mirror of
https://github.com/AsahiLinux/u-boot
synced 2024-12-02 01:19:49 +00:00
c9ffd839b1
* Check DDR interleaving mode from environment by reading memctl_intlv_ctl and ba_intlv_ctl. * Print DDR interleaving mode information * Add doc/README.fsl-ddr to describe the interleaving setting Signed-off-by: Haiying Wang <Haiying.Wang@freescale.com>
516 lines
14 KiB
C
516 lines
14 KiB
C
/*
|
|
* Copyright 2008 Freescale Semiconductor, Inc.
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License
|
|
* Version 2 as published by the Free Software Foundation.
|
|
*/
|
|
|
|
/*
|
|
* Generic driver for Freescale DDR/DDR2/DDR3 memory controller.
|
|
* Based on code from spd_sdram.c
|
|
* Author: James Yang [at freescale.com]
|
|
*/
|
|
|
|
#include <common.h>
|
|
#include <asm/fsl_ddr_sdram.h>
|
|
|
|
#include "ddr.h"
|
|
|
|
extern void fsl_ddr_set_lawbar(
|
|
const common_timing_params_t *memctl_common_params,
|
|
unsigned int memctl_interleaved,
|
|
unsigned int ctrl_num);
|
|
|
|
/* processor specific function */
|
|
extern void fsl_ddr_set_memctl_regs(const fsl_ddr_cfg_regs_t *regs,
|
|
unsigned int ctrl_num);
|
|
|
|
/* Board-specific functions defined in each board's ddr.c */
|
|
extern void fsl_ddr_get_spd(generic_spd_eeprom_t *ctrl_dimms_spd,
|
|
unsigned int ctrl_num);
|
|
|
|
/*
|
|
* ASSUMPTIONS:
|
|
* - Same number of CONFIG_DIMM_SLOTS_PER_CTLR on each controller
|
|
* - Same memory data bus width on all controllers
|
|
*
|
|
* NOTES:
|
|
*
|
|
* The memory controller and associated documentation use confusing
|
|
* terminology when referring to the orgranization of DRAM.
|
|
*
|
|
* Here is a terminology translation table:
|
|
*
|
|
* memory controller/documention |industry |this code |signals
|
|
* -------------------------------|-----------|-----------|-----------------
|
|
* physical bank/bank |rank |rank |chip select (CS)
|
|
* logical bank/sub-bank |bank |bank |bank address (BA)
|
|
* page/row |row |page |row address
|
|
* ??? |column |column |column address
|
|
*
|
|
* The naming confusion is further exacerbated by the descriptions of the
|
|
* memory controller interleaving feature, where accesses are interleaved
|
|
* _BETWEEN_ two seperate memory controllers. This is configured only in
|
|
* CS0_CONFIG[INTLV_CTL] of each memory controller.
|
|
*
|
|
* memory controller documentation | number of chip selects
|
|
* | per memory controller supported
|
|
* --------------------------------|-----------------------------------------
|
|
* cache line interleaving | 1 (CS0 only)
|
|
* page interleaving | 1 (CS0 only)
|
|
* bank interleaving | 1 (CS0 only)
|
|
* superbank interleraving | depends on bank (chip select)
|
|
* | interleraving [rank interleaving]
|
|
* | mode used on every memory controller
|
|
*
|
|
* Even further confusing is the existence of the interleaving feature
|
|
* _WITHIN_ each memory controller. The feature is referred to in
|
|
* documentation as chip select interleaving or bank interleaving,
|
|
* although it is configured in the DDR_SDRAM_CFG field.
