
sizeof(gpt_entry_attributes));
|
|
|
|
if (partitions[i].bootable)
|
|
gpt_e[i].attributes.fields.legacy_bios_bootable = 1;
|
|
|
|
/* partition name */
|
|
efiname_len = sizeof(gpt_e[i].partition_name)
|
|
/ sizeof(efi_char16_t);
|
|
dosname_len = sizeof(partitions[i].name);
|
|
|
|
memset(gpt_e[i].partition_name, 0,
|
|
sizeof(gpt_e[i].partition_name));
|
|
|
|
for (k = 0; k < min(dosname_len, efiname_len); k++)
|
|
gpt_e[i].partition_name[k] =
|
|
(efi_char16_t)(partitions[i].name[k]);
|
|
|
|
debug("%s: name: %s offset[%d]: 0x" LBAF
|
|
" size[%d]: 0x" LBAF "\n",
|
|
__func__, partitions[i].name, i,
|
|
offset, i, partitions[i].size);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static uint32_t partition_entries_offset(struct blk_desc *dev_desc)
|
|
{
|
|
uint32_t offset_blks = 2;
|
|
int __maybe_unused config_offset;
|
|
|
|
#if defined(CONFIG_EFI_PARTITION_ENTRIES_OFF)
|
|
/*
|
|
* Some architectures require their SPL loader at a fixed
|
|
* address within the first 16KB of the disk. To avoid an
|
|
* overlap with the partition entries of the EFI partition
|
|
* table, the first safe offset (in bytes, from the start of
|
|
* the disk) for the entries can be set in
|
|
* CONFIG_EFI_PARTITION_ENTRIES_OFF.
|
|
*/
|
|
offset_blks =
|
|
PAD_TO_BLOCKSIZE(CONFIG_EFI_PARTITION_ENTRIES_OFF, dev_desc);
|
|
#endif
|
|
|
|
#if defined(CONFIG_OF_CONTROL)
|
|
/*
|
|
* Allow the offset of the first partition entires (in bytes
|
|
* from the start of the device) to be specified as a property
|
|
* of the device tree '/config' node.
|
|
*/
|
|
config_offset = fdtdec_get_config_int(gd->fdt_blob,
|
|
"u-boot,efi-partition-entries-offset",
|
|
-EINVAL);
|
|
if (config_offset != -EINVAL)
|
|
offset_blks = PAD_TO_BLOCKSIZE(config_offset, dev_desc);
|
|
#endif
|
|
|
|
debug("efi: partition entries offset (in blocks): %d\n", offset_blks);
|
|
|
|
/*
|
|
* The earliest LBA this can be at is LBA#2 (i.e. right behind
|
|
* the (protective) MBR and the GPT header.
|
|
*/
|
|
if (offset_blks < 2)
|
|
offset_blks = 2;
|
|
|
|
return offset_blks;
|
|
}
|
|
|
|
int gpt_fill_header(struct blk_desc *dev_desc, gpt_header *gpt_h,
|
|
char *str_guid, int parts_count)
|
|
{
|
|
gpt_h->signature = cpu_to_le64(GPT_HEADER_SIGNATURE);
|
|
gpt_h->revision = cpu_to_le32(GPT_HEADER_REVISION_V1);
|
|
gpt_h->header_size = cpu_to_le32(sizeof(gpt_header));
|
|
gpt_h->my_lba = cpu_to_le64(1);
|
|
gpt_h->alternate_lba = cpu_to_le64(dev_desc->lba - 1);
|
|
gpt_h->last_usable_lba = cpu_to_le64(dev_desc->lba - 34);
|
|
gpt_h->partition_entry_lba =
|
|
cpu_to_le64(partition_entries_offset(dev_desc));
|
|
gpt_h->first_usable_lba =
|
|
cpu_to_le64(le64_to_cpu(gpt_h->partition_entry_lba) + 32);
|
|
gpt_h->num_partition_entries = cpu_to_le32(GPT_ENTRY_NUMBERS);
|
|
gpt_h->sizeof_partition_entry = cpu_to_le32(sizeof(gpt_entry));
|
|
gpt_h->header_crc32 = 0;
|
|
gpt_h->partition_entry_array_crc32 = 0;
|
|
|
|
if (uuid_str_to_bin(str_guid, gpt_h->disk_guid.b, UUID_STR_FORMAT_GUID))
|
|
return -1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
