u-boot/lib/zstd/decompress/huf_decompress.c
Brandon Maier 4b9b25d943 lib: zstd: update to latest Linux zstd 1.5.2
Update the zstd implementation to match Linux zstd 1.5.2 from commit
2aa14b1ab2.

This was motivated by running into decompression corruption issues when
trying to uncompress files compressed with newer versions of zstd. zstd
users also claim significantly improved decompression times with newer
zstd versions which is a side benefit.

Original zstd code was copied from Linux commit 2aa14b1ab2 which is a
custom-built implementation based on zstd 1.3.1. Linux switched to an
implementation that is a copy of the upstream zstd code in Linux commit
e0c1b49f5b, this results in a large code diff. However this should make
future updates easier along with other benefits[1].

This commit is a straight mirror of the Linux zstd code, except to:
- update a few #include that do not translate cleanly
  - linux/swab.h -> asm/byteorder.h
  - linux/limits.h -> linux/kernel.h
  - linux/module.h -> linux/compat.h
- remove assert() from debug.h so it doesn't conflict with u-boot's
  assert()
- strip out the compressor code as was done in the previous u-boot zstd
- update existing zstd users to the new Linux zstd API
- change the #define for MEM_STATIC to use INLINE_KEYWORD for codesize
- add a new KConfig option that sets zstd build options to minify code
  based on zstd's ZSTD_LIB_MINIFY[2].

These changes were tested by booting a zstd 1.5.2 compressed kernel inside a
FIT. And the squashfs changes by loading a file from zstd compressed squashfs
with sqfsload. buildman was used to compile test other boards and check for
binary bloat, as follows:

> $ buildman -b zstd2 --boards dh_imx6,m53menlo,mvebu_espressobin-88f3720,sandbox,sandbox64,stm32mp15_dhcom_basic,stm32mp15_dhcor_basic,turris_mox,turris_omnia -sS
> Summary of 6 commits for 9 boards (8 threads, 1 job per thread)
> 01: Merge branch '2023-01-10-platform-updates'
>        arm:  w+   m53menlo dh_imx6
> 02: lib: zstd: update to latest Linux zstd 1.5.2
>    aarch64: (for 2/2 boards) all -3186.0 rodata +920.0 text -4106.0
>        arm: (for 5/5 boards) all +1254.4 rodata +940.0 text +314.4
>    sandbox: (for 2/2 boards) all -4452.0 data -16.0 rodata +640.0 text -5076.0

[1] e0c1b49f5b
[2] f302ad8811/lib/libzstd.mk (L31)

Signed-off-by: Brandon Maier <brandon.maier@collins.com>
[trini: Set ret to -EINVAL for the error of "failed to detect
compressed" to fix warning, drop ZSTD_SRCSIZEHINT_MAX for non-Linux host
tool builds]
Signed-off-by: Tom Rini <trini@konsulko.com>
2023-01-18 19:04:17 -05:00

1740 lines
67 KiB
C

/* ******************************************************************
* huff0 huffman decoder,
* part of Finite State Entropy library
* Copyright (c) Yann Collet, Facebook, Inc.
*
* You can contact the author at :
* - FSE+HUF source repository : https://github.com/Cyan4973/FiniteStateEntropy
*
* This source code is licensed under both the BSD-style license (found in the
* LICENSE file in the root directory of this source tree) and the GPLv2 (found
* in the COPYING file in the root directory of this source tree).
* You may select, at your option, one of the above-listed licenses.
****************************************************************** */
/* **************************************************************
* Dependencies
****************************************************************/
#include "../common/zstd_deps.h" /* ZSTD_memcpy, ZSTD_memset */
#include "../common/compiler.h"
#include "../common/bitstream.h" /* BIT_* */
#include "../common/fse.h" /* to compress headers */
#define HUF_STATIC_LINKING_ONLY
#include "../common/huf.h"
#include "../common/error_private.h"
#include "../common/zstd_internal.h"
/* **************************************************************
* Constants
****************************************************************/
#define HUF_DECODER_FAST_TABLELOG 11
/* **************************************************************
* Macros
****************************************************************/
/* These two optional macros force the use one way or another of the two
* Huffman decompression implementations. You can't force in both directions
* at the same time.
*/
#if defined(HUF_FORCE_DECOMPRESS_X1) && \
defined(HUF_FORCE_DECOMPRESS_X2)
#error "Cannot force the use of the X1 and X2 decoders at the same time!"
#endif
#if ZSTD_ENABLE_ASM_X86_64_BMI2 && DYNAMIC_BMI2
# define HUF_ASM_X86_64_BMI2_ATTRS BMI2_TARGET_ATTRIBUTE
#else
# define HUF_ASM_X86_64_BMI2_ATTRS
#endif
#define HUF_EXTERN_C
#define HUF_ASM_DECL HUF_EXTERN_C
#if DYNAMIC_BMI2 || (ZSTD_ENABLE_ASM_X86_64_BMI2 && defined(__BMI2__))
# define HUF_NEED_BMI2_FUNCTION 1
#else
# define HUF_NEED_BMI2_FUNCTION 0
#endif
#if !(ZSTD_ENABLE_ASM_X86_64_BMI2 && defined(__BMI2__))
# define HUF_NEED_DEFAULT_FUNCTION 1
#else
# define HUF_NEED_DEFAULT_FUNCTION 0
#endif
/* **************************************************************
* Error Management
****************************************************************/
#define HUF_isError ERR_isError
/* **************************************************************
* Byte alignment for workSpace management
****************************************************************/
#define HUF_ALIGN(x, a) HUF_ALIGN_MASK((x), (a) - 1)
#define HUF_ALIGN_MASK(x, mask) (((x) + (mask)) & ~(mask))
/* **************************************************************
* BMI2 Variant Wrappers
****************************************************************/
#if DYNAMIC_BMI2
#define HUF_DGEN(fn) \
\
static size_t fn##_default( \
void* dst, size_t dstSize, \
const void* cSrc, size_t cSrcSize, \
const HUF_DTable* DTable) \
{ \
return fn##_body(dst, dstSize, cSrc, cSrcSize, DTable); \
} \
\
static BMI2_TARGET_ATTRIBUTE size_t fn##_bmi2( \
void* dst, size_t dstSize, \
const void* cSrc, size_t cSrcSize, \
const HUF_DTable* DTable) \
{ \
return fn##_body(dst, dstSize, cSrc, cSrcSize, DTable); \
} \
\
static size_t fn(void* dst, size_t dstSize, void const* cSrc, \
size_t cSrcSize, HUF_DTable const* DTable, int bmi2) \
{ \
if (bmi2) { \
return fn##_bmi2(dst, dstSize, cSrc, cSrcSize, DTable); \
} \
return fn##_default(dst, dstSize, cSrc, cSrcSize, DTable); \
}
#else
#define HUF_DGEN(fn) \
static size_t fn(void* dst, size_t dstSize, void const* cSrc, \
size_t cSrcSize, HUF_DTable const* DTable, int bmi2) \
{ \
(void)bmi2; \
return fn##_body(dst, dstSize, cSrc, cSrcSize, DTable); \
}
#endif
/*-***************************/
/* generic DTableDesc */
/*-***************************/
typedef struct { BYTE maxTableLog; BYTE tableType; BYTE tableLog; BYTE reserved; } DTableDesc;
static DTableDesc HUF_getDTableDesc(const HUF_DTable* table)
{
DTableDesc dtd;
ZSTD_memcpy(&dtd, table, sizeof(dtd));
return dtd;
}
#if ZSTD_ENABLE_ASM_X86_64_BMI2
static size_t HUF_initDStream(BYTE const* ip) {
BYTE const lastByte = ip[7];
size_t const bitsConsumed = lastByte ? 8 - BIT_highbit32(lastByte) : 0;
size_t const value = MEM_readLEST(ip) | 1;
assert(bitsConsumed <= 8);
return value << bitsConsumed;
}
typedef struct {
BYTE const* ip[4];
BYTE* op[4];
U64 bits[4];
void const* dt;
BYTE const* ilimit;
BYTE* oend;
BYTE const* iend[4];
} HUF_DecompressAsmArgs;
/*
* Initializes args for the asm decoding loop.
* @returns 0 on success
* 1 if the fallback implementation should be used.
* Or an error code on failure.