|
|
*
|
|
* Name of field | documentation name | this code
|
|
* -----------------------------|-----------------------|------------------
|
|
* DDR_SDRAM_CFG[BA_INTLV_CTL] | Bank (chip select) | rank interleaving
|
|
* | interleaving
|
|
*/
|
|
|
|
#ifdef DEBUG
|
|
const char *step_string_tbl[] = {
|
|
"STEP_GET_SPD",
|
|
"STEP_COMPUTE_DIMM_PARMS",
|
|
"STEP_COMPUTE_COMMON_PARMS",
|
|
"STEP_GATHER_OPTS",
|
|
"STEP_ASSIGN_ADDRESSES",
|
|
"STEP_COMPUTE_REGS",
|
|
"STEP_PROGRAM_REGS",
|
|
"STEP_ALL"
|
|
};
|
|
|
|
const char * step_to_string(unsigned int step) {
|
|
|
|
unsigned int s = __ilog2(step);
|
|
|
|
if ((1 << s) != step)
|
|
return step_string_tbl[7];
|
|
|
|
return step_string_tbl[s];
|
|
}
|
|
#endif
|
|
|
|
int step_assign_addresses(fsl_ddr_info_t *pinfo,
|
|
unsigned int dbw_cap_adj[],
|
|
unsigned int *memctl_interleaving,
|
|
unsigned int *rank_interleaving)
|
|
{
|
|
int i, j;
|
|
|
|
/*
|
|
* If a reduced data width is requested, but the SPD
|
|
* specifies a physically wider device, adjust the
|
|
* computed dimm capacities accordingly before
|
|
* assigning addresses.
|
|
*/
|
|
for (i = 0; i < CONFIG_NUM_DDR_CONTROLLERS; i++) {
|
|
unsigned int found = 0;
|
|
|
|
switch (pinfo->memctl_opts[i].data_bus_width) {
|
|
case 2:
|
|
/* 16-bit */
|
|
printf("can't handle 16-bit mode yet\n");
|
|
break;
|
|
|
|
case 1:
|
|
/* 32-bit */
|
|
for (j = 0; j < CONFIG_DIMM_SLOTS_PER_CTLR; j++) {
|
|
unsigned int dw;
|
|
dw = pinfo->dimm_params[i][j].data_width;
|
|
if (pinfo->dimm_params[i][j].n_ranks
|
|
&& (dw == 72 || dw == 64)) {
|
|
/*
|
|
* FIXME: can't really do it
|
|
* like this because this just
|
|
* further reduces the memory
|
|
*/
|
|
found = 1;
|
|
break;
|
|
}
|
|
}
|
|
if (found) {
|
|
dbw_cap_adj[i] = 1;
|
|
}
|
|
break;
|
|
|
|
case 0:
|
|
/* 64-bit */
|
|
break;
|
|
|
|
default:
|
|
printf("unexpected data bus width "
|
|
"specified controller %u\n", i);
|
|
return 1;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Check if all controllers are configured for memory
|
|
* controller interleaving.
|
|
*/
|
|
j = 0;
|
|
for (i = 0; i < CONFIG_NUM_DDR_CONTROLLERS; i++) {
|
|
if (pinfo->memctl_opts[i].memctl_interleaving) {
|
|
j++;
|
|
}
|
|
}
|
|
if (j == 2) {
|
|
*memctl_interleaving = 1;
|
|
|
|
printf("\nMemory controller interleaving enabled: ");
|
|
|
|
switch (pinfo->memctl_opts[0].memctl_interleaving_mode) {
|
|
case FSL_DDR_CACHE_LINE_INTERLEAVING:
|
|
printf("Cache-line interleaving!\n");
|
|
break;
|
|
case FSL_DDR_PAGE_INTERLEAVING:
|
|
printf("Page interleaving!\n");
|
|
break;
|
|
case FSL_DDR_BANK_INTERLEAVING:
|
|
printf("Bank interleaving!\n");
|
|
break;
|
|
case FSL_DDR_SUPERBANK_INTERLEAVING:
|
|
printf("Super bank interleaving\n");
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* Check that all controllers are rank interleaving. */
|
|
j = 0;
|
|
for (i = 0; i < CONFIG_NUM_DDR_CONTROLLERS; i++) {
|
|
if (pinfo->memctl_opts[i].ba_intlv_ctl) {
|
|
j++;
|
|
}
|
|
}
|
|
if (j == 2) {
|
|
*rank_interleaving = 1;
|
|
|
|
printf("Bank(chip-select) interleaving enabled: ");
|
|
|
|
switch (pinfo->memctl_opts[0].ba_intlv_ctl &
|
|
FSL_DDR_CS0_CS1_CS2_CS3) {
|
|
case FSL_DDR_CS0_CS1_CS2_CS3:
|
|
printf("CS0+CS1+CS2+CS3\n");
|
|
break;
|
|
case FSL_DDR_CS0_CS1:
|
|
printf("CS0+CS1\n");
|
|
break;
|
|
case FSL_DDR_CS2_CS3:
|
|
printf("CS2+CS3\n");
|
|
break;
|
|
case FSL_DDR_CS0_CS1_AND_CS2_CS3:
|
|
printf("CS0+CS1 and CS2+CS3\n");
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (*memctl_interleaving) {
|
|
phys_addr_t addr;
|
|
phys_size_t total_mem_per_ctlr = 0;
|
|
|
|
/*
|
|
* If interleaving between memory controllers,
|
|
* make each controller start at a base address
|
|
* of 0.
