u-boot/lib/efi_loader/efi_variable_tee.c
Abdellatif El Khlifi 218b062e8f arm_ffa: efi: introduce FF-A MM communication
Add MM communication support using FF-A transport

This feature allows accessing MM partitions services through
EFI MM communication protocol. MM partitions such as StandAlonneMM
or smm-gateway secure partitions which reside in secure world.

An MM shared buffer and a door bell event are used to exchange
the data.

The data is used by EFI services such as GetVariable()/SetVariable()
and copied from the communication buffer to the MM shared buffer.

The secure partition is notified about availability of data in the
MM shared buffer by an FF-A message (door bell).

On such event, MM SP can read the data and updates the MM shared
buffer with the response data.

The response data is copied back to the communication buffer and
consumed by the EFI subsystem.

MM communication protocol supports FF-A 64-bit direct messaging.

We tested the FF-A MM communication on the Corstone-1000 platform.

We ran the UEFI SCT test suite containing EFI setVariable, getVariable and
getNextVariable tests which involve FF-A MM communication and all tests
are passing with the current changes.

We made the SCT test reports (part of the ACS results) public following the
latest Corstone-1000 platform software release. Please find the test
reports at [1].

[1]: https://gitlab.arm.com/arm-reference-solutions/arm-reference-solutions-test-report/-/tree/master/embedded-a/corstone1000/CORSTONE1000-2023.06/acs_results_fpga.zip

Signed-off-by: Abdellatif El Khlifi <abdellatif.elkhlifi@arm.com>
Tested-by: Gowtham Suresh Kumar <gowtham.sureshkumar@arm.com>
Reviewed-by: Simon Glass <sjg@chromium.org>
Cc: Tom Rini <trini@konsulko.com>
Cc: Ilias Apalodimas <ilias.apalodimas@linaro.org>
Cc: Jens Wiklander <jens.wiklander@linaro.org>
Reviewed-by: Ilias Apalodimas <ilias.apalodimas@linaro.org>
Reviewed-by: Tom Rini <trini@konsulko.com>
2023-08-08 10:22:03 -04:00

1012 lines
26 KiB
C

// SPDX-License-Identifier: GPL-2.0+
/*
* EFI variable service via OP-TEE
*
* Copyright (C) 2019 Linaro Ltd. <sughosh.ganu@linaro.org>
* Copyright (C) 2019 Linaro Ltd. <ilias.apalodimas@linaro.org>
* Copyright 2022-2023 Arm Limited and/or its affiliates <open-source-office@arm.com>
*
* Authors:
* Abdellatif El Khlifi <abdellatif.elkhlifi@arm.com>
*/
#include <common.h>
#if CONFIG_IS_ENABLED(ARM_FFA_TRANSPORT)
#include <arm_ffa.h>
#endif
#include <cpu_func.h>
#include <dm.h>
#include <efi.h>
#include <efi_api.h>
#include <efi_loader.h>
#include <efi_variable.h>
#include <malloc.h>
#include <mapmem.h>
#include <mm_communication.h>
#include <tee.h>
#if CONFIG_IS_ENABLED(ARM_FFA_TRANSPORT)
/* MM return codes */
#define MM_SUCCESS (0)
#define MM_NOT_SUPPORTED (-1)
#define MM_INVALID_PARAMETER (-2)
#define MM_DENIED (-3)
#define MM_NO_MEMORY (-5)
static const char *mm_sp_svc_uuid = MM_SP_UUID;
static u16 mm_sp_id;
#endif
extern struct efi_var_file __efi_runtime_data *efi_var_buf;
static efi_uintn_t max_buffer_size; /* comm + var + func + data */
static efi_uintn_t max_payload_size; /* func + data */
struct mm_connection {
struct udevice *tee;
u32 session;
};
/**
* get_connection() - Retrieve OP-TEE session for a specific UUID.
