mirror of
https://github.com/AsahiLinux/u-boot
synced 2024-11-24 21:54:01 +00:00
2a1812de20
env_get can return NULL if it fails to find the variable. Check its result before using it. Fixes:6d9764c2a8
("dm: test: Add a new test case against dm eth codes for NULL pointer access") Fixes:df33fd2889
("test: eth: Add test for ethernet addresses") Signed-off-by: Sean Anderson <seanga2@gmail.com>
705 lines
19 KiB
C
705 lines
19 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* Copyright (c) 2015 National Instruments
|
|
*
|
|
* (C) Copyright 2015
|
|
* Joe Hershberger <joe.hershberger@ni.com>
|
|
*/
|
|
|
|
#include <common.h>
|
|
#include <dm.h>
|
|
#include <env.h>
|
|
#include <fdtdec.h>
|
|
#include <log.h>
|
|
#include <malloc.h>
|
|
#include <net.h>
|
|
#include <net6.h>
|
|
#include <asm/eth.h>
|
|
#include <dm/test.h>
|
|
#include <dm/device-internal.h>
|
|
#include <dm/uclass-internal.h>
|
|
#include <test/test.h>
|
|
#include <test/ut.h>
|
|
#include <ndisc.h>
|
|
|
|
#define DM_TEST_ETH_NUM 4
|
|
|
|
#if IS_ENABLED(CONFIG_IPV6)
|
|
static int dm_test_string_to_ip6(struct unit_test_state *uts)
|
|
{
|
|
char *str;
|
|
struct test_ip6_pair {
|
|
char *string_addr;
|
|
struct in6_addr ip6_addr;
|
|
};
|
|
|
|
struct in6_addr ip6 = {0};
|
|
|
|
/* Correct statements */
|
|
struct test_ip6_pair test_suite[] = {
|
|
{"2001:db8::0:1234:1", {.s6_addr32[0] = 0xb80d0120,
|
|
.s6_addr32[1] = 0x00000000,
|
|
.s6_addr32[2] = 0x00000000,
|
|
.s6_addr32[3] = 0x01003412}},
|
|
{"2001:0db8:0000:0000:0000:0000:1234:0001",
|
|
{.s6_addr32[0] = 0xb80d0120,
|
|
.s6_addr32[1] = 0x00000000,
|
|
.s6_addr32[2] = 0x00000000,
|
|
.s6_addr32[3] = 0x01003412}},
|
|
{"::1", {.s6_addr32[0] = 0x00000000,
|
|
.s6_addr32[1] = 0x00000000,
|
|
.s6_addr32[2] = 0x00000000,
|
|
.s6_addr32[3] = 0x01000000}},
|
|
{"::ffff:192.168.1.1", {.s6_addr32[0] = 0x00000000,
|
|
.s6_addr32[1] = 0x00000000,
|
|
.s6_addr32[2] = 0xffff0000,
|
|
.s6_addr32[3] = 0x0101a8c0}},
|
|
};
|
|
|
|
for (int i = 0; i < ARRAY_SIZE(test_suite); ++i) {
|
|
ut_assertok(string_to_ip6(test_suite[i].string_addr,
|
|
strlen(test_suite[i].string_addr), &ip6));
|
|
ut_asserteq_mem(&ip6, &test_suite[i].ip6_addr,
|
|
sizeof(struct in6_addr));
|
|
}
|
|
|
|
/* Incorrect statements */
|
|
str = "hello:world";
|
|
ut_assertok(!string_to_ip6(str, strlen(str), &ip6));
|
|
str = "2001:db8::0::0";
|
|
ut_assertok(!string_to_ip6(str, strlen(str), &ip6));
|
|
str = "2001:db8:192.168.1.1::1";
|
|
ut_assertok(!string_to_ip6(str, strlen(str), &ip6));
|
|
str = "192.168.1.1";
|
|
ut_assertok(!string_to_ip6(str, strlen(str), &ip6));
|
|
|
|
return 0;
|
|
}
|
|
DM_TEST(dm_test_string_to_ip6, 0);
|
|
|
|