*/
static size_t HUF_DecompressAsmArgs_init(HUF_DecompressAsmArgs* args, void* dst, size_t dstSize, void const* src, size_t srcSize, const HUF_DTable* DTable)
{
void const* dt = DTable + 1;
U32 const dtLog = HUF_getDTableDesc(DTable).tableLog;
const BYTE* const ilimit = (const BYTE*)src + 6 + 8;
BYTE* const oend = (BYTE*)dst + dstSize;
/* The following condition is false on x32 platform,
* but HUF_asm is not compatible with this ABI */
if (!(MEM_isLittleEndian() && !MEM_32bits())) return 1;
/* strict minimum : jump table + 1 byte per stream */
if (srcSize < 10)
return ERROR(corruption_detected);
/* Must have at least 8 bytes per stream because we don't handle initializing smaller bit containers.
* If table log is not correct at this point, fallback to the old decoder.
* On small inputs we don't have enough data to trigger the fast loop, so use the old decoder.
*/
if (dtLog != HUF_DECODER_FAST_TABLELOG)
return 1;
/* Read the jump table. */
{
const BYTE* const istart = (const BYTE*)src;
size_t const length1 = MEM_readLE16(istart);
size_t const length2 = MEM_readLE16(istart+2);
size_t const length3 = MEM_readLE16(istart+4);
size_t const length4 = srcSize - (length1 + length2 + length3 + 6);
args->iend[0] = istart + 6; /* jumpTable */
args->iend[1] = args->iend[0] + length1;
args->iend[2] = args->iend[1] + length2;
args->iend[3] = args->iend[2] + length3;
/* HUF_initDStream() requires this, and this small of an input
* won't benefit from the ASM loop anyways.
* length1 must be >= 16 so that ip[0] >= ilimit before the loop
* starts.
*/
if (length1 < 16 || length2 < 8 || length3 < 8 || length4 < 8)
return 1;
if (length4 > srcSize) return ERROR(corruption_detected); /* overflow */
}
/* ip[] contains the position that is currently loaded into bits[]. */
args->ip[0] = args->iend[1] - sizeof(U64);
args->ip[1] = args->iend[2] - sizeof(U64);
args->ip[2] = args->iend[3] - sizeof(U64);
args->ip[3] = (BYTE const*)src + srcSize - sizeof(U64);
/* op[] contains the output pointers. */
args->op[0] = (BYTE*)dst;
args->op[1] = args->op[0] + (dstSize+3)/4;
args->op[2] = args->op[1] + (dstSize+3)/4;
args->op[3] = args->op[2] + (dstSize+3)/4;
/* No point to call the ASM loop for tiny outputs. */
if (args->op[3] >= oend)
return 1;
/* bits[] is the bit container.
* It is read from the MSB down to the LSB.
* It is shifted left as it is read, and zeros are
* shifted in. After the lowest valid bit a 1 is
* set, so that CountTrailingZeros(bits[]) can be used
* to count how many bits we've consumed.
*/
args->bits[0] = HUF_initDStream(args->ip[0]);
args->bits[1] = HUF_initDStream(args->ip[1]);
args->bits[2] = HUF_initDStream(args->ip[2]);
args->bits[3] = HUF_initDStream(args->ip[3]);
/* If ip[] >= ilimit, it is guaranteed to be safe to
* reload bits[]. It may be beyond its section, but is
* guaranteed to be valid (>= istart).
*/
args->ilimit = ilimit;
args->oend = oend;
args->dt = dt;
return 0;
}
static size_t HUF_initRemainingDStream(BIT_DStream_t* bit, HUF_DecompressAsmArgs const* args, int stream, BYTE* segmentEnd)
{
/* Validate that we haven't overwritten. */
if (args->op[stream] > segmentEnd)
return ERROR(corruption_detected);
/* Validate that we haven't read beyond iend[].
* Note that ip[] may be < iend[] because the MSB is
* the next bit to read, and we may have consumed 100%
* of the stream, so down to iend[i] - 8 is valid.
*/
if (args->ip[stream] < args->iend[stream] - 8)
return ERROR(corruption_detected);
/* Construct the BIT_DStream_t. */
bit->bitContainer = MEM_readLE64(args->ip[stream]);
bit->bitsConsumed = ZSTD_countTrailingZeros((size_t)args->bits[stream]);
bit->start = (const char*)args->iend[0];
bit->limitPtr = bit->start + sizeof(size_t);
bit->ptr = (const char*)args->ip[stream];
return 0;
}
#endif
#ifndef HUF_FORCE_DECOMPRESS_X2
/*-***************************/
/* single-symbol decoding */
/*-***************************/
typedef struct { BYTE nbBits; BYTE byte; } HUF_DEltX1; /* single-symbol decoding */
/*
* Packs 4 HUF_DEltX1 structs into a U64. This is used to lay down 4 entries at
* a time.
*/
static U64 HUF_DEltX1_set4(BYTE symbol, BYTE nbBits) {
U64 D4;
if (MEM_isLittleEndian()) {
D4 = (symbol << 8) + nbBits;
} else {
D4 = symbol + (nbBits << 8);
}
D4 *= 0x0001000100010001ULL;
return D4;
}
/*
* Increase the tableLog to targetTableLog and rescales the stats.
* If tableLog > targetTableLog this is a no-op.
* @returns New tableLog
*/
static U32 HUF_rescaleStats(BYTE* huffWeight, U32* rankVal, U32 nbSymbols, U32 tableLog, U32 targetTableLog)
{
if (tableLog > targetTableLog)
return tableLog;
if (tableLog < targetTableLog) {
U32 const scale = targetTableLog - tableLog;
U32 s;
/* Increase the weight for all non-zero probability symbols by scale. */
for (s = 0; s < nbSymbols; ++s) {
huffWeight[s] += (BYTE)((huffWeight[s] == 0) ? 0 : scale);
}
/* Update rankVal to reflect the new weights.
* All weights except 0 get moved to weight + scale.
* Weights [1, scale] are empty.
*/
for (s = targetTableLog; s > scale; --s) {
rankVal[s] = rankVal[s - scale];
}
for (s = scale; s > 0; --s) {
rankVal[s] = 0;
}
}
return targetTableLog;
}
typedef struct {
U32 rankVal[HUF_TABLELOG_ABSOLUTEMAX + 1];
U32 rankStart[HUF_TABLELOG_ABSOLUTEMAX + 1];
U32 statsWksp[HUF_READ_STATS_WORKSPACE_SIZE_U32];
BYTE symbols[HUF_SYMBOLVALUE_MAX + 1];
BYTE huffWeight[HUF_SYMBOLVALUE_MAX + 1];
} HUF_ReadDTableX1_Workspace;
size_t HUF_readDTableX1_wksp(HUF_DTable* DTable, const void* src, size_t srcSize, void* workSpace, size_t wkspSize)
{
return HUF_readDTableX1_wksp_bmi2(DTable, src, srcSize, workSpace, wkspSize, /* bmi2 */ 0);
}
size_t HUF_readDTableX1_wksp_bmi2(HUF_DTable* DTable, const void* src, size_t srcSize, void* workSpace, size_t wkspSize, int bmi2)
{
U32 tableLog = 0;
U32 nbSymbols = 0;
size_t iSize;
void* const dtPtr = DTable + 1;
HUF_DEltX1* const dt = (HUF_DEltX1*)dtPtr;
HUF_ReadDTableX1_Workspace* wksp = (HUF_ReadDTableX1_Workspace*)workSpace;
DEBUG_STATIC_ASSERT(HUF_DECOMPRESS_WORKSPACE_SIZE >= sizeof(*wksp));
if (sizeof(*wksp) > wkspSize) return ERROR(tableLog_tooLarge);
DEBUG_STATIC_ASSERT(sizeof(DTableDesc) == sizeof(HUF_DTable));
/* ZSTD_memset(huffWeight, 0, sizeof(huffWeight)); */ /* is not necessary, even though some analyzer complain ... */
iSize = HUF_readStats_wksp(wksp->huffWeight, HUF_SYMBOLVALUE_MAX + 1, wksp->rankVal, &nbSymbols, &tableLog, src, srcSize, wksp->statsWksp, sizeof(wksp->statsWksp), bmi2);
if (HUF_isError(iSize)) return iSize;
/* Table header */
{ DTableDesc dtd = HUF_getDTableDesc(DTable);
U32 const maxTableLog = dtd.maxTableLog + 1;
U32 const targetTableLog = MIN(maxTableLog, HUF_DECODER_FAST_TABLELOG);
tableLog = HUF_rescaleStats(wksp->huffWeight, wksp->rankVal, nbSymbols, tableLog, targetTableLog);
if (tableLog > (U32)(dtd.maxTableLog+1)) return ERROR(tableLog_tooLarge); /* DTable too small, Huffman tree cannot fit in */
dtd.tableType = 0;
dtd.tableLog = (BYTE)tableLog;
ZSTD_memcpy(DTable, &dtd, sizeof(dtd));
}
/* Compute symbols and rankStart given rankVal:
*
* rankVal already contains the number of values of each weight.