*
* @conn: session buffer to fill
* Return: status code
*/
static int get_connection(struct mm_connection *conn)
{
static const struct tee_optee_ta_uuid uuid = PTA_STMM_UUID;
struct udevice *tee = NULL;
struct tee_open_session_arg arg;
int rc = -ENODEV;
tee = tee_find_device(tee, NULL, NULL, NULL);
if (!tee)
goto out;
memset(&arg, 0, sizeof(arg));
tee_optee_ta_uuid_to_octets(arg.uuid, &uuid);
rc = tee_open_session(tee, &arg, 0, NULL);
if (rc)
goto out;
/* Check the internal OP-TEE result */
if (arg.ret != TEE_SUCCESS) {
rc = -EIO;
goto out;
}
conn->tee = tee;
conn->session = arg.session;
return 0;
out:
return rc;
}
/**
* optee_mm_communicate() - Pass a buffer to StandaloneMM running in OP-TEE
*
* @comm_buf: locally allocted communcation buffer
* @dsize: buffer size
* Return: status code
*/
static efi_status_t optee_mm_communicate(void *comm_buf, ulong dsize)
{
ulong buf_size;
efi_status_t ret;
struct efi_mm_communicate_header *mm_hdr;
struct mm_connection conn = { NULL, 0 };
struct tee_invoke_arg arg;
struct tee_param param[2];
struct tee_shm *shm = NULL;
int rc;
if (!comm_buf)
return EFI_INVALID_PARAMETER;
mm_hdr = (struct efi_mm_communicate_header *)comm_buf;
buf_size = mm_hdr->message_len + sizeof(efi_guid_t) + sizeof(size_t);
if (dsize != buf_size)
return EFI_INVALID_PARAMETER;
rc = get_connection(&conn);
if (rc) {
log_err("Unable to open OP-TEE session (err=%d)\n", rc);
return EFI_UNSUPPORTED;
}
if (tee_shm_register(conn.tee, comm_buf, buf_size, 0, &shm)) {
log_err("Unable to register shared memory\n");
tee_close_session(conn.tee, conn.session);
return EFI_UNSUPPORTED;
}
memset(&arg, 0, sizeof(arg));
arg.func = PTA_STMM_CMDID_COMMUNICATE;
arg.session = conn.session;
memset(param, 0, sizeof(param));
param[0].attr = TEE_PARAM_ATTR_TYPE_MEMREF_INOUT;
param[0].u.memref.size = buf_size;
param[0].u.memref.shm = shm;
param[1].attr = TEE_PARAM_ATTR_TYPE_VALUE_OUTPUT;
rc = tee_invoke_func(conn.tee, &arg, 2, param);
tee_shm_free(shm);
tee_close_session(conn.tee, conn.session);
if (rc)
return EFI_DEVICE_ERROR;
if (arg.ret == TEE_ERROR_EXCESS_DATA)
log_err("Variable payload too large\n");
if (arg.ret != TEE_SUCCESS)
return EFI_DEVICE_ERROR;
switch (param[1].u.value.a) {
case ARM_SVC_SPM_RET_SUCCESS:
ret = EFI_SUCCESS;
break;
case ARM_SVC_SPM_RET_INVALID_PARAMS:
ret = EFI_INVALID_PARAMETER;
break;
case ARM_SVC_SPM_RET_DENIED:
ret = EFI_ACCESS_DENIED;
break;
case ARM_SVC_SPM_RET_NO_MEMORY:
ret = EFI_OUT_OF_RESOURCES;
break;
default:
ret = EFI_ACCESS_DENIED;
}
return ret;
}
#if CONFIG_IS_ENABLED(ARM_FFA_TRANSPORT)
/**
* ffa_notify_mm_sp() - Announce there is data in the shared buffer
*
* Notify the MM partition in the trusted world that
* data is available in the shared buffer.
* This is a blocking call during which trusted world has exclusive access
* to the MM shared buffer.
*
* Return:
*
* 0 on success
*/
static int ffa_notify_mm_sp(void)
{
struct ffa_send_direct_data msg = {0};
int ret;
int sp_event_ret;
struct udevice *dev;
ret = uclass_first_device_err(UCLASS_FFA, &dev);
if (ret) {
log_err("EFI: Cannot find FF-A bus device, notify MM SP failure\n");
return ret;
}
msg.data0 = CONFIG_FFA_SHARED_MM_BUF_OFFSET; /* x3 */
ret = ffa_sync_send_receive(dev, mm_sp_id, &msg, 1);
if (ret)
return ret;
sp_event_ret = msg.data0; /* x3 */
switch (sp_event_ret) {
case MM_SUCCESS:
ret = 0;
break;
case MM_NOT_SUPPORTED:
ret = -EINVAL;
break;
case MM_INVALID_PARAMETER:
ret = -EPERM;
break;
case MM_DENIED:
ret = -EACCES;
break;
case MM_NO_MEMORY:
ret = -EBUSY;
break;
default:
ret = -EACCES;
}
return ret;
}
/**
* ffa_discover_mm_sp_id() - Query the MM partition ID
*
* Use the FF-A driver to get the MM partition ID.