static int dm_test_csum_ipv6_magic(struct unit_test_state *uts)
|
|
{
|
|
unsigned short csum = 0xbeef;
|
|
/* Predefined correct parameters */
|
|
unsigned short correct_csum = 0xd8ac;
|
|
struct in6_addr saddr = {.s6_addr32[0] = 0x000080fe,
|
|
.s6_addr32[1] = 0x00000000,
|
|
.s6_addr32[2] = 0xffe9f242,
|
|
.s6_addr32[3] = 0xe8f66dfe};
|
|
struct in6_addr daddr = {.s6_addr32[0] = 0x000080fe,
|
|
.s6_addr32[1] = 0x00000000,
|
|
.s6_addr32[2] = 0xffd5b372,
|
|
.s6_addr32[3] = 0x3ef692fe};
|
|
u16 len = 1460;
|
|
unsigned short proto = 17;
|
|
unsigned int head_csum = 0x91f0;
|
|
|
|
csum = csum_ipv6_magic(&saddr, &daddr, len, proto, head_csum);
|
|
ut_asserteq(csum, correct_csum);
|
|
|
|
/* Broke a parameter */
|
|
proto--;
|
|
csum = csum_ipv6_magic(&saddr, &daddr, len, proto, head_csum);
|
|
ut_assert(csum != correct_csum);
|
|
|
|
return 0;
|
|
}
|
|
DM_TEST(dm_test_csum_ipv6_magic, 0);
|
|
|
|
static int dm_test_ip6_addr_in_subnet(struct unit_test_state *uts)
|
|
{
|
|
struct in6_addr our = {.s6_addr32[0] = 0x000080fe,
|
|
.s6_addr32[1] = 0x00000000,
|
|
.s6_addr32[2] = 0xffe9f242,
|
|
.s6_addr32[3] = 0xe8f66dfe};
|
|
struct in6_addr neigh1 = {.s6_addr32[0] = 0x000080fe,
|
|
.s6_addr32[1] = 0x00000000,
|
|
.s6_addr32[2] = 0xffd5b372,
|
|
.s6_addr32[3] = 0x3ef692fe};
|
|
struct in6_addr neigh2 = {.s6_addr32[0] = 0x60480120,
|
|
.s6_addr32[1] = 0x00006048,
|
|
.s6_addr32[2] = 0x00000000,
|
|
.s6_addr32[3] = 0x00008888};
|
|
|
|
/* in */
|
|
ut_assert(ip6_addr_in_subnet(&our, &neigh1, 64));
|
|
/* outside */
|
|
ut_assert(!ip6_addr_in_subnet(&our, &neigh2, 64));
|
|
ut_assert(!ip6_addr_in_subnet(&our, &neigh1, 128));
|
|
|
|
return 0;
|
|
}
|
|
DM_TEST(dm_test_ip6_addr_in_subnet, 0);
|
|
|
|
static int dm_test_ip6_make_snma(struct unit_test_state *uts)
|
|
{
|
|
struct in6_addr mult = {0};
|
|
struct in6_addr correct_addr = {
|
|
.s6_addr32[0] = 0x000002ff,
|
|
.s6_addr32[1] = 0x00000000,
|
|
.s6_addr32[2] = 0x01000000,
|
|
.s6_addr32[3] = 0xe8f66dff};
|
|
struct in6_addr addr = { .s6_addr32[0] = 0x000080fe,
|
|
.s6_addr32[1] = 0x00000000,
|
|
.s6_addr32[2] = 0xffe9f242,
|
|
.s6_addr32[3] = 0xe8f66dfe};
|
|
|
|
ip6_make_snma(&mult, &addr);
|
|
ut_asserteq_mem(&mult, &correct_addr, sizeof(struct in6_addr));
|
|
|
|
return 0;
|
|
}
|
|
DM_TEST(dm_test_ip6_make_snma, 0);
|
|
|
|
static int dm_test_ip6_make_lladdr(struct unit_test_state *uts)
|
|
{
|
|
struct in6_addr generated_lladdr = {0};
|
|
struct in6_addr correct_lladdr = {
|
|
.s6_addr32[0] = 0x000080fe,
|
|
.s6_addr32[1] = 0x00000000,
|
|
.s6_addr32[2] = 0xffabf33a,
|
|
.s6_addr32[3] = 0xfbb352fe};
|
|
const unsigned char mac[6] = {0x38, 0xf3, 0xab, 0x52, 0xb3, 0xfb};
|
|
|
|
ip6_make_lladdr(&generated_lladdr, mac);
|
|