int gpt_restore(struct blk_desc *dev_desc, char *str_disk_guid,
|
|
disk_partition_t *partitions, int parts_count)
|
|
{
|
|
int ret;
|
|
|
|
gpt_header *gpt_h = calloc(1, PAD_TO_BLOCKSIZE(sizeof(gpt_header),
|
|
dev_desc));
|
|
gpt_entry *gpt_e;
|
|
|
|
if (gpt_h == NULL) {
|
|
printf("%s: calloc failed!\n", __func__);
|
|
return -1;
|
|
}
|
|
|
|
gpt_e = calloc(1, PAD_TO_BLOCKSIZE(GPT_ENTRY_NUMBERS
|
|
* sizeof(gpt_entry),
|
|
dev_desc));
|
|
if (gpt_e == NULL) {
|
|
printf("%s: calloc failed!\n", __func__);
|
|
free(gpt_h);
|
|
return -1;
|
|
}
|
|
|
|
/* Generate Primary GPT header (LBA1) */
|
|
ret = gpt_fill_header(dev_desc, gpt_h, str_disk_guid, parts_count);
|
|
if (ret)
|
|
goto err;
|
|
|
|
/* Generate partition entries */
|
|
ret = gpt_fill_pte(gpt_h, gpt_e, partitions, parts_count);
|
|
if (ret)
|
|
goto err;
|
|
|
|
/* Write GPT partition table */
|
|
ret = write_gpt_table(dev_desc, gpt_h, gpt_e);
|
|
|
|
err:
|
|
free(gpt_e);
|
|
free(gpt_h);
|
|
return ret;
|
|
}
|
|
|
|
static void gpt_convert_efi_name_to_char(char *s, efi_char16_t *es, int n)
|
|
{
|
|
char *ess = (char *)es;
|
|
int i, j;
|
|
|
|
memset(s, '\0', n);
|
|
|
|
for (i = 0, j = 0; j < n; i += 2, j++) {
|
|
s[j] = ess[i];
|
|
if (!ess[i])
|
|
return;
|
|
}
|
|
}
|
|
|
|
int gpt_verify_headers(struct blk_desc *dev_desc, gpt_header *gpt_head,
|
|
gpt_entry **gpt_pte)
|
|
{
|
|
/*
|
|
* This function validates AND
|
|
* fills in the GPT header and PTE
|
|
*/
|
|
if (is_gpt_valid(dev_desc,
|
|
GPT_PRIMARY_PARTITION_TABLE_LBA,
|
|
gpt_head, gpt_pte) != 1) {
|
|
printf("%s: *** ERROR: Invalid GPT ***\n",
|
|
__func__);
|
|
return -1;
|
|
}
|
|
if (is_gpt_valid(dev_desc, (dev_desc->lba - 1),
|
|
gpt_head, gpt_pte) != 1) {
|
|
printf("%s: *** ERROR: Invalid Backup GPT ***\n",
|
|
__func__);
|
|
return -1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
int gpt_verify_partitions(struct blk_desc *dev_desc,
|
|
disk_partition_t *partitions, int parts,
|
|
gpt_header *gpt_head, gpt_entry **gpt_pte)
|
|
{
|
|
char efi_str[PARTNAME_SZ + 1];
|
|
u64 gpt_part_size;
|
|
gpt_entry *gpt_e;
|
|
int ret, i;
|
|
|
|
ret = gpt_verify_headers(dev_desc, gpt_head, gpt_pte);
|
|
if (ret)
|
|
return ret;
|
|
|
|
gpt_e = *gpt_pte;
|
|
|
|
for (i = 0; i < parts; i++) {
|
|
if (i == gpt_head->num_partition_entries) {
|
|
error("More partitions than allowed!\n");
|
|
return -1;
|
|
}
|
|
|
|
/* Check if GPT and ENV partition names match */
|
|
gpt_convert_efi_name_to_char(efi_str, gpt_e[i].partition_name,
|
|
PARTNAME_SZ + 1);
|
|
|
|
debug("%s: part: %2d name - GPT: %16s, ENV: %16s ",
|
|
__func__, i, efi_str, partitions[i].name);
|
|
|
|
if (strncmp(efi_str, (char *)partitions[i].name,
|
|
sizeof(partitions->name))) {
|
|
error("Partition name: %s does not match %s!\n",
|
|
efi_str, (char *)partitions[i].name);
|
|
return -1;
|
|
}
|
|
|
|
/* Check if GPT and ENV sizes match */
|
|
gpt_part_size = le64_to_cpu(gpt_e[i].ending_lba) -
|
|
le64_to_cpu(gpt_e[i].starting_lba) + 1;
|
|
debug("size(LBA) - GPT: %8llu, ENV: %8llu ",
|
|
(unsigned long long)gpt_part_size,
|
|