*
* symbols contains the symbols ordered by weight. First are the rankVal[0]
* weight 0 symbols, followed by the rankVal[1] weight 1 symbols, and so on.
* symbols[0] is filled (but unused) to avoid a branch.
*
* rankStart contains the offset where each rank belongs in the DTable.
* rankStart[0] is not filled because there are no entries in the table for
* weight 0.
*/
{
int n;
int nextRankStart = 0;
int const unroll = 4;
int const nLimit = (int)nbSymbols - unroll + 1;
for (n=0; n<(int)tableLog+1; n++) {
U32 const curr = nextRankStart;
nextRankStart += wksp->rankVal[n];
wksp->rankStart[n] = curr;
}
for (n=0; n < nLimit; n += unroll) {
int u;
for (u=0; u < unroll; ++u) {
size_t const w = wksp->huffWeight[n+u];
wksp->symbols[wksp->rankStart[w]++] = (BYTE)(n+u);
}
}
for (; n < (int)nbSymbols; ++n) {
size_t const w = wksp->huffWeight[n];
wksp->symbols[wksp->rankStart[w]++] = (BYTE)n;
}
}
/* fill DTable
* We fill all entries of each weight in order.
* That way length is a constant for each iteration of the outer loop.
* We can switch based on the length to a different inner loop which is
* optimized for that particular case.
*/
{
U32 w;
int symbol=wksp->rankVal[0];
int rankStart=0;
for (w=1; w<tableLog+1; ++w) {
int const symbolCount = wksp->rankVal[w];
int const length = (1 << w) >> 1;
int uStart = rankStart;
BYTE const nbBits = (BYTE)(tableLog + 1 - w);
int s;
int u;
switch (length) {
case 1:
for (s=0; s<symbolCount; ++s) {
HUF_DEltX1 D;
D.byte = wksp->symbols[symbol + s];
D.nbBits = nbBits;
dt[uStart] = D;
uStart += 1;
}
break;
case 2:
for (s=0; s<symbolCount; ++s) {
HUF_DEltX1 D;
D.byte = wksp->symbols[symbol + s];
D.nbBits = nbBits;
dt[uStart+0] = D;
dt[uStart+1] = D;
uStart += 2;
}
break;
case 4:
for (s=0; s<symbolCount; ++s) {
U64 const D4 = HUF_DEltX1_set4(wksp->symbols[symbol + s], nbBits);
MEM_write64(dt + uStart, D4);
uStart += 4;
}
break;
case 8:
for (s=0; s<symbolCount; ++s) {
U64 const D4 = HUF_DEltX1_set4(wksp->symbols[symbol + s], nbBits);
MEM_write64(dt + uStart, D4);
MEM_write64(dt + uStart + 4, D4);
uStart += 8;
}
break;
default:
for (s=0; s<symbolCount; ++s) {
U64 const D4 = HUF_DEltX1_set4(wksp->symbols[symbol + s], nbBits);
for (u=0; u < length; u += 16) {
MEM_write64(dt + uStart + u + 0, D4);
MEM_write64(dt + uStart + u + 4, D4);
MEM_write64(dt + uStart + u + 8, D4);
MEM_write64(dt + uStart + u + 12, D4);
}
assert(u == length);
uStart += length;
}
break;
}
symbol += symbolCount;
rankStart += symbolCount * length;
}
}
return iSize;
}
FORCE_INLINE_TEMPLATE BYTE
HUF_decodeSymbolX1(BIT_DStream_t* Dstream, const HUF_DEltX1* dt, const U32 dtLog)
{
size_t const val = BIT_lookBitsFast(Dstream, dtLog); /* note : dtLog >= 1 */
BYTE const c = dt[val].byte;
BIT_skipBits(Dstream, dt[val].nbBits);
return c;
}
#define HUF_DECODE_SYMBOLX1_0(ptr, DStreamPtr) \
*ptr++ = HUF_decodeSymbolX1(DStreamPtr, dt, dtLog)
#define HUF_DECODE_SYMBOLX1_1(ptr, DStreamPtr) \
if (MEM_64bits() || (HUF_TABLELOG_MAX<=12)) \
HUF_DECODE_SYMBOLX1_0(ptr, DStreamPtr)
#define HUF_DECODE_SYMBOLX1_2(ptr, DStreamPtr) \
if (MEM_64bits()) \
HUF_DECODE_SYMBOLX1_0(ptr, DStreamPtr)
HINT_INLINE size_t
HUF_decodeStreamX1(BYTE* p, BIT_DStream_t* const bitDPtr, BYTE* const pEnd, const HUF_DEltX1* const dt, const U32 dtLog)
{
BYTE* const pStart = p;
/* up to 4 symbols at a time */
if ((pEnd - p) > 3) {
while ((BIT_reloadDStream(bitDPtr) == BIT_DStream_unfinished) & (p < pEnd-3)) {
HUF_DECODE_SYMBOLX1_2(p, bitDPtr);
HUF_DECODE_SYMBOLX1_1(p, bitDPtr);
HUF_DECODE_SYMBOLX1_2(p, bitDPtr);
HUF_DECODE_SYMBOLX1_0(p, bitDPtr);
}
} else {
BIT_reloadDStream(bitDPtr);
}
/* [0-3] symbols remaining */
if (MEM_32bits())
while ((BIT_reloadDStream(bitDPtr) == BIT_DStream_unfinished) & (p < pEnd))
HUF_DECODE_SYMBOLX1_0(p, bitDPtr);
/* no more data to retrieve from bitstream, no need to reload */
while (p < pEnd)
HUF_DECODE_SYMBOLX1_0(p, bitDPtr);
return pEnd-pStart;
}
FORCE_INLINE_TEMPLATE size_t
HUF_decompress1X1_usingDTable_internal_body(
void* dst, size_t dstSize,
const void* cSrc, size_t cSrcSize,
const HUF_DTable* DTable)
{
BYTE* op = (BYTE*)dst;
BYTE* const oend = op + dstSize;
const void* dtPtr = DTable + 1;
const HUF_DEltX1* const dt = (const HUF_DEltX1*)dtPtr;
BIT_DStream_t bitD;
DTableDesc const dtd = HUF_getDTableDesc(DTable);
U32 const dtLog = dtd.tableLog;
CHECK_F( BIT_initDStream(&bitD, cSrc, cSrcSize) );
HUF_decodeStreamX1(op, &bitD, oend, dt, dtLog);
if (!BIT_endOfDStream(&bitD)) return ERROR(corruption_detected);
return dstSize;
}
FORCE_INLINE_TEMPLATE size_t
HUF_decompress4X1_usingDTable_internal_body(
void* dst, size_t dstSize,
const void* cSrc, size_t cSrcSize,
const HUF_DTable* DTable)
{
/* Check */
if (cSrcSize < 10) return ERROR(corruption_detected); /* strict minimum : jump table + 1 byte per stream */
{ const BYTE* const istart = (const BYTE*) cSrc;
BYTE* const ostart = (BYTE*) dst;
BYTE* const oend = ostart + dstSize;
BYTE* const olimit = oend - 3;
const void* const dtPtr = DTable + 1;
const HUF_DEltX1* const dt = (const HUF_DEltX1*)dtPtr;
/* Init */
BIT_DStream_t bitD1;
BIT_DStream_t bitD2;
BIT_DStream_t bitD3;
BIT_DStream_t bitD4;
size_t const length1 = MEM_readLE16(istart);
size_t const length2 = MEM_readLE16(istart+2);
size_t const length3 = MEM_readLE16(istart+4);
size_t const length4 = cSrcSize - (length1 + length2 + length3 + 6);
const BYTE* const istart1 = istart + 6; /* jumpTable */
const BYTE* const istart2 = istart1 + length1;
const BYTE* const istart3 = istart2 + length2;
const BYTE* const istart4 = istart3 + length3;
const size_t segmentSize = (dstSize+3) / 4;
BYTE* const opStart2 = ostart + segmentSize;
BYTE* const opStart3 = opStart2 + segmentSize;
BYTE* const opStart4 = opStart3 + segmentSize;
BYTE* op1 = ostart;
BYTE* op2 = opStart2;
BYTE* op3 = opStart3;
BYTE* op4 = opStart4;
DTableDesc const dtd = HUF_getDTableDesc(DTable);
U32 const dtLog = dtd.tableLog;
U32 endSignal = 1;
if (length4 > cSrcSize) return ERROR(corruption_detected); /* overflow */
if (opStart4 > oend) return ERROR(corruption_detected); /* overflow */
CHECK_F( BIT_initDStream(&bitD1, istart1, length1) );
CHECK_F( BIT_initDStream(&bitD2, istart2, length2) );
CHECK_F( BIT_initDStream(&bitD3, istart3, length3) );
CHECK_F( BIT_initDStream(&bitD4, istart4, length4) );
/* up to 16 symbols per loop (4 symbols per stream) in 64-bit mode */
if ((size_t)(oend - op4) >= sizeof(size_t)) {
for ( ; (endSignal) & (op4 < olimit) ; ) {
HUF_DECODE_SYMBOLX1_2(op1, &bitD1);
HUF_DECODE_SYMBOLX1_2(op2, &bitD2);
HUF_DECODE_SYMBOLX1_2(op3, &bitD3);
HUF_DECODE_SYMBOLX1_2(op4, &bitD4);
HUF_DECODE_SYMBOLX1_1(op1, &bitD1);
HUF_DECODE_SYMBOLX1_1(op2, &bitD2);
HUF_DECODE_SYMBOLX1_1(op3, &bitD3);
HUF_DECODE_SYMBOLX1_1(op4, &bitD4);
HUF_DECODE_SYMBOLX1_2(op1, &bitD1);
HUF_DECODE_SYMBOLX1_2(op2, &bitD2);
HUF_DECODE_SYMBOLX1_2(op3, &bitD3);
HUF_DECODE_SYMBOLX1_2(op4, &bitD4);
HUF_DECODE_SYMBOLX1_0(op1, &bitD1);
HUF_DECODE_SYMBOLX1_0(op2, &bitD2);
HUF_DECODE_SYMBOLX1_0(op3, &bitD3);
HUF_DECODE_SYMBOLX1_0(op4, &bitD4);
endSignal &= BIT_reloadDStreamFast(&bitD1) == BIT_DStream_unfinished;
endSignal &= BIT_reloadDStreamFast(&bitD2) == BIT_DStream_unfinished;
endSignal &= BIT_reloadDStreamFast(&bitD3) == BIT_DStream_unfinished;
endSignal &= BIT_reloadDStreamFast(&bitD4) == BIT_DStream_unfinished;
}
}
/* check corruption */
/* note : should not be necessary : op# advance in lock step, and we control op4.