ut_asserteq_mem(&generated_lladdr, &correct_lladdr,
|
|
sizeof(struct in6_addr));
|
|
|
|
return 0;
|
|
}
|
|
DM_TEST(dm_test_ip6_make_lladdr, UT_TESTF_SCAN_FDT);
|
|
#endif
|
|
|
|
static int dm_test_eth(struct unit_test_state *uts)
|
|
{
|
|
net_ping_ip = string_to_ip("1.1.2.2");
|
|
|
|
env_set("ethact", "eth@10002000");
|
|
ut_assertok(net_loop(PING));
|
|
ut_asserteq_str("eth@10002000", env_get("ethact"));
|
|
|
|
env_set("ethact", "eth@10003000");
|
|
ut_assertok(net_loop(PING));
|
|
ut_asserteq_str("eth@10003000", env_get("ethact"));
|
|
|
|
env_set("ethact", "eth@10004000");
|
|
ut_assertok(net_loop(PING));
|
|
ut_asserteq_str("eth@10004000", env_get("ethact"));
|
|
|
|
return 0;
|
|
}
|
|
DM_TEST(dm_test_eth, UT_TESTF_SCAN_FDT);
|
|
|
|
static int dm_test_eth_alias(struct unit_test_state *uts)
|
|
{
|
|
net_ping_ip = string_to_ip("1.1.2.2");
|
|
env_set("ethact", "eth0");
|
|
ut_assertok(net_loop(PING));
|
|
ut_asserteq_str("eth@10002000", env_get("ethact"));
|
|
|
|
env_set("ethact", "eth6");
|
|
ut_assertok(net_loop(PING));
|
|
ut_asserteq_str("eth@10004000", env_get("ethact"));
|
|
|
|
/* Expected to fail since eth1 is not defined in the device tree */
|
|
env_set("ethact", "eth1");
|
|
ut_assertok(net_loop(PING));
|
|
ut_asserteq_str("eth@10002000", env_get("ethact"));
|
|
|
|
env_set("ethact", "eth5");
|
|
ut_assertok(net_loop(PING));
|
|
ut_asserteq_str("eth@10003000", env_get("ethact"));
|
|
|
|
return 0;
|
|
}
|
|
DM_TEST(dm_test_eth_alias, UT_TESTF_SCAN_FDT);
|
|
|
|
static int dm_test_eth_prime(struct unit_test_state *uts)
|
|
{
|
|
net_ping_ip = string_to_ip("1.1.2.2");
|
|
|
|
/* Expected to be "eth@10003000" because of ethprime variable */
|
|
env_set("ethact", NULL);
|
|
env_set("ethprime", "eth5");
|
|
ut_assertok(net_loop(PING));
|
|
ut_asserteq_str("eth@10003000", env_get("ethact"));
|
|
|
|
/* Expected to be "eth@10002000" because it is first */
|
|
env_set("ethact", NULL);
|
|
env_set("ethprime", NULL);
|
|
ut_assertok(net_loop(PING));
|
|
ut_asserteq_str("eth@10002000", env_get("ethact"));
|
|
|
|
return 0;
|
|
}
|
|
DM_TEST(dm_test_eth_prime, UT_TESTF_SCAN_FDT);
|
|
|
|
/**
|
|
* This test case is trying to test the following scenario:
|
|
* - All ethernet devices are not probed
|
|
* - "ethaddr" for all ethernet devices are not set
|
|
* - "ethact" is set to a valid ethernet device name
|
|
*
|
|
* With Sandbox default test configuration, all ethernet devices are
|
|
* probed after power-up, so we have to manually create such scenario:
|
|
* - Remove all ethernet devices
|
|
* - Remove all "ethaddr" environment variables
|
|
* - Set "ethact" to the first ethernet device
|
|
*
|
|
* Do a ping test to see if anything goes wrong.