(unsigned long long)partitions[i].size);
|
|
|
|
if (le64_to_cpu(gpt_part_size) != partitions[i].size) {
|
|
/* We do not check the extend partition size */
|
|
if ((i == parts - 1) && (partitions[i].size == 0))
|
|
continue;
|
|
|
|
error("Partition %s size: %llu does not match %llu!\n",
|
|
efi_str, (unsigned long long)gpt_part_size,
|
|
(unsigned long long)partitions[i].size);
|
|
return -1;
|
|
}
|
|
|
|
/*
|
|
* Start address is optional - check only if provided
|
|
* in '$partition' variable
|
|
*/
|
|
if (!partitions[i].start) {
|
|
debug("\n");
|
|
continue;
|
|
}
|
|
|
|
/* Check if GPT and ENV start LBAs match */
|
|
debug("start LBA - GPT: %8llu, ENV: %8llu\n",
|
|
le64_to_cpu(gpt_e[i].starting_lba),
|
|
(unsigned long long)partitions[i].start);
|
|
|
|
if (le64_to_cpu(gpt_e[i].starting_lba) != partitions[i].start) {
|
|
error("Partition %s start: %llu does not match %llu!\n",
|
|
efi_str, le64_to_cpu(gpt_e[i].starting_lba),
|
|
(unsigned long long)partitions[i].start);
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
int is_valid_gpt_buf(struct blk_desc *dev_desc, void *buf)
|
|
{
|
|
gpt_header *gpt_h;
|
|
gpt_entry *gpt_e;
|
|
|
|
/* determine start of GPT Header in the buffer */
|
|
gpt_h = buf + (GPT_PRIMARY_PARTITION_TABLE_LBA *
|
|
dev_desc->blksz);
|
|
if (validate_gpt_header(gpt_h, GPT_PRIMARY_PARTITION_TABLE_LBA,
|
|
dev_desc->lba))
|
|
return -1;
|
|
|
|
/* determine start of GPT Entries in the buffer */
|
|
gpt_e = buf + (le64_to_cpu(gpt_h->partition_entry_lba) *
|
|
dev_desc->blksz);
|
|
if (validate_gpt_entries(gpt_h, gpt_e))
|
|
return -1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
int write_mbr_and_gpt_partitions(struct blk_desc *dev_desc, void *buf)
|
|
{
|
|
gpt_header *gpt_h;
|
|
gpt_entry *gpt_e;
|
|
int gpt_e_blk_cnt;
|
|
lbaint_t lba;
|
|
int cnt;
|
|
|
|
if (is_valid_gpt_buf(dev_desc, buf))
|
|
return -1;
|
|
|
|
/* determine start of GPT Header in the buffer */
|
|
gpt_h = buf + (GPT_PRIMARY_PARTITION_TABLE_LBA *
|
|
dev_desc->blksz);
|
|
|
|
/* determine start of GPT Entries in the buffer */
|
|
gpt_e = buf + (le64_to_cpu(gpt_h->partition_entry_lba) *
|
|
dev_desc->blksz);
|
|
gpt_e_blk_cnt = BLOCK_CNT((le32_to_cpu(gpt_h->num_partition_entries) *
|
|
le32_to_cpu(gpt_h->sizeof_partition_entry)),
|
|
dev_desc);
|
|
|
|
/* write MBR */
|
|
lba = 0; /* MBR is always at 0 */
|
|
cnt = 1; /* MBR (1 block) */
|
|
if (blk_dwrite(dev_desc, lba, cnt, buf) != cnt) {
|
|
printf("%s: failed writing '%s' (%d blks at 0x" LBAF ")\n",
|
|
__func__, "MBR", cnt, lba);
|
|
return 1;
|
|
}
|
|
|
|
/* write Primary GPT */
|
|
lba = GPT_PRIMARY_PARTITION_TABLE_LBA;
|
|
cnt = 1; /* GPT Header (1 block) */
|
|
if (blk_dwrite(dev_desc, lba, cnt, gpt_h) != cnt) {
|
|
printf("%s: failed writing '%s' (%d blks at 0x" LBAF ")\n",
|
|
__func__, "Primary GPT Header", cnt, lba);
|
|
return 1;
|
|
}
|
|
|
|
lba = le64_to_cpu(gpt_h->partition_entry_lba);
|
|
cnt = gpt_e_blk_cnt;
|
|
if (blk_dwrite(dev_desc, lba, cnt, gpt_e) != cnt) {
|
|
printf("%s: failed writing '%s' (%d blks at 0x" LBAF ")\n",
|
|