* but curiously, binary generated by gcc 7.2 & 7.3 with -mbmi2 runs faster when >=1 test is present */
if (op1 > opStart2) return ERROR(corruption_detected);
if (op2 > opStart3) return ERROR(corruption_detected);
if (op3 > opStart4) return ERROR(corruption_detected);
/* note : op4 supposed already verified within main loop */
/* finish bitStreams one by one */
HUF_decodeStreamX1(op1, &bitD1, opStart2, dt, dtLog);
HUF_decodeStreamX1(op2, &bitD2, opStart3, dt, dtLog);
HUF_decodeStreamX1(op3, &bitD3, opStart4, dt, dtLog);
HUF_decodeStreamX1(op4, &bitD4, oend, dt, dtLog);
/* check */
{ U32 const endCheck = BIT_endOfDStream(&bitD1) & BIT_endOfDStream(&bitD2) & BIT_endOfDStream(&bitD3) & BIT_endOfDStream(&bitD4);
if (!endCheck) return ERROR(corruption_detected); }
/* decoded size */
return dstSize;
}
}
#if HUF_NEED_BMI2_FUNCTION
static BMI2_TARGET_ATTRIBUTE
size_t HUF_decompress4X1_usingDTable_internal_bmi2(void* dst, size_t dstSize, void const* cSrc,
size_t cSrcSize, HUF_DTable const* DTable) {
return HUF_decompress4X1_usingDTable_internal_body(dst, dstSize, cSrc, cSrcSize, DTable);
}
#endif
#if HUF_NEED_DEFAULT_FUNCTION
static
size_t HUF_decompress4X1_usingDTable_internal_default(void* dst, size_t dstSize, void const* cSrc,
size_t cSrcSize, HUF_DTable const* DTable) {
return HUF_decompress4X1_usingDTable_internal_body(dst, dstSize, cSrc, cSrcSize, DTable);
}
#endif
#if ZSTD_ENABLE_ASM_X86_64_BMI2
HUF_ASM_DECL void HUF_decompress4X1_usingDTable_internal_bmi2_asm_loop(HUF_DecompressAsmArgs* args) ZSTDLIB_HIDDEN;
static HUF_ASM_X86_64_BMI2_ATTRS
size_t
HUF_decompress4X1_usingDTable_internal_bmi2_asm(
void* dst, size_t dstSize,
const void* cSrc, size_t cSrcSize,
const HUF_DTable* DTable)
{
void const* dt = DTable + 1;
const BYTE* const iend = (const BYTE*)cSrc + 6;
BYTE* const oend = (BYTE*)dst + dstSize;
HUF_DecompressAsmArgs args;
{
size_t const ret = HUF_DecompressAsmArgs_init(&args, dst, dstSize, cSrc, cSrcSize, DTable);
FORWARD_IF_ERROR(ret, "Failed to init asm args");
if (ret != 0)
return HUF_decompress4X1_usingDTable_internal_bmi2(dst, dstSize, cSrc, cSrcSize, DTable);
}
assert(args.ip[0] >= args.ilimit);
HUF_decompress4X1_usingDTable_internal_bmi2_asm_loop(&args);
/* Our loop guarantees that ip[] >= ilimit and that we haven't
* overwritten any op[].
*/
assert(args.ip[0] >= iend);
assert(args.ip[1] >= iend);
assert(args.ip[2] >= iend);
assert(args.ip[3] >= iend);
assert(args.op[3] <= oend);
(void)iend;
/* finish bit streams one by one. */
{
size_t const segmentSize = (dstSize+3) / 4;
BYTE* segmentEnd = (BYTE*)dst;
int i;
for (i = 0; i < 4; ++i) {
BIT_DStream_t bit;
if (segmentSize <= (size_t)(oend - segmentEnd))
segmentEnd += segmentSize;
else
segmentEnd = oend;
FORWARD_IF_ERROR(HUF_initRemainingDStream(&bit, &args, i, segmentEnd), "corruption");
/* Decompress and validate that we've produced exactly the expected length. */
args.op[i] += HUF_decodeStreamX1(args.op[i], &bit, segmentEnd, (HUF_DEltX1 const*)dt, HUF_DECODER_FAST_TABLELOG);
if (args.op[i] != segmentEnd) return ERROR(corruption_detected);
}
}
/* decoded size */
return dstSize;
}
#endif /* ZSTD_ENABLE_ASM_X86_64_BMI2 */
typedef size_t (*HUF_decompress_usingDTable_t)(void *dst, size_t dstSize,
const void *cSrc,
size_t cSrcSize,
const HUF_DTable *DTable);
HUF_DGEN(HUF_decompress1X1_usingDTable_internal)
static size_t HUF_decompress4X1_usingDTable_internal(void* dst, size_t dstSize, void const* cSrc,
size_t cSrcSize, HUF_DTable const* DTable, int bmi2)
{
#if DYNAMIC_BMI2
if (bmi2) {
# if ZSTD_ENABLE_ASM_X86_64_BMI2
return HUF_decompress4X1_usingDTable_internal_bmi2_asm(dst, dstSize, cSrc, cSrcSize, DTable);
# else
return HUF_decompress4X1_usingDTable_internal_bmi2(dst, dstSize, cSrc, cSrcSize, DTable);
# endif
}
#else
(void)bmi2;
#endif
#if ZSTD_ENABLE_ASM_X86_64_BMI2 && defined(__BMI2__)
return HUF_decompress4X1_usingDTable_internal_bmi2_asm(dst, dstSize, cSrc, cSrcSize, DTable);
#else
return HUF_decompress4X1_usingDTable_internal_default(dst, dstSize, cSrc, cSrcSize, DTable);
#endif
}
size_t HUF_decompress1X1_usingDTable(
void* dst, size_t dstSize,
const void* cSrc, size_t cSrcSize,
const HUF_DTable* DTable)
{
DTableDesc dtd = HUF_getDTableDesc(DTable);
if (dtd.tableType != 0) return ERROR(GENERIC);
return HUF_decompress1X1_usingDTable_internal(dst, dstSize, cSrc, cSrcSize, DTable, /* bmi2 */ 0);
}
size_t HUF_decompress1X1_DCtx_wksp(HUF_DTable* DCtx, void* dst, size_t dstSize,
const void* cSrc, size_t cSrcSize,
void* workSpace, size_t wkspSize)
{
const BYTE* ip = (const BYTE*) cSrc;
size_t const hSize = HUF_readDTableX1_wksp(DCtx, cSrc, cSrcSize, workSpace, wkspSize);
if (HUF_isError(hSize)) return hSize;
if (hSize >= cSrcSize) return ERROR(srcSize_wrong);
ip += hSize; cSrcSize -= hSize;
return HUF_decompress1X1_usingDTable_internal(dst, dstSize, ip, cSrcSize, DCtx, /* bmi2 */ 0);
}
size_t HUF_decompress4X1_usingDTable(
void* dst, size_t dstSize,
const void* cSrc, size_t cSrcSize,
const HUF_DTable* DTable)
{
DTableDesc dtd = HUF_getDTableDesc(DTable);
if (dtd.tableType != 0) return ERROR(GENERIC);
return HUF_decompress4X1_usingDTable_internal(dst, dstSize, cSrc, cSrcSize, DTable, /* bmi2 */ 0);
}
static size_t HUF_decompress4X1_DCtx_wksp_bmi2(HUF_DTable* dctx, void* dst, size_t dstSize,
const void* cSrc, size_t cSrcSize,
void* workSpace, size_t wkspSize, int bmi2)
{
const BYTE* ip = (const BYTE*) cSrc;
size_t const hSize = HUF_readDTableX1_wksp_bmi2(dctx, cSrc, cSrcSize, workSpace, wkspSize, bmi2);
if (HUF_isError(hSize)) return hSize;
if (hSize >= cSrcSize) return ERROR(srcSize_wrong);
ip += hSize; cSrcSize -= hSize;
return HUF_decompress4X1_usingDTable_internal(dst, dstSize, ip, cSrcSize, dctx, bmi2);
}
size_t HUF_decompress4X1_DCtx_wksp(HUF_DTable* dctx, void* dst, size_t dstSize,
const void* cSrc, size_t cSrcSize,
void* workSpace, size_t wkspSize)
{
return HUF_decompress4X1_DCtx_wksp_bmi2(dctx, dst, dstSize, cSrc, cSrcSize, workSpace, wkspSize, 0);
}
#endif /* HUF_FORCE_DECOMPRESS_X2 */
#ifndef HUF_FORCE_DECOMPRESS_X1
/* *************************/
/* double-symbols decoding */
/* *************************/
typedef struct { U16 sequence; BYTE nbBits; BYTE length; } HUF_DEltX2; /* double-symbols decoding */
typedef struct { BYTE symbol; } sortedSymbol_t;
typedef U32 rankValCol_t[HUF_TABLELOG_MAX + 1];
typedef rankValCol_t rankVal_t[HUF_TABLELOG_MAX];
/*
* Constructs a HUF_DEltX2 in a U32.