* If multiple partitions are found, use the first one.
* This is a boot time function.
*
* Return:
*
* 0 on success
*/
static int ffa_discover_mm_sp_id(void)
{
u32 count = 0;
int ret;
struct ffa_partition_desc *descs;
struct udevice *dev;
ret = uclass_first_device_err(UCLASS_FFA, &dev);
if (ret) {
log_err("EFI: Cannot find FF-A bus device, MM SP discovery failure\n");
return ret;
}
/* Ask the driver to fill the buffer with the SPs info */
ret = ffa_partition_info_get(dev, mm_sp_svc_uuid, &count, &descs);
if (ret) {
log_err("EFI: Failure in querying SPs info (%d), MM SP discovery failure\n", ret);
return ret;
}
/* MM SPs found , use the first one */
mm_sp_id = descs[0].info.id;
log_info("EFI: MM partition ID 0x%x\n", mm_sp_id);
return 0;
}
/**
* ffa_mm_communicate() - Exchange EFI services data with the MM partition using FF-A
* @comm_buf: locally allocated communication buffer used for rx/tx
* @dsize: communication buffer size
*
* Issue a door bell event to notify the MM partition (SP) running in OP-TEE
* that there is data to read from the shared buffer.
* Communication with the MM SP is performed using FF-A transport.
* On the event, MM SP can read the data from the buffer and
* update the MM shared buffer with response data.
* The response data is copied back to the communication buffer.
*
* Return:
*
* EFI status code
*/
static efi_status_t ffa_mm_communicate(void *comm_buf, ulong comm_buf_size)
{
ulong tx_data_size;
int ffa_ret;
efi_status_t efi_ret;
struct efi_mm_communicate_header *mm_hdr;
void *virt_shared_buf;
if (!comm_buf)
return EFI_INVALID_PARAMETER;
/* Discover MM partition ID at boot time */
if (!mm_sp_id && ffa_discover_mm_sp_id()) {
log_err("EFI: Failure to discover MM SP ID at boot time, FF-A MM comms failure\n");
return EFI_UNSUPPORTED;
}
mm_hdr = (struct efi_mm_communicate_header *)comm_buf;
tx_data_size = mm_hdr->message_len + sizeof(efi_guid_t) + sizeof(size_t);
if (comm_buf_size != tx_data_size || tx_data_size > CONFIG_FFA_SHARED_MM_BUF_SIZE)
return EFI_INVALID_PARAMETER;
/* Copy the data to the shared buffer */
virt_shared_buf = map_sysmem((phys_addr_t)CONFIG_FFA_SHARED_MM_BUF_ADDR, 0);
memcpy(virt_shared_buf, comm_buf, tx_data_size);
/*
* The secure world might have cache disabled for
* the device region used for shared buffer (which is the case for Optee).
* In this case, the secure world reads the data from DRAM.
* Let's flush the cache so the DRAM is updated with the latest data.
*/
#ifdef CONFIG_ARM64
invalidate_dcache_all();
#endif
/* Announce there is data in the shared buffer */
ffa_ret = ffa_notify_mm_sp();
switch (ffa_ret) {
case 0: {
ulong rx_data_size;
/* Copy the MM SP response from the shared buffer to the communication buffer */
rx_data_size = ((struct efi_mm_communicate_header *)virt_shared_buf)->message_len +
sizeof(efi_guid_t) +
sizeof(size_t);
if (rx_data_size > comm_buf_size) {
efi_ret = EFI_OUT_OF_RESOURCES;
break;
}
memcpy(comm_buf, virt_shared_buf, rx_data_size);
efi_ret = EFI_SUCCESS;
break;
}
case -EINVAL:
efi_ret = EFI_DEVICE_ERROR;
break;
case -EPERM:
efi_ret = EFI_INVALID_PARAMETER;
break;
case -EACCES:
efi_ret = EFI_ACCESS_DENIED;
break;
case -EBUSY:
efi_ret = EFI_OUT_OF_RESOURCES;
break;
default:
efi_ret = EFI_ACCESS_DENIED;
}
unmap_sysmem(virt_shared_buf);
return efi_ret;
}
/**
* get_mm_comms() - detect the available MM transport
*
* Make sure the FF-A bus is probed successfully
* which means FF-A communication with secure world works and ready
* for use.