__func__, "Primary GPT Entries", cnt, lba);
|
|
return 1;
|
|
}
|
|
|
|
prepare_backup_gpt_header(gpt_h);
|
|
|
|
/* write Backup GPT */
|
|
lba = le64_to_cpu(gpt_h->partition_entry_lba);
|
|
cnt = gpt_e_blk_cnt;
|
|
if (blk_dwrite(dev_desc, lba, cnt, gpt_e) != cnt) {
|
|
printf("%s: failed writing '%s' (%d blks at 0x" LBAF ")\n",
|
|
__func__, "Backup GPT Entries", cnt, lba);
|
|
return 1;
|
|
}
|
|
|
|
lba = le64_to_cpu(gpt_h->my_lba);
|
|
cnt = 1; /* GPT Header (1 block) */
|
|
if (blk_dwrite(dev_desc, lba, cnt, gpt_h) != cnt) {
|
|
printf("%s: failed writing '%s' (%d blks at 0x" LBAF ")\n",
|
|
__func__, "Backup GPT Header", cnt, lba);
|
|
return 1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Private functions
|
|
*/
|
|
/*
|
|
* pmbr_part_valid(): Check for EFI partition signature
|
|
*
|
|
* Returns: 1 if EFI GPT partition type is found.
|
|
*/
|
|
static int pmbr_part_valid(struct partition *part)
|
|
{
|
|
if (part->sys_ind == EFI_PMBR_OSTYPE_EFI_GPT &&
|
|
get_unaligned_le32(&part->start_sect) == 1UL) {
|
|
return 1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* is_pmbr_valid(): test Protective MBR for validity
|
|
*
|
|
* Returns: 1 if PMBR is valid, 0 otherwise.
|
|
* Validity depends on two things:
|
|
* 1) MSDOS signature is in the last two bytes of the MBR
|
|
* 2) One partition of type 0xEE is found, checked by pmbr_part_valid()
|
|
*/
|
|
static int is_pmbr_valid(legacy_mbr * mbr)
|
|
{
|
|
int i = 0;
|
|
|
|
if (!mbr || le16_to_cpu(mbr->signature) != MSDOS_MBR_SIGNATURE)
|
|
return 0;
|
|
|
|
for (i = 0; i < 4; i++) {
|
|
if (pmbr_part_valid(&mbr->partition_record[i])) {
|
|
return 1;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* is_gpt_valid() - tests one GPT header and PTEs for validity
|
|
*
|
|
* lba is the logical block address of the GPT header to test
|
|
* gpt is a GPT header ptr, filled on return.
|
|
* ptes is a PTEs ptr, filled on return.
|
|
*
|
|
* Description: returns 1 if valid, 0 on error.
|
|
* If valid, returns pointers to PTEs.
|
|
*/
|
|
static int is_gpt_valid(struct blk_desc *dev_desc, u64 lba,
|
|
gpt_header *pgpt_head, gpt_entry **pgpt_pte)
|
|
{
|
|
if (!dev_desc || !pgpt_head) {
|
|
printf("%s: Invalid Argument(s)\n", __func__);
|
|
return 0;
|
|
}
|
|
|
|
/* Read GPT Header from device */
|
|
if (blk_dread(dev_desc, (lbaint_t)lba, 1, pgpt_head) != 1) {
|
|
printf("*** ERROR: Can't read GPT header ***\n");
|
|
return 0;
|
|
}
|
|
|
|
if (validate_gpt_header(pgpt_head, (lbaint_t)lba, dev_desc->lba))
|
|
return 0;
|
|
|
|
/* Read and allocate Partition Table Entries */
|
|
*pgpt_pte = alloc_read_gpt_entries(dev_desc, pgpt_head);
|
|
if (*pgpt_pte == NULL) {
|
|
printf("GPT: Failed to allocate memory for PTE\n");
|
|
return 0;
|
|
}
|
|
|
|
if (validate_gpt_entries(pgpt_head, *pgpt_pte)) {
|
|
free(*pgpt_pte);
|
|
return 0;
|
|
}
|
|
|
|
/* We're done, all's well */
|
|
return 1;
|
|
}
|
|
|
|
/**
|
|
* alloc_read_gpt_entries(): reads partition entries from disk
|
|
* @dev_desc
|
|
* @gpt - GPT header
|
|
*
|
|
* Description: Returns ptes on success, NULL on error.