|
|
*
|
|
* Also, if bank interleaving (chip select
|
|
* interleaving) is enabled on each memory
|
|
* controller, CS0 needs to be programmed to
|
|
* cover the entire memory range on that memory
|
|
* controller
|
|
*
|
|
* Bank interleaving also implies that each
|
|
* addressed chip select is identical in size.
|
|
*/
|
|
|
|
for (i = 0; i < CONFIG_NUM_DDR_CONTROLLERS; i++) {
|
|
addr = 0;
|
|
pinfo->common_timing_params[i].base_address =
|
|
(phys_addr_t)addr;
|
|
for (j = 0; j < CONFIG_DIMM_SLOTS_PER_CTLR; j++) {
|
|
unsigned long long cap
|
|
= pinfo->dimm_params[i][j].capacity;
|
|
|
|
pinfo->dimm_params[i][j].base_address = addr;
|
|
addr += (phys_addr_t)(cap >> dbw_cap_adj[i]);
|
|
total_mem_per_ctlr += cap >> dbw_cap_adj[i];
|
|
}
|
|
}
|
|
pinfo->common_timing_params[0].total_mem = total_mem_per_ctlr;
|
|
} else {
|
|
/*
|
|
* Simple linear assignment if memory
|
|
* controllers are not interleaved.
|
|
*/
|
|
phys_size_t cur_memsize = 0;
|
|
for (i = 0; i < CONFIG_NUM_DDR_CONTROLLERS; i++) {
|
|
phys_size_t total_mem_per_ctlr = 0;
|
|
pinfo->common_timing_params[i].base_address =
|
|
(phys_addr_t)cur_memsize;
|
|
for (j = 0; j < CONFIG_DIMM_SLOTS_PER_CTLR; j++) {
|
|
/* Compute DIMM base addresses. */
|
|
unsigned long long cap =
|
|
pinfo->dimm_params[i][j].capacity;
|
|
|
|
pinfo->dimm_params[i][j].base_address =
|
|
(phys_addr_t)cur_memsize;
|
|
cur_memsize += cap >> dbw_cap_adj[i];
|
|
total_mem_per_ctlr += cap >> dbw_cap_adj[i];
|
|
}
|
|
pinfo->common_timing_params[i].total_mem =
|
|
total_mem_per_ctlr;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
phys_size_t
|
|
fsl_ddr_compute(fsl_ddr_info_t *pinfo, unsigned int start_step)
|
|
{
|
|
unsigned int i, j;
|
|
unsigned int all_controllers_memctl_interleaving = 0;
|
|
unsigned int all_controllers_rank_interleaving = 0;
|
|
phys_size_t total_mem = 0;
|
|
|
|
fsl_ddr_cfg_regs_t *ddr_reg = pinfo->fsl_ddr_config_reg;
|
|
common_timing_params_t *timing_params = pinfo->common_timing_params;
|
|
|
|
/* data bus width capacity adjust shift amount */
|
|
unsigned int dbw_capacity_adjust[CONFIG_NUM_DDR_CONTROLLERS];
|
|
|
|
for (i = 0; i < CONFIG_NUM_DDR_CONTROLLERS; i++) {
|
|
dbw_capacity_adjust[i] = 0;
|
|
}
|
|
|
|
debug("starting at step %u (%s)\n",
|
|
start_step, step_to_string(start_step));
|
|
|
|
switch (start_step) {
|
|
case STEP_GET_SPD:
|
|
/* STEP 1: Gather all DIMM SPD data */
|
|
for (i = 0; i < CONFIG_NUM_DDR_CONTROLLERS; i++) {
|
|
fsl_ddr_get_spd(pinfo->spd_installed_dimms[i], i);
|
|
}
|
|
|
|
case STEP_COMPUTE_DIMM_PARMS:
|
|
/* STEP 2: Compute DIMM parameters from SPD data */
|
|
|
|
for (i = 0; i < CONFIG_NUM_DDR_CONTROLLERS; i++) {
|
|
for (j = 0; j < CONFIG_DIMM_SLOTS_PER_CTLR; j++) {
|
|
unsigned int retval;
|
|
generic_spd_eeprom_t *spd =
|
|
&(pinfo->spd_installed_dimms[i][j]);