*
* If FF-A bus is not ready, use OPTEE comms.
*
* Return:
*
* MM_COMMS_FFA or MM_COMMS_OPTEE
*/
static enum mm_comms_select get_mm_comms(void)
{
struct udevice *dev;
int ret;
ret = uclass_first_device_err(UCLASS_FFA, &dev);
if (ret) {
log_debug("EFI: Cannot find FF-A bus device, trying Optee comms\n");
return MM_COMMS_OPTEE;
}
return MM_COMMS_FFA;
}
#endif
/**
* mm_communicate() - Adjust the communication buffer to the MM SP and send
* it to OP-TEE
*
* @comm_buf: locally allocated communication buffer
* @dsize: buffer size
*
* The SP (also called partition) can be any MM SP such as StandAlonneMM or smm-gateway.
* The comm_buf format is the same for both partitions.
* When using the u-boot OP-TEE driver, StandAlonneMM is supported.
* When using the u-boot FF-A driver, any MM SP is supported.
*
* Return: status code
*/
static efi_status_t mm_communicate(u8 *comm_buf, efi_uintn_t dsize)
{
efi_status_t ret;
struct efi_mm_communicate_header *mm_hdr;
struct smm_variable_communicate_header *var_hdr;
#if CONFIG_IS_ENABLED(ARM_FFA_TRANSPORT)
enum mm_comms_select mm_comms;
#endif
dsize += MM_COMMUNICATE_HEADER_SIZE + MM_VARIABLE_COMMUNICATE_SIZE;
mm_hdr = (struct efi_mm_communicate_header *)comm_buf;
var_hdr = (struct smm_variable_communicate_header *)mm_hdr->data;
#if CONFIG_IS_ENABLED(ARM_FFA_TRANSPORT)
mm_comms = get_mm_comms();
if (mm_comms == MM_COMMS_FFA)
ret = ffa_mm_communicate(comm_buf, dsize);
else
ret = optee_mm_communicate(comm_buf, dsize);
#else
ret = optee_mm_communicate(comm_buf, dsize);
#endif
if (ret != EFI_SUCCESS) {
log_err("%s failed!\n", __func__);
return ret;
}
return var_hdr->ret_status;
}
/**
* setup_mm_hdr() - Allocate a buffer for StandAloneMM and initialize the
* header data.
*
* @dptr: pointer address of the corresponding StandAloneMM
* function
* @payload_size: buffer size
* @func: standAloneMM function number
* @ret: EFI return code
* Return: buffer or NULL
*/
static u8 *setup_mm_hdr(void **dptr, efi_uintn_t payload_size,
efi_uintn_t func, efi_status_t *ret)
{
const efi_guid_t mm_var_guid = EFI_MM_VARIABLE_GUID;
struct efi_mm_communicate_header *mm_hdr;
struct smm_variable_communicate_header *var_hdr;
u8 *comm_buf;
/* In the init function we initialize max_buffer_size with
* get_max_payload(). So skip the test if max_buffer_size is initialized
* StandAloneMM will perform similar checks and drop the buffer if it's
* too long
*/
if (max_buffer_size && max_buffer_size <
(MM_COMMUNICATE_HEADER_SIZE +
MM_VARIABLE_COMMUNICATE_SIZE +
payload_size)) {
*ret = EFI_INVALID_PARAMETER;
return NULL;
}
comm_buf = calloc(1, MM_COMMUNICATE_HEADER_SIZE +
MM_VARIABLE_COMMUNICATE_SIZE +
payload_size);
if (!comm_buf) {
*ret = EFI_OUT_OF_RESOURCES;
return NULL;
}
mm_hdr = (struct efi_mm_communicate_header *)comm_buf;
guidcpy(&mm_hdr->header_guid, &mm_var_guid);
mm_hdr->message_len = MM_VARIABLE_COMMUNICATE_SIZE + payload_size;
var_hdr = (struct smm_variable_communicate_header *)mm_hdr->data;
var_hdr->function = func;
if (dptr)
*dptr = var_hdr->data;
*ret = EFI_SUCCESS;
return comm_buf;
}
/**
* get_max_payload() - Get variable payload size from StandAloneMM.