|
|
*/
|
|
static int dm_test_eth_act(struct unit_test_state *uts)
|
|
{
|
|
struct udevice *dev[DM_TEST_ETH_NUM];
|
|
const char *ethname[DM_TEST_ETH_NUM] = {"eth@10002000", "eth@10003000",
|
|
"sbe5", "eth@10004000"};
|
|
const char *addrname[DM_TEST_ETH_NUM] = {"ethaddr", "eth5addr",
|
|
"eth3addr", "eth6addr"};
|
|
char ethaddr[DM_TEST_ETH_NUM][18];
|
|
int i;
|
|
|
|
memset(ethaddr, '\0', sizeof(ethaddr));
|
|
net_ping_ip = string_to_ip("1.1.2.2");
|
|
|
|
/* Prepare the test scenario */
|
|
for (i = 0; i < DM_TEST_ETH_NUM; i++) {
|
|
char *addr;
|
|
|
|
ut_assertok(uclass_find_device_by_name(UCLASS_ETH,
|
|
ethname[i], &dev[i]));
|
|
ut_assertok(device_remove(dev[i], DM_REMOVE_NORMAL));
|
|
|
|
/* Invalidate MAC address */
|
|
addr = env_get(addrname[i]);
|
|
ut_assertnonnull(addr);
|
|
strncpy(ethaddr[i], addr, 17);
|
|
/* Must disable access protection for ethaddr before clearing */
|
|
env_set(".flags", addrname[i]);
|
|
env_set(addrname[i], NULL);
|
|
}
|
|
|
|
/* Set ethact to "eth@10002000" */
|
|
env_set("ethact", ethname[0]);
|
|
|
|
/* Segment fault might happen if something is wrong */
|
|
ut_asserteq(-ENODEV, net_loop(PING));
|
|
|
|
for (i = 0; i < DM_TEST_ETH_NUM; i++) {
|
|
/* Restore the env */
|
|
env_set(".flags", addrname[i]);
|
|
env_set(addrname[i], ethaddr[i]);
|
|
|
|
/* Probe the device again */
|
|
ut_assertok(device_probe(dev[i]));
|
|
}
|
|
env_set(".flags", NULL);
|
|
env_set("ethact", NULL);
|
|
|
|
return 0;
|
|
}
|
|
DM_TEST(dm_test_eth_act, UT_TESTF_SCAN_FDT);
|
|
|
|
/* Ensure that all addresses are loaded properly */
|
|
static int dm_test_ethaddr(struct unit_test_state *uts)
|
|
{
|
|
static const char *const addr[] = {
|
|
"02:00:11:22:33:44",
|
|
"02:00:11:22:33:48", /* dsa slave */
|
|
"02:00:11:22:33:45",
|
|
"02:00:11:22:33:48", /* dsa master */
|
|
"02:00:11:22:33:46",
|
|
"02:00:11:22:33:47",
|
|
"02:00:11:22:33:48", /* dsa slave */
|
|
"02:00:11:22:33:49",
|
|
};
|
|
int i;
|
|
|
|
for (i = 0; i < ARRAY_SIZE(addr); i++) {
|
|
char addrname[10];
|
|
char *env_addr;
|
|
|
|
if (i)
|
|
snprintf(addrname, sizeof(addrname), "eth%daddr", i + 1);
|
|
else
|
|
strcpy(addrname, "ethaddr");
|
|
|
|
env_addr = env_get(addrname);
|
|
ut_assertnonnull(env_addr);
|
|
ut_asserteq_str(addr[i], env_addr);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
DM_TEST(dm_test_ethaddr, UT_TESTF_SCAN_FDT);
|
|
|
|
/* The asserts include a return on fail; cleanup in the caller */
|
|
static int _dm_test_eth_rotate1(struct unit_test_state *uts)
|
|
{
|
|
/* Make sure that the default is to rotate to the next interface */
|
|
env_set("ethact", "eth@10004000");
|
|
ut_assertok(net_loop(PING));
|
|
ut_asserteq_str("eth@10002000", env_get("ethact"));
|
|
|
|