|
|
* Allocates space for PTEs based on information found in @gpt.
|
|
* Notes: remember to free pte when you're done!
|
|
*/
|
|
static gpt_entry *alloc_read_gpt_entries(struct blk_desc *dev_desc,
|
|
gpt_header *pgpt_head)
|
|
{
|
|
size_t count = 0, blk_cnt;
|
|
lbaint_t blk;
|
|
gpt_entry *pte = NULL;
|
|
|
|
if (!dev_desc || !pgpt_head) {
|
|
printf("%s: Invalid Argument(s)\n", __func__);
|
|
return NULL;
|
|
}
|
|
|
|
count = le32_to_cpu(pgpt_head->num_partition_entries) *
|
|
le32_to_cpu(pgpt_head->sizeof_partition_entry);
|
|
|
|
debug("%s: count = %u * %u = %lu\n", __func__,
|
|
(u32) le32_to_cpu(pgpt_head->num_partition_entries),
|
|
(u32) le32_to_cpu(pgpt_head->sizeof_partition_entry),
|
|
(ulong)count);
|
|
|
|
/* Allocate memory for PTE, remember to FREE */
|
|
if (count != 0) {
|
|
pte = memalign(ARCH_DMA_MINALIGN,
|
|
PAD_TO_BLOCKSIZE(count, dev_desc));
|
|
}
|
|
|
|
if (count == 0 || pte == NULL) {
|
|
printf("%s: ERROR: Can't allocate %#lX bytes for GPT Entries\n",
|
|
__func__, (ulong)count);
|
|
return NULL;
|
|
}
|
|
|
|
/* Read GPT Entries from device */
|
|
blk = le64_to_cpu(pgpt_head->partition_entry_lba);
|
|
blk_cnt = BLOCK_CNT(count, dev_desc);
|
|
if (blk_dread(dev_desc, blk, (lbaint_t)blk_cnt, pte) != blk_cnt) {
|
|
printf("*** ERROR: Can't read GPT Entries ***\n");
|
|
free(pte);
|
|
return NULL;
|
|
}
|
|
return pte;
|
|
}
|
|
|
|
/**
|
|
* is_pte_valid(): validates a single Partition Table Entry
|
|
* @gpt_entry - Pointer to a single Partition Table Entry
|
|
*
|
|
* Description: returns 1 if valid, 0 on error.
|
|
*/
|
|
static int is_pte_valid(gpt_entry * pte)
|
|
{
|
|
efi_guid_t unused_guid;
|
|
|
|
if (!pte) {
|
|
printf("%s: Invalid Argument(s)\n", __func__);
|
|
return 0;
|
|
}
|
|
|
|
/* Only one validation for now:
|
|
* The GUID Partition Type != Unused Entry (ALL-ZERO)
|
|
*/
|
|
memset(unused_guid.b, 0, sizeof(unused_guid.b));
|
|
|
|
if (memcmp(pte->partition_type_guid.b, unused_guid.b,
|
|
sizeof(unused_guid.b)) == 0) {
|
|
|
|
debug("%s: Found an unused PTE GUID at 0x%08X\n", __func__,
|
|
(unsigned int)(uintptr_t)pte);
|
|
|
|
return 0;
|
|
} else {
|
|
return 1;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Add an 'a_' prefix so it comes before 'dos' in the linker list. We need to
|
|
* check EFI first, since a DOS partition is often used as a 'protective MBR'
|
|
* with EFI.
|
|
*/
|
|
U_BOOT_PART_TYPE(a_efi) = {
|
|
.name = "EFI",
|
|
.part_type = PART_TYPE_EFI,
|
|
.max_entries = GPT_ENTRY_NUMBERS,
|
|
.get_info = part_get_info_ptr(part_get_info_efi),
|
|
.print = part_print_ptr(part_print_efi),
|
|
.test = part_test_efi,
|
|
};
|
|
#endif
|