*
* @size: size of the variable in storage
* Return: status code
*/
efi_status_t EFIAPI get_max_payload(efi_uintn_t *size)
{
struct smm_variable_payload_size *var_payload = NULL;
efi_uintn_t payload_size;
u8 *comm_buf = NULL;
efi_status_t ret;
if (!size) {
ret = EFI_INVALID_PARAMETER;
goto out;
}
payload_size = sizeof(*var_payload);
comm_buf = setup_mm_hdr((void **)&var_payload, payload_size,
SMM_VARIABLE_FUNCTION_GET_PAYLOAD_SIZE, &ret);
if (!comm_buf)
goto out;
ret = mm_communicate(comm_buf, payload_size);
if (ret != EFI_SUCCESS)
goto out;
/* Make sure the buffer is big enough for storing variables */
if (var_payload->size < MM_VARIABLE_ACCESS_HEADER_SIZE + 0x20) {
ret = EFI_DEVICE_ERROR;
goto out;
}
*size = var_payload->size;
/*
* There seems to be a bug in EDK2 miscalculating the boundaries and
* size checks, so deduct 2 more bytes to fulfill this requirement. Fix
* it up here to ensure backwards compatibility with older versions
* (cf. StandaloneMmPkg/Drivers/StandaloneMmCpu/AArch64/EventHandle.c.
* sizeof (EFI_MM_COMMUNICATE_HEADER) instead the size minus the
* flexible array member).
*
* size is guaranteed to be > 2 due to checks on the beginning.
*/
*size -= 2;
out:
free(comm_buf);
return ret;
}
/*
* StMM can store internal attributes and properties for variables, i.e enabling
* R/O variables
*/
static efi_status_t set_property_int(const u16 *variable_name,
efi_uintn_t name_size,
const efi_guid_t *vendor,
struct var_check_property *var_property)
{
struct smm_variable_var_check_property *smm_property;
efi_uintn_t payload_size;
u8 *comm_buf = NULL;
efi_status_t ret;
payload_size = sizeof(*smm_property) + name_size;
if (payload_size > max_payload_size) {
ret = EFI_INVALID_PARAMETER;
goto out;
}
comm_buf = setup_mm_hdr((void **)&smm_property, payload_size,
SMM_VARIABLE_FUNCTION_VAR_CHECK_VARIABLE_PROPERTY_SET,
&ret);
if (!comm_buf)
goto out;
guidcpy(&smm_property->guid, vendor);
smm_property->name_size = name_size;
memcpy(&smm_property->property, var_property,
sizeof(smm_property->property));
memcpy(smm_property->name, variable_name, name_size);
ret = mm_communicate(comm_buf, payload_size);
out:
free(comm_buf);
return ret;
}
static efi_status_t get_property_int(const u16 *variable_name,
efi_uintn_t name_size,
const efi_guid_t *vendor,
struct var_check_property *var_property)
{
struct smm_variable_var_check_property *smm_property;
efi_uintn_t payload_size;
u8 *comm_buf = NULL;
efi_status_t ret;
memset(var_property, 0, sizeof(*var_property));
payload_size = sizeof(*smm_property) + name_size;
if (payload_size > max_payload_size) {
ret = EFI_INVALID_PARAMETER;
goto out;
}
comm_buf = setup_mm_hdr((void **)&smm_property, payload_size,
SMM_VARIABLE_FUNCTION_VAR_CHECK_VARIABLE_PROPERTY_GET,
&ret);
if (!comm_buf)
goto out;
guidcpy(&smm_property->guid, vendor);
smm_property->name_size = name_size;
memcpy(smm_property->name, variable_name, name_size);
ret = mm_communicate(comm_buf, payload_size);
/*
* Currently only R/O property is supported in StMM.
* Variables that are not set to R/O will not set the property in StMM
* and the call will return EFI_NOT_FOUND. We are setting the
* properties to 0x0 so checking against that is enough for the
* EFI_NOT_FOUND case.