*/
static U32 HUF_buildDEltX2U32(U32 symbol, U32 nbBits, U32 baseSeq, int level)
{
U32 seq;
DEBUG_STATIC_ASSERT(offsetof(HUF_DEltX2, sequence) == 0);
DEBUG_STATIC_ASSERT(offsetof(HUF_DEltX2, nbBits) == 2);
DEBUG_STATIC_ASSERT(offsetof(HUF_DEltX2, length) == 3);
DEBUG_STATIC_ASSERT(sizeof(HUF_DEltX2) == sizeof(U32));
if (MEM_isLittleEndian()) {
seq = level == 1 ? symbol : (baseSeq + (symbol << 8));
return seq + (nbBits << 16) + ((U32)level << 24);
} else {
seq = level == 1 ? (symbol << 8) : ((baseSeq << 8) + symbol);
return (seq << 16) + (nbBits << 8) + (U32)level;
}
}
/*
* Constructs a HUF_DEltX2.
*/
static HUF_DEltX2 HUF_buildDEltX2(U32 symbol, U32 nbBits, U32 baseSeq, int level)
{
HUF_DEltX2 DElt;
U32 const val = HUF_buildDEltX2U32(symbol, nbBits, baseSeq, level);
DEBUG_STATIC_ASSERT(sizeof(DElt) == sizeof(val));
ZSTD_memcpy(&DElt, &val, sizeof(val));
return DElt;
}
/*
* Constructs 2 HUF_DEltX2s and packs them into a U64.
*/
static U64 HUF_buildDEltX2U64(U32 symbol, U32 nbBits, U16 baseSeq, int level)
{
U32 DElt = HUF_buildDEltX2U32(symbol, nbBits, baseSeq, level);
return (U64)DElt + ((U64)DElt << 32);
}
/*
* Fills the DTable rank with all the symbols from [begin, end) that are each
* nbBits long.
*
* @param DTableRank The start of the rank in the DTable.
* @param begin The first symbol to fill (inclusive).
* @param end The last symbol to fill (exclusive).
* @param nbBits Each symbol is nbBits long.
* @param tableLog The table log.
* @param baseSeq If level == 1 { 0 } else { the first level symbol }
* @param level The level in the table. Must be 1 or 2.
*/
static void HUF_fillDTableX2ForWeight(
HUF_DEltX2* DTableRank,
sortedSymbol_t const* begin, sortedSymbol_t const* end,
U32 nbBits, U32 tableLog,
U16 baseSeq, int const level)
{
U32 const length = 1U << ((tableLog - nbBits) & 0x1F /* quiet static-analyzer */);
const sortedSymbol_t* ptr;
assert(level >= 1 && level <= 2);
switch (length) {
case 1:
for (ptr = begin; ptr != end; ++ptr) {
HUF_DEltX2 const DElt = HUF_buildDEltX2(ptr->symbol, nbBits, baseSeq, level);
*DTableRank++ = DElt;
}
break;
case 2:
for (ptr = begin; ptr != end; ++ptr) {
HUF_DEltX2 const DElt = HUF_buildDEltX2(ptr->symbol, nbBits, baseSeq, level);
DTableRank[0] = DElt;
DTableRank[1] = DElt;
DTableRank += 2;
}
break;
case 4:
for (ptr = begin; ptr != end; ++ptr) {
U64 const DEltX2 = HUF_buildDEltX2U64(ptr->symbol, nbBits, baseSeq, level);
ZSTD_memcpy(DTableRank + 0, &DEltX2, sizeof(DEltX2));
ZSTD_memcpy(DTableRank + 2, &DEltX2, sizeof(DEltX2));
DTableRank += 4;
}
break;
case 8:
for (ptr = begin; ptr != end; ++ptr) {
U64 const DEltX2 = HUF_buildDEltX2U64(ptr->symbol, nbBits, baseSeq, level);
ZSTD_memcpy(DTableRank + 0, &DEltX2, sizeof(DEltX2));
ZSTD_memcpy(DTableRank + 2, &DEltX2, sizeof(DEltX2));
ZSTD_memcpy(DTableRank + 4, &DEltX2, sizeof(DEltX2));
ZSTD_memcpy(DTableRank + 6, &DEltX2, sizeof(DEltX2));
DTableRank += 8;
}
break;
default:
for (ptr = begin; ptr != end; ++ptr) {
U64 const DEltX2 = HUF_buildDEltX2U64(ptr->symbol, nbBits, baseSeq, level);
HUF_DEltX2* const DTableRankEnd = DTableRank + length;
for (; DTableRank != DTableRankEnd; DTableRank += 8) {
ZSTD_memcpy(DTableRank + 0, &DEltX2, sizeof(DEltX2));
ZSTD_memcpy(DTableRank + 2, &DEltX2, sizeof(DEltX2));
ZSTD_memcpy(DTableRank + 4, &DEltX2, sizeof(DEltX2));
ZSTD_memcpy(DTableRank + 6, &DEltX2, sizeof(DEltX2));
}
}
break;
}
}
/* HUF_fillDTableX2Level2() :
* `rankValOrigin` must be a table of at least (HUF_TABLELOG_MAX + 1) U32 */
static void HUF_fillDTableX2Level2(HUF_DEltX2* DTable, U32 targetLog, const U32 consumedBits,
const U32* rankVal, const int minWeight, const int maxWeight1,
const sortedSymbol_t* sortedSymbols, U32 const* rankStart,
U32 nbBitsBaseline, U16 baseSeq)
{
/* Fill skipped values (all positions up to rankVal[minWeight]).
* These are positions only get a single symbol because the combined weight
* is too large.