/* If ethrotate is no, then we should fail on a bad MAC */
|
|
env_set("ethact", "eth@10004000");
|
|
env_set("ethrotate", "no");
|
|
ut_asserteq(-EINVAL, net_loop(PING));
|
|
ut_asserteq_str("eth@10004000", env_get("ethact"));
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int _dm_test_eth_rotate2(struct unit_test_state *uts)
|
|
{
|
|
/* Make sure we can skip invalid devices */
|
|
env_set("ethact", "eth@10004000");
|
|
ut_assertok(net_loop(PING));
|
|
ut_asserteq_str("eth@10004000", env_get("ethact"));
|
|
|
|
/* Make sure we can handle device name which is not eth# */
|
|
env_set("ethact", "sbe5");
|
|
ut_assertok(net_loop(PING));
|
|
ut_asserteq_str("sbe5", env_get("ethact"));
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int dm_test_eth_rotate(struct unit_test_state *uts)
|
|
{
|
|
char ethaddr[18];
|
|
int retval;
|
|
|
|
/* Set target IP to mock ping */
|
|
net_ping_ip = string_to_ip("1.1.2.2");
|
|
|
|
/* Invalidate eth1's MAC address */
|
|
memset(ethaddr, '\0', sizeof(ethaddr));
|
|
strncpy(ethaddr, env_get("eth6addr"), 17);
|
|
/* Must disable access protection for eth6addr before clearing */
|
|
env_set(".flags", "eth6addr");
|
|
env_set("eth6addr", NULL);
|
|
|
|
retval = _dm_test_eth_rotate1(uts);
|
|
|
|
/* Restore the env */
|
|
env_set("eth6addr", ethaddr);
|
|
env_set("ethrotate", NULL);
|
|
|
|
if (!retval) {
|
|
/* Invalidate eth0's MAC address */
|
|
strncpy(ethaddr, env_get("ethaddr"), 17);
|
|
/* Must disable access protection for ethaddr before clearing */
|
|
env_set(".flags", "ethaddr");
|
|
env_set("ethaddr", NULL);
|
|
|
|
retval = _dm_test_eth_rotate2(uts);
|
|
|
|
/* Restore the env */
|
|
env_set("ethaddr", ethaddr);
|
|
}
|
|
/* Restore the env */
|
|
env_set(".flags", NULL);
|
|
|
|
return retval;
|
|
}
|
|
DM_TEST(dm_test_eth_rotate, UT_TESTF_SCAN_FDT);
|
|
|
|
/* The asserts include a return on fail; cleanup in the caller */
|
|
static int _dm_test_net_retry(struct unit_test_state *uts)
|
|
{
|
|
/*
|
|
* eth1 is disabled and netretry is yes, so the ping should succeed and
|
|
* the active device should be eth0
|
|
*/
|
|
sandbox_eth_disable_response(1, true);
|
|
env_set("ethact", "lan1");
|
|
env_set("netretry", "yes");
|
|
sandbox_eth_skip_timeout();
|
|
ut_assertok(net_loop(PING));
|
|
ut_asserteq_str("eth@10002000", env_get("ethact"));
|
|
|
|
/*
|
|
* eth1 is disabled and netretry is no, so the ping should fail and the
|
|
* active device should be eth1
|
|
*/
|
|
env_set("ethact", "lan1");
|
|
env_set("netretry", "no");
|
|
sandbox_eth_skip_timeout();
|
|
ut_asserteq(-ENONET, net_loop(PING));
|
|
ut_asserteq_str("lan1", env_get("ethact"));
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int dm_test_net_retry(struct unit_test_state *uts)