*/
if (ret == EFI_NOT_FOUND)
ret = EFI_SUCCESS;
if (ret != EFI_SUCCESS)
goto out;
memcpy(var_property, &smm_property->property, sizeof(*var_property));
out:
free(comm_buf);
return ret;
}
efi_status_t efi_get_variable_int(const u16 *variable_name,
const efi_guid_t *vendor,
u32 *attributes, efi_uintn_t *data_size,
void *data, u64 *timep)
{
struct var_check_property var_property;
struct smm_variable_access *var_acc;
efi_uintn_t payload_size;
efi_uintn_t name_size;
efi_uintn_t tmp_dsize;
u8 *comm_buf = NULL;
efi_status_t ret, tmp;
if (!variable_name || !vendor || !data_size) {
ret = EFI_INVALID_PARAMETER;
goto out;
}
/* Check payload size */
name_size = u16_strsize(variable_name);
if (name_size > max_payload_size - MM_VARIABLE_ACCESS_HEADER_SIZE) {
ret = EFI_INVALID_PARAMETER;
goto out;
}
/* Trim output buffer size */
tmp_dsize = *data_size;
if (name_size + tmp_dsize >
max_payload_size - MM_VARIABLE_ACCESS_HEADER_SIZE) {
tmp_dsize = max_payload_size -
MM_VARIABLE_ACCESS_HEADER_SIZE -
name_size;
}
/* Get communication buffer and initialize header */
payload_size = MM_VARIABLE_ACCESS_HEADER_SIZE + name_size + tmp_dsize;
comm_buf = setup_mm_hdr((void **)&var_acc, payload_size,
SMM_VARIABLE_FUNCTION_GET_VARIABLE, &ret);
if (!comm_buf)
goto out;
/* Fill in contents */
guidcpy(&var_acc->guid, vendor);
var_acc->data_size = tmp_dsize;
var_acc->name_size = name_size;
var_acc->attr = attributes ? *attributes : 0;
memcpy(var_acc->name, variable_name, name_size);
/* Communicate */
ret = mm_communicate(comm_buf, payload_size);
if (ret != EFI_SUCCESS && ret != EFI_BUFFER_TOO_SMALL)
goto out;
/* Update with reported data size for trimmed case */
*data_size = var_acc->data_size;
/*
* UEFI > 2.7 needs the attributes set even if the buffer is
* smaller
*/
if (attributes) {
tmp = get_property_int(variable_name, name_size, vendor,
&var_property);
if (tmp != EFI_SUCCESS) {
ret = tmp;
goto out;
}
*attributes = var_acc->attr;
if (var_property.property &
VAR_CHECK_VARIABLE_PROPERTY_READ_ONLY)
*attributes |= EFI_VARIABLE_READ_ONLY;
}
/* return if ret is EFI_BUFFER_TOO_SMALL */
if (ret != EFI_SUCCESS)
goto out;
if (data)
memcpy(data, (u8 *)var_acc->name + var_acc->name_size,
var_acc->data_size);
else
ret = EFI_INVALID_PARAMETER;
out:
free(comm_buf);
return ret;
}
efi_status_t efi_get_next_variable_name_int(efi_uintn_t *variable_name_size,
u16 *variable_name,
efi_guid_t *guid)
{
struct smm_variable_getnext *var_getnext;
efi_uintn_t payload_size;
efi_uintn_t out_name_size;
efi_uintn_t in_name_size;
u8 *comm_buf = NULL;
efi_status_t ret;
if (!variable_name_size || !variable_name || !guid) {
ret = EFI_INVALID_PARAMETER;
goto out;
}
out_name_size = *variable_name_size;
in_name_size = u16_strsize(variable_name);
if (out_name_size < in_name_size) {
ret = EFI_INVALID_PARAMETER;
goto out;
}
if (in_name_size > max_payload_size - MM_VARIABLE_GET_NEXT_HEADER_SIZE) {
ret = EFI_INVALID_PARAMETER;
goto out;
}
/* Trim output buffer size */
if (out_name_size > max_payload_size - MM_VARIABLE_GET_NEXT_HEADER_SIZE)
out_name_size = max_payload_size - MM_VARIABLE_GET_NEXT_HEADER_SIZE;
payload_size = MM_VARIABLE_GET_NEXT_HEADER_SIZE + out_name_size;
comm_buf = setup_mm_hdr((void **)&var_getnext, payload_size,
SMM_VARIABLE_FUNCTION_GET_NEXT_VARIABLE_NAME,
&ret);
if (!comm_buf)
goto out;
/* Fill in contents */
guidcpy(&var_getnext->guid, guid);
var_getnext->name_size = out_name_size;
memcpy(var_getnext->name, variable_name, in_name_size);
memset((u8 *)var_getnext->name + in_name_size, 0x0,
out_name_size - in_name_size);
/* Communicate */
ret = mm_communicate(comm_buf, payload_size);
if (ret == EFI_SUCCESS || ret == EFI_BUFFER_TOO_SMALL) {
/* Update with reported data size for trimmed case */
*variable_name_size = var_getnext->name_size;