|
|
dimm_params_t *pdimm =
|
|
&(pinfo->dimm_params[i][j]);
|
|
|
|
retval = compute_dimm_parameters(spd, pdimm, i);
|
|
if (retval == 2) {
|
|
printf("Error: compute_dimm_parameters"
|
|
" non-zero returned FATAL value "
|
|
"for memctl=%u dimm=%u\n", i, j);
|
|
return 0;
|
|
}
|
|
if (retval) {
|
|
debug("Warning: compute_dimm_parameters"
|
|
" non-zero return value for memctl=%u "
|
|
"dimm=%u\n", i, j);
|
|
}
|
|
}
|
|
}
|
|
|
|
case STEP_COMPUTE_COMMON_PARMS:
|
|
/*
|
|
* STEP 3: Compute a common set of timing parameters
|
|
* suitable for all of the DIMMs on each memory controller
|
|
*/
|
|
for (i = 0; i < CONFIG_NUM_DDR_CONTROLLERS; i++) {
|
|
debug("Computing lowest common DIMM"
|
|
" parameters for memctl=%u\n", i);
|
|
compute_lowest_common_dimm_parameters(
|
|
pinfo->dimm_params[i],
|
|
&timing_params[i],
|
|
CONFIG_DIMM_SLOTS_PER_CTLR);
|
|
}
|
|
|
|
case STEP_GATHER_OPTS:
|
|
/* STEP 4: Gather configuration requirements from user */
|
|
for (i = 0; i < CONFIG_NUM_DDR_CONTROLLERS; i++) {
|
|
debug("Reloading memory controller "
|
|
"configuration options for memctl=%u\n", i);
|
|
/*
|
|
* This "reloads" the memory controller options
|
|
* to defaults. If the user "edits" an option,
|
|
* next_step points to the step after this,
|
|
* which is currently STEP_ASSIGN_ADDRESSES.
|
|
*/
|
|
populate_memctl_options(
|
|
timing_params[i].all_DIMMs_registered,
|
|
&pinfo->memctl_opts[i],
|
|
pinfo->dimm_params[i], i);
|
|
}
|
|
|
|
case STEP_ASSIGN_ADDRESSES:
|
|
/* STEP 5: Assign addresses to chip selects */
|
|
step_assign_addresses(pinfo,
|
|
dbw_capacity_adjust,
|
|
&all_controllers_memctl_interleaving,
|
|
&all_controllers_rank_interleaving);
|
|
|
|
case STEP_COMPUTE_REGS:
|
|
/* STEP 6: compute controller register values */
|
|
debug("FSL Memory ctrl cg register computation\n");
|
|
for (i = 0; i < CONFIG_NUM_DDR_CONTROLLERS; i++) {
|
|
if (timing_params[i].ndimms_present == 0) {
|
|
memset(&ddr_reg[i], 0,
|
|
sizeof(fsl_ddr_cfg_regs_t));
|
|
continue;
|
|
}
|
|
|
|
compute_fsl_memctl_config_regs(
|
|
&pinfo->memctl_opts[i],
|
|
&ddr_reg[i], &timing_params[i],
|
|
pinfo->dimm_params[i],
|
|
dbw_capacity_adjust[i]);
|
|
}
|
|
|
|
default:
|
|
break;
|
|
}
|
|
|
|
/* Compute the total amount of memory. */
|
|
|
|
/*
|
|
* If bank interleaving but NOT memory controller interleaving
|
|
* CS_BNDS describe the quantity of memory on each memory
|
|
* controller, so the total is the sum across.
|
|
*/
|
|
if (!all_controllers_memctl_interleaving
|
|
&& all_controllers_rank_interleaving) {
|
|
total_mem = 0;
|
|
for (i = 0; i < CONFIG_NUM_DDR_CONTROLLERS; i++) {
|
|
total_mem += timing_params[i].total_mem;
|
|
}
|
|
|
|
} else {
|
|
/*
|
|
* Compute the amount of memory available just by
|
|
* looking for the highest valid CSn_BNDS value.