|
|
{
|
|
int retval;
|
|
|
|
net_ping_ip = string_to_ip("1.1.2.2");
|
|
|
|
retval = _dm_test_net_retry(uts);
|
|
|
|
/* Restore the env */
|
|
env_set("netretry", NULL);
|
|
sandbox_eth_disable_response(1, false);
|
|
|
|
return retval;
|
|
}
|
|
DM_TEST(dm_test_net_retry, UT_TESTF_SCAN_FDT);
|
|
|
|
static int sb_check_arp_reply(struct udevice *dev, void *packet,
|
|
unsigned int len)
|
|
{
|
|
struct eth_sandbox_priv *priv = dev_get_priv(dev);
|
|
struct ethernet_hdr *eth = packet;
|
|
struct arp_hdr *arp;
|
|
/* Used by all of the ut_assert macros */
|
|
struct unit_test_state *uts = priv->priv;
|
|
|
|
if (ntohs(eth->et_protlen) != PROT_ARP)
|
|
return 0;
|
|
|
|
arp = packet + ETHER_HDR_SIZE;
|
|
|
|
if (ntohs(arp->ar_op) != ARPOP_REPLY)
|
|
return 0;
|
|
|
|
/* This test would be worthless if we are not waiting */
|
|
ut_assert(arp_is_waiting());
|
|
|
|
/* Validate response */
|
|
ut_asserteq_mem(eth->et_src, net_ethaddr, ARP_HLEN);
|
|
ut_asserteq_mem(eth->et_dest, priv->fake_host_hwaddr, ARP_HLEN);
|
|
ut_assert(eth->et_protlen == htons(PROT_ARP));
|
|
|
|
ut_assert(arp->ar_hrd == htons(ARP_ETHER));
|
|
ut_assert(arp->ar_pro == htons(PROT_IP));
|
|
ut_assert(arp->ar_hln == ARP_HLEN);
|
|
ut_assert(arp->ar_pln == ARP_PLEN);
|
|
ut_asserteq_mem(&arp->ar_sha, net_ethaddr, ARP_HLEN);
|
|
ut_assert(net_read_ip(&arp->ar_spa).s_addr == net_ip.s_addr);
|
|
ut_asserteq_mem(&arp->ar_tha, priv->fake_host_hwaddr, ARP_HLEN);
|
|
ut_assert(net_read_ip(&arp->ar_tpa).s_addr ==
|
|
string_to_ip("1.1.2.4").s_addr);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int sb_with_async_arp_handler(struct udevice *dev, void *packet,
|
|
unsigned int len)
|
|
{
|
|
struct eth_sandbox_priv *priv = dev_get_priv(dev);
|
|
struct ethernet_hdr *eth = packet;
|
|
struct arp_hdr *arp = packet + ETHER_HDR_SIZE;
|
|
int ret;
|
|
|
|
/*
|
|
* If we are about to generate a reply to ARP, first inject a request
|
|
* from another host
|
|
*/
|
|
if (ntohs(eth->et_protlen) == PROT_ARP &&
|
|
ntohs(arp->ar_op) == ARPOP_REQUEST) {
|
|
/* Make sure sandbox_eth_recv_arp_req() knows who is asking */
|
|
priv->fake_host_ipaddr = string_to_ip("1.1.2.4");
|
|
|
|
ret = sandbox_eth_recv_arp_req(dev);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
|
|
sandbox_eth_arp_req_to_reply(dev, packet, len);
|
|
sandbox_eth_ping_req_to_reply(dev, packet, len);
|
|
|
|
return sb_check_arp_reply(dev, packet, len);
|
|
}
|
|
|
|
static int dm_test_eth_async_arp_reply(struct unit_test_state *uts)
|
|
{
|
|
net_ping_ip = string_to_ip("1.1.2.2");
|
|
|
|
sandbox_eth_set_tx_handler(0, sb_with_async_arp_handler);
|
|
/* Used by all of the ut_assert macros in the tx_handler */
|
|
sandbox_eth_set_priv(0, uts);
|
|
|
|