}
if (ret != EFI_SUCCESS)
goto out;
guidcpy(guid, &var_getnext->guid);
memcpy(variable_name, var_getnext->name, var_getnext->name_size);
out:
free(comm_buf);
return ret;
}
efi_status_t efi_set_variable_int(const u16 *variable_name,
const efi_guid_t *vendor, u32 attributes,
efi_uintn_t data_size, const void *data,
bool ro_check)
{
efi_status_t ret, alt_ret = EFI_SUCCESS;
struct var_check_property var_property;
struct smm_variable_access *var_acc;
efi_uintn_t payload_size;
efi_uintn_t name_size;
u8 *comm_buf = NULL;
bool ro;
if (!variable_name || variable_name[0] == 0 || !vendor) {
ret = EFI_INVALID_PARAMETER;
goto out;
}
if (data_size > 0 && !data) {
ret = EFI_INVALID_PARAMETER;
goto out;
}
/* Check payload size */
name_size = u16_strsize(variable_name);
payload_size = MM_VARIABLE_ACCESS_HEADER_SIZE + name_size + data_size;
if (payload_size > max_payload_size) {
ret = EFI_INVALID_PARAMETER;
goto out;
}
/*
* Allocate the buffer early, before switching to RW (if needed)
* so we won't need to account for any failures in reading/setting
* the properties, if the allocation fails
*/
comm_buf = setup_mm_hdr((void **)&var_acc, payload_size,
SMM_VARIABLE_FUNCTION_SET_VARIABLE, &ret);
if (!comm_buf)
goto out;
ro = !!(attributes & EFI_VARIABLE_READ_ONLY);
attributes &= EFI_VARIABLE_MASK;
/*
* The API has the ability to override RO flags. If no RO check was
* requested switch the variable to RW for the duration of this call
*/
ret = get_property_int(variable_name, name_size, vendor,
&var_property);
if (ret != EFI_SUCCESS)
goto out;
if (var_property.property & VAR_CHECK_VARIABLE_PROPERTY_READ_ONLY) {
/* Bypass r/o check */
if (!ro_check) {
var_property.property &= ~VAR_CHECK_VARIABLE_PROPERTY_READ_ONLY;
ret = set_property_int(variable_name, name_size, vendor, &var_property);
if (ret != EFI_SUCCESS)
goto out;
} else {
ret = EFI_WRITE_PROTECTED;
goto out;
}
}
/* Fill in contents */
guidcpy(&var_acc->guid, vendor);
var_acc->data_size = data_size;
var_acc->name_size = name_size;
var_acc->attr = attributes;
memcpy(var_acc->name, variable_name, name_size);
memcpy((u8 *)var_acc->name + name_size, data, data_size);
/* Communicate */
ret = mm_communicate(comm_buf, payload_size);
if (ret != EFI_SUCCESS)
alt_ret = ret;
if (ro && !(var_property.property & VAR_CHECK_VARIABLE_PROPERTY_READ_ONLY)) {
var_property.revision = VAR_CHECK_VARIABLE_PROPERTY_REVISION;
var_property.property |= VAR_CHECK_VARIABLE_PROPERTY_READ_ONLY;
var_property.attributes = attributes;
var_property.minsize = 1;
var_property.maxsize = var_acc->data_size;
ret = set_property_int(variable_name, name_size, vendor, &var_property);
}
if (alt_ret != EFI_SUCCESS)
goto out;
if (!u16_strcmp(variable_name, u"PK"))
alt_ret = efi_init_secure_state();
out:
free(comm_buf);
return alt_ret == EFI_SUCCESS ? ret : alt_ret;
}
efi_status_t efi_query_variable_info_int(u32 attributes,
u64 *max_variable_storage_size,
u64 *remain_variable_storage_size,
u64 *max_variable_size)
{
struct smm_variable_query_info *mm_query_info;
efi_uintn_t payload_size;
efi_status_t ret;
u8 *comm_buf;
payload_size = sizeof(*mm_query_info);
comm_buf = setup_mm_hdr((void **)&mm_query_info, payload_size,
SMM_VARIABLE_FUNCTION_QUERY_VARIABLE_INFO,
&ret);
if (!comm_buf)
goto out;
mm_query_info->attr = attributes;
ret = mm_communicate(comm_buf, payload_size);
if (ret != EFI_SUCCESS)
goto out;
*max_variable_storage_size = mm_query_info->max_variable_storage;
*remain_variable_storage_size =
mm_query_info->remaining_variable_storage;
*max_variable_size = mm_query_info->max_variable_size;
out:
free(comm_buf);
return ret;
}
/**
* efi_query_variable_info() - get information about EFI variables
*
* This function implements the QueryVariableInfo() runtime service.