*/
if (minWeight>1) {
U32 const length = 1U << ((targetLog - consumedBits) & 0x1F /* quiet static-analyzer */);
U64 const DEltX2 = HUF_buildDEltX2U64(baseSeq, consumedBits, /* baseSeq */ 0, /* level */ 1);
int const skipSize = rankVal[minWeight];
assert(length > 1);
assert((U32)skipSize < length);
switch (length) {
case 2:
assert(skipSize == 1);
ZSTD_memcpy(DTable, &DEltX2, sizeof(DEltX2));
break;
case 4:
assert(skipSize <= 4);
ZSTD_memcpy(DTable + 0, &DEltX2, sizeof(DEltX2));
ZSTD_memcpy(DTable + 2, &DEltX2, sizeof(DEltX2));
break;
default:
{
int i;
for (i = 0; i < skipSize; i += 8) {
ZSTD_memcpy(DTable + i + 0, &DEltX2, sizeof(DEltX2));
ZSTD_memcpy(DTable + i + 2, &DEltX2, sizeof(DEltX2));
ZSTD_memcpy(DTable + i + 4, &DEltX2, sizeof(DEltX2));
ZSTD_memcpy(DTable + i + 6, &DEltX2, sizeof(DEltX2));
}
}
}
}
/* Fill each of the second level symbols by weight. */
{
int w;
for (w = minWeight; w < maxWeight1; ++w) {
int const begin = rankStart[w];
int const end = rankStart[w+1];
U32 const nbBits = nbBitsBaseline - w;
U32 const totalBits = nbBits + consumedBits;
HUF_fillDTableX2ForWeight(
DTable + rankVal[w],
sortedSymbols + begin, sortedSymbols + end,
totalBits, targetLog,
baseSeq, /* level */ 2);
}
}
}
static void HUF_fillDTableX2(HUF_DEltX2* DTable, const U32 targetLog,
const sortedSymbol_t* sortedList,
const U32* rankStart, rankVal_t rankValOrigin, const U32 maxWeight,
const U32 nbBitsBaseline)
{
U32* const rankVal = rankValOrigin[0];
const int scaleLog = nbBitsBaseline - targetLog; /* note : targetLog >= srcLog, hence scaleLog <= 1 */
const U32 minBits = nbBitsBaseline - maxWeight;
int w;
int const wEnd = (int)maxWeight + 1;
/* Fill DTable in order of weight. */
for (w = 1; w < wEnd; ++w) {
int const begin = (int)rankStart[w];
int const end = (int)rankStart[w+1];
U32 const nbBits = nbBitsBaseline - w;
if (targetLog-nbBits >= minBits) {
/* Enough room for a second symbol. */
int start = rankVal[w];
U32 const length = 1U << ((targetLog - nbBits) & 0x1F /* quiet static-analyzer */);
int minWeight = nbBits + scaleLog;
int s;
if (minWeight < 1) minWeight = 1;
/* Fill the DTable for every symbol of weight w.
* These symbols get at least 1 second symbol.
*/
for (s = begin; s != end; ++s) {
HUF_fillDTableX2Level2(
DTable + start, targetLog, nbBits,
rankValOrigin[nbBits], minWeight, wEnd,
sortedList, rankStart,
nbBitsBaseline, sortedList[s].symbol);
start += length;
}
} else {
/* Only a single symbol. */
HUF_fillDTableX2ForWeight(
DTable + rankVal[w],
sortedList + begin, sortedList + end,
nbBits, targetLog,
/* baseSeq */ 0, /* level */ 1);
}
}
}
typedef struct {
rankValCol_t rankVal[HUF_TABLELOG_MAX];
U32 rankStats[HUF_TABLELOG_MAX + 1];
U32 rankStart0[HUF_TABLELOG_MAX + 3];
sortedSymbol_t sortedSymbol[HUF_SYMBOLVALUE_MAX + 1];
BYTE weightList[HUF_SYMBOLVALUE_MAX + 1];
U32 calleeWksp[HUF_READ_STATS_WORKSPACE_SIZE_U32];
} HUF_ReadDTableX2_Workspace;
size_t HUF_readDTableX2_wksp(HUF_DTable* DTable,
const void* src, size_t srcSize,
void* workSpace, size_t wkspSize)
{
return HUF_readDTableX2_wksp_bmi2(DTable, src, srcSize, workSpace, wkspSize, /* bmi2 */ 0);
}
size_t HUF_readDTableX2_wksp_bmi2(HUF_DTable* DTable,
const void* src, size_t srcSize,
void* workSpace, size_t wkspSize, int bmi2)
{
U32 tableLog, maxW, nbSymbols;
DTableDesc dtd = HUF_getDTableDesc(DTable);
U32 maxTableLog = dtd.maxTableLog;
size_t iSize;
void* dtPtr = DTable+1; /* force compiler to avoid strict-aliasing */
HUF_DEltX2* const dt = (HUF_DEltX2*)dtPtr;
U32 *rankStart;
HUF_ReadDTableX2_Workspace* const wksp = (HUF_ReadDTableX2_Workspace*)workSpace;
if (sizeof(*wksp) > wkspSize) return ERROR(GENERIC);
rankStart = wksp->rankStart0 + 1;
ZSTD_memset(wksp->rankStats, 0, sizeof(wksp->rankStats));
ZSTD_memset(wksp->rankStart0, 0, sizeof(wksp->rankStart0));
DEBUG_STATIC_ASSERT(sizeof(HUF_DEltX2) == sizeof(HUF_DTable)); /* if compiler fails here, assertion is wrong */
if (maxTableLog > HUF_TABLELOG_MAX) return ERROR(tableLog_tooLarge);
/* ZSTD_memset(weightList, 0, sizeof(weightList)); */ /* is not necessary, even though some analyzer complain ... */
iSize = HUF_readStats_wksp(wksp->weightList, HUF_SYMBOLVALUE_MAX + 1, wksp->rankStats, &nbSymbols, &tableLog, src, srcSize, wksp->calleeWksp, sizeof(wksp->calleeWksp), bmi2);
if (HUF_isError(iSize)) return iSize;
/* check result */
if (tableLog > maxTableLog) return ERROR(tableLog_tooLarge); /* DTable can't fit code depth */
if (tableLog <= HUF_DECODER_FAST_TABLELOG && maxTableLog > HUF_DECODER_FAST_TABLELOG) maxTableLog = HUF_DECODER_FAST_TABLELOG;
/* find maxWeight */
for (maxW = tableLog; wksp->rankStats[maxW]==0; maxW--) {} /* necessarily finds a solution before 0 */
/* Get start index of each weight */
{ U32 w, nextRankStart = 0;
for (w=1; w<maxW+1; w++) {
U32 curr = nextRankStart;
nextRankStart += wksp->rankStats[w];
rankStart[w] = curr;
}
rankStart[0] = nextRankStart; /* put all 0w symbols at the end of sorted list*/
rankStart[maxW+1] = nextRankStart;
}
/* sort symbols by weight */
{ U32 s;
for (s=0; s<nbSymbols; s++) {
U32 const w = wksp->weightList[s];
U32 const r = rankStart[w]++;
wksp->sortedSymbol[r].symbol = (BYTE)s;
}
rankStart[0] = 0; /* forget 0w symbols; this is beginning of weight(1) */
}
/* Build rankVal */
{ U32* const rankVal0 = wksp->rankVal[0];
{ int const rescale = (maxTableLog-tableLog) - 1; /* tableLog <= maxTableLog */
U32 nextRankVal = 0;
U32 w;
for (w=1; w<maxW+1; w++) {
U32 curr = nextRankVal;
nextRankVal += wksp->rankStats[w] << (w+rescale);
rankVal0[w] = curr;
} }
{ U32 const minBits = tableLog+1 - maxW;
U32 consumed;
for (consumed = minBits; consumed < maxTableLog - minBits + 1; consumed++) {
U32* const rankValPtr = wksp->rankVal[consumed];
U32 w;
for (w = 1; w < maxW+1; w++) {
rankValPtr[w] = rankVal0[w] >> consumed;
} } } }
HUF_fillDTableX2(dt, maxTableLog,
wksp->sortedSymbol,
wksp->rankStart0, wksp->rankVal, maxW,
tableLog+1);
dtd.tableLog = (BYTE)maxTableLog;
dtd.tableType = 1;
ZSTD_memcpy(DTable, &dtd, sizeof(dtd));
return iSize;
}
FORCE_INLINE_TEMPLATE U32