env_set("ethact", "eth@10002000");
|
|
ut_assertok(net_loop(PING));
|
|
ut_asserteq_str("eth@10002000", env_get("ethact"));
|
|
|
|
sandbox_eth_set_tx_handler(0, NULL);
|
|
|
|
return 0;
|
|
}
|
|
|
|
DM_TEST(dm_test_eth_async_arp_reply, UT_TESTF_SCAN_FDT);
|
|
|
|
static int sb_check_ping_reply(struct udevice *dev, void *packet,
|
|
unsigned int len)
|
|
{
|
|
struct eth_sandbox_priv *priv = dev_get_priv(dev);
|
|
struct ethernet_hdr *eth = packet;
|
|
struct ip_udp_hdr *ip;
|
|
struct icmp_hdr *icmp;
|
|
/* Used by all of the ut_assert macros */
|
|
struct unit_test_state *uts = priv->priv;
|
|
|
|
if (ntohs(eth->et_protlen) != PROT_IP)
|
|
return 0;
|
|
|
|
ip = packet + ETHER_HDR_SIZE;
|
|
|
|
if (ip->ip_p != IPPROTO_ICMP)
|
|
return 0;
|
|
|
|
icmp = (struct icmp_hdr *)&ip->udp_src;
|
|
|
|
if (icmp->type != ICMP_ECHO_REPLY)
|
|
return 0;
|
|
|
|
/* This test would be worthless if we are not waiting */
|
|
ut_assert(arp_is_waiting());
|
|
|
|
/* Validate response */
|
|
ut_asserteq_mem(eth->et_src, net_ethaddr, ARP_HLEN);
|
|
ut_asserteq_mem(eth->et_dest, priv->fake_host_hwaddr, ARP_HLEN);
|
|
ut_assert(eth->et_protlen == htons(PROT_IP));
|
|
|
|
ut_assert(net_read_ip(&ip->ip_src).s_addr == net_ip.s_addr);
|
|
ut_assert(net_read_ip(&ip->ip_dst).s_addr ==
|
|
string_to_ip("1.1.2.4").s_addr);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int sb_with_async_ping_handler(struct udevice *dev, void *packet,
|
|
unsigned int len)
|
|
{
|
|
struct eth_sandbox_priv *priv = dev_get_priv(dev);
|
|
struct ethernet_hdr *eth = packet;
|
|
struct arp_hdr *arp = packet + ETHER_HDR_SIZE;
|
|
int ret;
|
|
|
|
/*
|
|
* If we are about to generate a reply to ARP, first inject a request
|
|
* from another host
|
|
*/
|
|
if (ntohs(eth->et_protlen) == PROT_ARP &&
|
|
ntohs(arp->ar_op) == ARPOP_REQUEST) {
|
|
/* Make sure sandbox_eth_recv_arp_req() knows who is asking */
|
|
priv->fake_host_ipaddr = string_to_ip("1.1.2.4");
|
|
|
|
ret = sandbox_eth_recv_ping_req(dev);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
|
|
sandbox_eth_arp_req_to_reply(dev, packet, len);
|
|
sandbox_eth_ping_req_to_reply(dev, packet, len);
|
|
|
|
return sb_check_ping_reply(dev, packet, len);
|
|
}
|
|
|
|
static int dm_test_eth_async_ping_reply(struct unit_test_state *uts)
|
|
{
|
|
net_ping_ip = string_to_ip("1.1.2.2");
|
|
|
|
sandbox_eth_set_tx_handler(0, sb_with_async_ping_handler);
|
|
/* Used by all of the ut_assert macros in the tx_handler */
|
|
sandbox_eth_set_priv(0, uts);
|
|
|
|
env_set("ethact", "eth@10002000");
|
|
ut_assertok(net_loop(PING));
|
|
ut_asserteq_str("eth@10002000", env_get("ethact"));
|
|
|
|
sandbox_eth_set_tx_handler(0, NULL);
|
|
|
|
return 0;
|
|
}
|
|
|
|