*
* See the Unified Extensible Firmware Interface (UEFI) specification for
* details.
*
* @attributes: bitmask to select variables to be
* queried
* @maximum_variable_storage_size: maximum size of storage area for the
* selected variable types
* @remaining_variable_storage_size: remaining size of storage are for the
* selected variable types
* @maximum_variable_size: maximum size of a variable of the
* selected type
* Return: status code
*/
efi_status_t EFIAPI __efi_runtime
efi_query_variable_info_runtime(u32 attributes, u64 *max_variable_storage_size,
u64 *remain_variable_storage_size,
u64 *max_variable_size)
{
return EFI_UNSUPPORTED;
}
/**
* efi_set_variable_runtime() - runtime implementation of SetVariable()
*
* @variable_name: name of the variable
* @guid: vendor GUID
* @attributes: attributes of the variable
* @data_size: size of the buffer with the variable value
* @data: buffer with the variable value
* Return: status code
*/
static efi_status_t __efi_runtime EFIAPI
efi_set_variable_runtime(u16 *variable_name, const efi_guid_t *guid,
u32 attributes, efi_uintn_t data_size,
const void *data)
{
return EFI_UNSUPPORTED;
}
/**
* efi_variables_boot_exit_notify() - notify ExitBootServices() is called
*/
void efi_variables_boot_exit_notify(void)
{
efi_status_t ret;
u8 *comm_buf;
loff_t len;
struct efi_var_file *var_buf;
comm_buf = setup_mm_hdr(NULL, 0,
SMM_VARIABLE_FUNCTION_EXIT_BOOT_SERVICE, &ret);
if (comm_buf)
ret = mm_communicate(comm_buf, 0);
else
ret = EFI_NOT_FOUND;
if (ret != EFI_SUCCESS)
log_err("Unable to notify the MM partition for ExitBootServices\n");
free(comm_buf);
/*
* Populate the list for runtime variables.
* asking EFI_VARIABLE_RUNTIME_ACCESS is redundant, since
* efi_var_mem_notify_exit_boot_services will clean those, but that's fine
*/
ret = efi_var_collect(&var_buf, &len, EFI_VARIABLE_RUNTIME_ACCESS);
if (ret != EFI_SUCCESS)
log_err("Can't populate EFI variables. No runtime variables will be available\n");
else
efi_var_buf_update(var_buf);
free(var_buf);
/* Update runtime service table */
efi_runtime_services.query_variable_info =
efi_query_variable_info_runtime;
efi_runtime_services.get_variable = efi_get_variable_runtime;
efi_runtime_services.get_next_variable_name =
efi_get_next_variable_name_runtime;
efi_runtime_services.set_variable = efi_set_variable_runtime;
efi_update_table_header_crc32(&efi_runtime_services.hdr);
}
/**
* efi_init_variables() - initialize variable services
*
* Return: status code
*/
efi_status_t efi_init_variables(void)
{
efi_status_t ret;
/* Create a cached copy of the variables that will be enabled on ExitBootServices() */
ret = efi_var_mem_init();
if (ret != EFI_SUCCESS)
return ret;
ret = get_max_payload(&max_payload_size);
if (ret != EFI_SUCCESS)
return ret;
max_buffer_size = MM_COMMUNICATE_HEADER_SIZE +
MM_VARIABLE_COMMUNICATE_SIZE +
max_payload_size;
ret = efi_init_secure_state();
if (ret != EFI_SUCCESS)
return ret;
return EFI_SUCCESS;
}