HUF_decodeSymbolX2(void* op, BIT_DStream_t* DStream, const HUF_DEltX2* dt, const U32 dtLog)
{
size_t const val = BIT_lookBitsFast(DStream, dtLog); /* note : dtLog >= 1 */
ZSTD_memcpy(op, &dt[val].sequence, 2);
BIT_skipBits(DStream, dt[val].nbBits);
return dt[val].length;
}
FORCE_INLINE_TEMPLATE U32
HUF_decodeLastSymbolX2(void* op, BIT_DStream_t* DStream, const HUF_DEltX2* dt, const U32 dtLog)
{
size_t const val = BIT_lookBitsFast(DStream, dtLog); /* note : dtLog >= 1 */
ZSTD_memcpy(op, &dt[val].sequence, 1);
if (dt[val].length==1) {
BIT_skipBits(DStream, dt[val].nbBits);
} else {
if (DStream->bitsConsumed < (sizeof(DStream->bitContainer)*8)) {
BIT_skipBits(DStream, dt[val].nbBits);
if (DStream->bitsConsumed > (sizeof(DStream->bitContainer)*8))
/* ugly hack; works only because it's the last symbol. Note : can't easily extract nbBits from just this symbol */
DStream->bitsConsumed = (sizeof(DStream->bitContainer)*8);
}
}
return 1;
}
#define HUF_DECODE_SYMBOLX2_0(ptr, DStreamPtr) \
ptr += HUF_decodeSymbolX2(ptr, DStreamPtr, dt, dtLog)
#define HUF_DECODE_SYMBOLX2_1(ptr, DStreamPtr) \
if (MEM_64bits() || (HUF_TABLELOG_MAX<=12)) \
ptr += HUF_decodeSymbolX2(ptr, DStreamPtr, dt, dtLog)
#define HUF_DECODE_SYMBOLX2_2(ptr, DStreamPtr) \
if (MEM_64bits()) \
ptr += HUF_decodeSymbolX2(ptr, DStreamPtr, dt, dtLog)
HINT_INLINE size_t
HUF_decodeStreamX2(BYTE* p, BIT_DStream_t* bitDPtr, BYTE* const pEnd,
const HUF_DEltX2* const dt, const U32 dtLog)
{
BYTE* const pStart = p;
/* up to 8 symbols at a time */
if ((size_t)(pEnd - p) >= sizeof(bitDPtr->bitContainer)) {
if (dtLog <= 11 && MEM_64bits()) {
/* up to 10 symbols at a time */
while ((BIT_reloadDStream(bitDPtr) == BIT_DStream_unfinished) & (p < pEnd-9)) {
HUF_DECODE_SYMBOLX2_0(p, bitDPtr);
HUF_DECODE_SYMBOLX2_0(p, bitDPtr);
HUF_DECODE_SYMBOLX2_0(p, bitDPtr);
HUF_DECODE_SYMBOLX2_0(p, bitDPtr);
HUF_DECODE_SYMBOLX2_0(p, bitDPtr);
}
} else {
/* up to 8 symbols at a time */
while ((BIT_reloadDStream(bitDPtr) == BIT_DStream_unfinished) & (p < pEnd-(sizeof(bitDPtr->bitContainer)-1))) {
HUF_DECODE_SYMBOLX2_2(p, bitDPtr);
HUF_DECODE_SYMBOLX2_1(p, bitDPtr);
HUF_DECODE_SYMBOLX2_2(p, bitDPtr);
HUF_DECODE_SYMBOLX2_0(p, bitDPtr);
}
}
} else {
BIT_reloadDStream(bitDPtr);
}
/* closer to end : up to 2 symbols at a time */
if ((size_t)(pEnd - p) >= 2) {
while ((BIT_reloadDStream(bitDPtr) == BIT_DStream_unfinished) & (p <= pEnd-2))
HUF_DECODE_SYMBOLX2_0(p, bitDPtr);
while (p <= pEnd-2)
HUF_DECODE_SYMBOLX2_0(p, bitDPtr); /* no need to reload : reached the end of DStream */
}
if (p < pEnd)
p += HUF_decodeLastSymbolX2(p, bitDPtr, dt, dtLog);
return p-pStart;
}
FORCE_INLINE_TEMPLATE size_t
HUF_decompress1X2_usingDTable_internal_body(
void* dst, size_t dstSize,
const void* cSrc, size_t cSrcSize,
const HUF_DTable* DTable)
{
BIT_DStream_t bitD;
/* Init */
CHECK_F( BIT_initDStream(&bitD, cSrc, cSrcSize) );
/* decode */
{ BYTE* const ostart = (BYTE*) dst;
BYTE* const oend = ostart + dstSize;
const void* const dtPtr = DTable+1; /* force compiler to not use strict-aliasing */
const HUF_DEltX2* const dt = (const HUF_DEltX2*)dtPtr;
DTableDesc const dtd = HUF_getDTableDesc(DTable);
HUF_decodeStreamX2(ostart, &bitD, oend, dt, dtd.tableLog);
}
/* check */
if (!BIT_endOfDStream(&bitD)) return ERROR(corruption_detected);
/* decoded size */
return dstSize;
}
FORCE_INLINE_TEMPLATE size_t
HUF_decompress4X2_usingDTable_internal_body(
void* dst, size_t dstSize,
const void* cSrc, size_t cSrcSize,
const HUF_DTable* DTable)
{
if (cSrcSize < 10) return ERROR(corruption_detected); /* strict minimum : jump table + 1 byte per stream */
{ const BYTE* const istart = (const BYTE*) cSrc;
BYTE* const ostart = (BYTE*) dst;
BYTE* const oend = ostart + dstSize;
BYTE* const olimit = oend - (sizeof(size_t)-1);
const void* const dtPtr = DTable+1;
const HUF_DEltX2* const dt = (const HUF_DEltX2*)dtPtr;
/* Init */
BIT_DStream_t bitD1;
BIT_DStream_t bitD2;
BIT_DStream_t bitD3;
BIT_DStream_t bitD4;
size_t const length1 = MEM_readLE16(istart);
size_t const length2 = MEM_readLE16(istart+2);
size_t const length3 = MEM_readLE16(istart+4);
size_t const length4 = cSrcSize - (length1 + length2 + length3 + 6);
const BYTE* const istart1 = istart + 6; /* jumpTable */
const BYTE* const istart2 = istart1 + length1;
const BYTE* const istart3 = istart2 + length2;
const BYTE* const istart4 = istart3 + length3;
size_t const segmentSize = (dstSize+3) / 4;
BYTE* const opStart2 = ostart + segmentSize;
BYTE* const opStart3 = opStart2 + segmentSize;
BYTE* const opStart4 = opStart3 + segmentSize;
BYTE* op1 = ostart;
BYTE* op2 = opStart2;
BYTE* op3 = opStart3;
BYTE* op4 = opStart4;
U32 endSignal = 1;
DTableDesc const dtd = HUF_getDTableDesc(DTable);
U32 const dtLog = dtd.tableLog;
if (length4 > cSrcSize) return ERROR(corruption_detected); /* overflow */
if (opStart4 > oend) return ERROR(corruption_detected); /* overflow */
CHECK_F( BIT_initDStream(&bitD1, istart1, length1) );
CHECK_F( BIT_initDStream(&bitD2, istart2, length2) );
CHECK_F( BIT_initDStream(&bitD3, istart3, length3) );
CHECK_F( BIT_initDStream(&bitD4, istart4, length4) );
/* 16-32 symbols per loop (4-8 symbols per stream) */
if ((size_t)(oend - op4) >= sizeof(size_t)) {
for ( ; (endSignal) & (op4 < olimit); ) {
#if defined(__clang__) && (defined(__x86_64__) || defined(__i386__))
HUF_DECODE_SYMBOLX2_2(op1, &bitD1);
HUF_DECODE_SYMBOLX2_1(op1, &bitD1);
HUF_DECODE_SYMBOLX2_2(op1, &bitD1);
HUF_DECODE_SYMBOLX2_0(op1, &bitD1);
HUF_DECODE_SYMBOLX2_2(op2, &bitD2);
HUF_DECODE_SYMBOLX2_1(op2, &bitD2);
HUF_DECODE_SYMBOLX2_2(op2, &bitD2);
HUF_DECODE_SYMBOLX2_0(op2, &bitD2);
endSignal &= BIT_reloadDStreamFast(&bitD1) == BIT_DStream_unfinished;
endSignal &= BIT_reloadDStreamFast(&bitD2) == BIT_DStream_unfinished;
HUF_DECODE_SYMBOLX2_2(op3, &bitD3);
HUF_DECODE_SYMBOLX2_1(op3, &bitD3);
HUF_DECODE_SYMBOLX2_2(op3, &bitD3);
HUF_DECODE_SYMBOLX2_0(op3, &bitD3);
HUF_DECODE_SYMBOLX2_2(op4, &bitD4);
HUF_DECODE_SYMBOLX2_1(op4, &bitD4);
HUF_DECODE_SYMBOLX2_2(op4, &bitD4);
HUF_DECODE_SYMBOLX2_0(op4, &bitD4);