|
|
* This allows us to also experiment with using
|
|
* only CS0 when using dual-rank DIMMs.
|
|
*/
|
|
unsigned int max_end = 0;
|
|
|
|
for (i = 0; i < CONFIG_NUM_DDR_CONTROLLERS; i++) {
|
|
for (j = 0; j < CONFIG_CHIP_SELECTS_PER_CTRL; j++) {
|
|
fsl_ddr_cfg_regs_t *reg = &ddr_reg[i];
|
|
if (reg->cs[j].config & 0x80000000) {
|
|
unsigned int end;
|
|
end = reg->cs[j].bnds & 0xFFF;
|
|
if (end > max_end) {
|
|
max_end = end;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
#if !defined(CONFIG_PHYS_64BIT)
|
|
/* Check for 4G or more with a 32-bit phys_addr_t. Bad. */
|
|
if (max_end >= 0xff) {
|
|
printf("This U-Boot only supports < 4G of DDR\n");
|
|
printf("You could rebuild it with CONFIG_PHYS_64BIT\n");
|
|
return 0; /* Ensure DDR setup failure. */
|
|
}
|
|
#endif
|
|
|
|
total_mem = 1 + (((unsigned long long)max_end << 24ULL)
|
|
| 0xFFFFFFULL);
|
|
}
|
|
|
|
return total_mem;
|
|
}
|
|
|
|
/*
|
|
* fsl_ddr_sdram() -- this is the main function to be called by
|
|
* initdram() in the board file.
|
|
*
|
|
* It returns amount of memory configured in bytes.
|
|
*/
|
|
phys_size_t fsl_ddr_sdram(void)
|
|
{
|
|
unsigned int i;
|
|
unsigned int memctl_interleaved;
|
|
phys_size_t total_memory;
|
|
fsl_ddr_info_t info;
|
|
|
|
/* Reset info structure. */
|
|
memset(&info, 0, sizeof(fsl_ddr_info_t));
|
|
|
|
/* Compute it once normally. */
|
|
total_memory = fsl_ddr_compute(&info, STEP_GET_SPD);
|
|
|
|
/* Check for memory controller interleaving. */
|
|
memctl_interleaved = 0;
|
|
for (i = 0; i < CONFIG_NUM_DDR_CONTROLLERS; i++) {
|
|
memctl_interleaved +=
|
|
info.memctl_opts[i].memctl_interleaving;
|
|
}
|
|
|
|
if (memctl_interleaved) {
|
|
if (memctl_interleaved == CONFIG_NUM_DDR_CONTROLLERS) {
|
|
debug("memctl interleaving\n");
|
|
/*
|
|
* Change the meaning of memctl_interleaved
|
|
* to be "boolean".
|
|
*/
|
|
memctl_interleaved = 1;
|
|
} else {
|
|
printf("Error: memctl interleaving not "
|
|
"properly configured on all controllers\n");
|
|
while (1);
|
|
}
|
|
}
|
|
|
|
/* Program configuration registers. */
|
|
for (i = 0; i < CONFIG_NUM_DDR_CONTROLLERS; i++) {
|
|
debug("Programming controller %u\n", i);
|
|
if (info.common_timing_params[i].ndimms_present == 0) {
|
|
debug("No dimms present on controller %u; "
|
|
"skipping programming\n", i);
|
|
continue;
|
|
}
|
|
|
|
fsl_ddr_set_memctl_regs(&(info.fsl_ddr_config_reg[i]), i);
|
|
}
|
|
|
|
if (memctl_interleaved) {
|
|
const unsigned int ctrl_num = 0;
|
|
|
|
/* Only set LAWBAR1 if memory controller interleaving is on. */
|
|
fsl_ddr_set_lawbar(&info.common_timing_params[0],
|
|
memctl_interleaved, ctrl_num);
|
|
} else {
|
|
/*
|
|
* Memory controller interleaving is NOT on;
|
|
* set each lawbar individually.
|
|
*/
|
|
for (i = 0; i < CONFIG_NUM_DDR_CONTROLLERS; i++) {
|
|
fsl_ddr_set_lawbar(&info.common_timing_params[i],
|
|
0, i);
|
|
}
|
|
}
|
|
|
|
debug("total_memory = %llu\n", (u64)total_memory);
|
|
|
|
return total_memory;
|
|
}
|