DM_TEST(dm_test_eth_async_ping_reply, UT_TESTF_SCAN_FDT);
|
|
|
|
#if IS_ENABLED(CONFIG_IPV6_ROUTER_DISCOVERY)
|
|
|
|
static u8 ip6_ra_buf[] = {0x60, 0xf, 0xc5, 0x4a, 0x0, 0x38, 0x3a, 0xff, 0xfe,
|
|
0x80, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x6, 0x85, 0xe6,
|
|
0x29, 0x77, 0xcb, 0xc8, 0x53, 0xff, 0x2, 0x0, 0x0,
|
|
0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0,
|
|
0x1, 0x86, 0x0, 0xdc, 0x90, 0x40, 0x80, 0x15, 0x18,
|
|
0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x3, 0x4,
|
|
0x40, 0xc0, 0x0, 0x0, 0x37, 0xdc, 0x0, 0x0, 0x37,
|
|
0x78, 0x0, 0x0, 0x0, 0x0, 0x20, 0x1, 0xca, 0xfe, 0xca,
|
|
0xfe, 0xca, 0xfe, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0,
|
|
0x0, 0x1, 0x1, 0x0, 0x15, 0x5d, 0xe2, 0x8a, 0x2};
|
|
|
|
static int dm_test_validate_ra(struct unit_test_state *uts)
|
|
{
|
|
struct ip6_hdr *ip6 = (struct ip6_hdr *)ip6_ra_buf;
|
|
struct icmp6hdr *icmp = (struct icmp6hdr *)(ip6 + 1);
|
|
__be16 temp = 0;
|
|
|
|
ut_assert(validate_ra(ip6) == true);
|
|
|
|
temp = ip6->payload_len;
|
|
ip6->payload_len = 15;
|
|
ut_assert(validate_ra(ip6) == false);
|
|
ip6->payload_len = temp;
|
|
|
|
temp = ip6->saddr.s6_addr16[0];
|
|
ip6->saddr.s6_addr16[0] = 0x2001;
|
|
ut_assert(validate_ra(ip6) == false);
|
|
ip6->saddr.s6_addr16[0] = temp;
|
|
|
|
temp = ip6->hop_limit;
|
|
ip6->hop_limit = 15;
|
|
ut_assert(validate_ra(ip6) == false);
|
|
ip6->hop_limit = temp;
|
|
|
|
temp = icmp->icmp6_code;
|
|
icmp->icmp6_code = 15;
|
|
ut_assert(validate_ra(ip6) == false);
|
|
icmp->icmp6_code = temp;
|
|
|
|
return 0;
|
|
}
|
|
|
|
DM_TEST(dm_test_validate_ra, 0);
|
|
|
|
static int dm_test_process_ra(struct unit_test_state *uts)
|
|
{
|
|
int len = sizeof(ip6_ra_buf);
|
|
struct ip6_hdr *ip6 = (struct ip6_hdr *)ip6_ra_buf;
|
|
struct icmp6hdr *icmp = (struct icmp6hdr *)(ip6 + 1);
|
|
struct ra_msg *msg = (struct ra_msg *)icmp;
|
|
unsigned char *option = msg->opt;
|
|
struct icmp6_ra_prefix_info *prefix =
|
|
(struct icmp6_ra_prefix_info *)option;
|
|
__be16 temp = 0;
|
|
unsigned char option_len = option[1];
|
|
|
|
ut_assert(process_ra(ip6, len) == 0);
|
|
|
|
temp = icmp->icmp6_rt_lifetime;
|
|
icmp->icmp6_rt_lifetime = 0;
|
|
ut_assert(process_ra(ip6, len) != 0);
|
|
icmp->icmp6_rt_lifetime = temp;
|
|
|
|
ut_assert(process_ra(ip6, 0) != 0);
|
|
|
|
option[1] = 0;
|
|
ut_assert(process_ra(ip6, len) != 0);
|
|
option[1] = option_len;
|
|
|
|
prefix->on_link = false;
|
|
ut_assert(process_ra(ip6, len) != 0);
|
|
prefix->on_link = true;
|
|
|
|
temp = prefix->prefix.s6_addr16[0];
|
|
prefix->prefix.s6_addr16[0] = 0x80fe;
|
|
ut_assert(process_ra(ip6, len) != 0);
|
|
prefix->prefix.s6_addr16[0] = temp;
|
|
|
|
return 0;
|
|
}
|
|
|
|
DM_TEST(dm_test_process_ra, 0);
|
|
|
|
#endif
|