endSignal &= BIT_reloadDStreamFast(&bitD3) == BIT_DStream_unfinished;
endSignal &= BIT_reloadDStreamFast(&bitD4) == BIT_DStream_unfinished;
#else
HUF_DECODE_SYMBOLX2_2(op1, &bitD1);
HUF_DECODE_SYMBOLX2_2(op2, &bitD2);
HUF_DECODE_SYMBOLX2_2(op3, &bitD3);
HUF_DECODE_SYMBOLX2_2(op4, &bitD4);
HUF_DECODE_SYMBOLX2_1(op1, &bitD1);
HUF_DECODE_SYMBOLX2_1(op2, &bitD2);
HUF_DECODE_SYMBOLX2_1(op3, &bitD3);
HUF_DECODE_SYMBOLX2_1(op4, &bitD4);
HUF_DECODE_SYMBOLX2_2(op1, &bitD1);
HUF_DECODE_SYMBOLX2_2(op2, &bitD2);
HUF_DECODE_SYMBOLX2_2(op3, &bitD3);
HUF_DECODE_SYMBOLX2_2(op4, &bitD4);
HUF_DECODE_SYMBOLX2_0(op1, &bitD1);
HUF_DECODE_SYMBOLX2_0(op2, &bitD2);
HUF_DECODE_SYMBOLX2_0(op3, &bitD3);
HUF_DECODE_SYMBOLX2_0(op4, &bitD4);
endSignal = (U32)LIKELY((U32)
(BIT_reloadDStreamFast(&bitD1) == BIT_DStream_unfinished)
& (BIT_reloadDStreamFast(&bitD2) == BIT_DStream_unfinished)
& (BIT_reloadDStreamFast(&bitD3) == BIT_DStream_unfinished)
& (BIT_reloadDStreamFast(&bitD4) == BIT_DStream_unfinished));
#endif
}
}
/* check corruption */
if (op1 > opStart2) return ERROR(corruption_detected);
if (op2 > opStart3) return ERROR(corruption_detected);
if (op3 > opStart4) return ERROR(corruption_detected);
/* note : op4 already verified within main loop */
/* finish bitStreams one by one */
HUF_decodeStreamX2(op1, &bitD1, opStart2, dt, dtLog);
HUF_decodeStreamX2(op2, &bitD2, opStart3, dt, dtLog);
HUF_decodeStreamX2(op3, &bitD3, opStart4, dt, dtLog);
HUF_decodeStreamX2(op4, &bitD4, oend, dt, dtLog);
/* check */
{ U32 const endCheck = BIT_endOfDStream(&bitD1) & BIT_endOfDStream(&bitD2) & BIT_endOfDStream(&bitD3) & BIT_endOfDStream(&bitD4);
if (!endCheck) return ERROR(corruption_detected); }
/* decoded size */
return dstSize;
}
}
#if HUF_NEED_BMI2_FUNCTION
static BMI2_TARGET_ATTRIBUTE
size_t HUF_decompress4X2_usingDTable_internal_bmi2(void* dst, size_t dstSize, void const* cSrc,
size_t cSrcSize, HUF_DTable const* DTable) {
return HUF_decompress4X2_usingDTable_internal_body(dst, dstSize, cSrc, cSrcSize, DTable);
}
#endif
#if HUF_NEED_DEFAULT_FUNCTION
static
size_t HUF_decompress4X2_usingDTable_internal_default(void* dst, size_t dstSize, void const* cSrc,
size_t cSrcSize, HUF_DTable const* DTable) {
return HUF_decompress4X2_usingDTable_internal_body(dst, dstSize, cSrc, cSrcSize, DTable);
}
#endif
#if ZSTD_ENABLE_ASM_X86_64_BMI2
HUF_ASM_DECL void HUF_decompress4X2_usingDTable_internal_bmi2_asm_loop(HUF_DecompressAsmArgs* args) ZSTDLIB_HIDDEN;
static HUF_ASM_X86_64_BMI2_ATTRS size_t
HUF_decompress4X2_usingDTable_internal_bmi2_asm(
void* dst, size_t dstSize,
const void* cSrc, size_t cSrcSize,
const HUF_DTable* DTable) {
void const* dt = DTable + 1;
const BYTE* const iend = (const BYTE*)cSrc + 6;
BYTE* const oend = (BYTE*)dst + dstSize;
HUF_DecompressAsmArgs args;
{
size_t const ret = HUF_DecompressAsmArgs_init(&args, dst, dstSize, cSrc, cSrcSize, DTable);
FORWARD_IF_ERROR(ret, "Failed to init asm args");
if (ret != 0)
return HUF_decompress4X2_usingDTable_internal_bmi2(dst, dstSize, cSrc, cSrcSize, DTable);
}
assert(args.ip[0] >= args.ilimit);
HUF_decompress4X2_usingDTable_internal_bmi2_asm_loop(&args);
/* note : op4 already verified within main loop */
assert(args.ip[0] >= iend);
assert(args.ip[1] >= iend);
assert(args.ip[2] >= iend);
assert(args.ip[3] >= iend);
assert(args.op[3] <= oend);
(void)iend;
/* finish bitStreams one by one */
{
size_t const segmentSize = (dstSize+3) / 4;
BYTE* segmentEnd = (BYTE*)dst;
int i;
for (i = 0; i < 4; ++i) {
BIT_DStream_t bit;
if (segmentSize <= (size_t)(oend - segmentEnd))
segmentEnd += segmentSize;
else
segmentEnd = oend;
FORWARD_IF_ERROR(HUF_initRemainingDStream(&bit, &args, i, segmentEnd), "corruption");
args.op[i] += HUF_decodeStreamX2(args.op[i], &bit, segmentEnd, (HUF_DEltX2 const*)dt, HUF_DECODER_FAST_TABLELOG);
if (args.op[i] != segmentEnd)
return ERROR(corruption_detected);
}
}
/* decoded size */
return dstSize;
}
#endif /* ZSTD_ENABLE_ASM_X86_64_BMI2 */
static size_t HUF_decompress4X2_usingDTable_internal(void* dst, size_t dstSize, void const* cSrc,
size_t cSrcSize, HUF_DTable const* DTable, int bmi2)
{
#if DYNAMIC_BMI2
if (bmi2) {
# if ZSTD_ENABLE_ASM_X86_64_BMI2
return HUF_decompress4X2_usingDTable_internal_bmi2_asm(dst, dstSize, cSrc, cSrcSize, DTable);
# else
return HUF_decompress4X2_usingDTable_internal_bmi2(dst, dstSize, cSrc, cSrcSize, DTable);
# endif
}
#else
(void)bmi2;
#endif
#if ZSTD_ENABLE_ASM_X86_64_BMI2 && defined(__BMI2__)
return HUF_decompress4X2_usingDTable_internal_bmi2_asm(dst, dstSize, cSrc, cSrcSize, DTable);
#else
return HUF_decompress4X2_usingDTable_internal_default(dst, dstSize, cSrc, cSrcSize, DTable);
#endif
}
HUF_DGEN(HUF_decompress1X2_usingDTable_internal)
size_t HUF_decompress1X2_usingDTable(
void* dst, size_t dstSize,
const void* cSrc, size_t cSrcSize,
const HUF_DTable* DTable)
{
DTableDesc dtd = HUF_getDTableDesc(DTable);
if (dtd.tableType != 1) return ERROR(GENERIC);
return HUF_decompress1X2_usingDTable_internal(dst, dstSize, cSrc, cSrcSize, DTable, /* bmi2 */ 0);
}
size_t HUF_decompress1X2_DCtx_wksp(HUF_DTable* DCtx, void* dst, size_t dstSize,
const void* cSrc, size_t cSrcSize,
void* workSpace, size_t wkspSize)
{
const BYTE* ip = (const BYTE*) cSrc;
size_t const hSize = HUF_readDTableX2_wksp(DCtx, cSrc, cSrcSize,
workSpace, wkspSize);
if (HUF_isError(hSize)) return hSize;
if (hSize >= cSrcSize) return ERROR(srcSize_wrong);
ip += hSize; cSrcSize -= hSize;
return HUF_decompress1X2_usingDTable_internal(dst, dstSize, ip, cSrcSize, DCtx, /* bmi2 */ 0);
}
size_t HUF_decompress4X2_usingDTable(
void* dst, size_t dstSize,
const void* cSrc, size_t cSrcSize,
const HUF_DTable* DTable)
{
DTableDesc dtd = HUF_getDTableDesc(DTable);
if (dtd.tableType != 1) return ERROR(GENERIC);
return HUF_decompress4X2_usingDTable_internal(dst, dstSize, cSrc, cSrcSize, DTable, /* bmi2 */ 0);
}
static size_t HUF_decompress4X2_DCtx_wksp_bmi2(HUF_DTable* dctx, void* dst, size_t dstSize,
const void* cSrc, size_t cSrcSize,
void* workSpace, size_t wkspSize, int bmi2)
{
const BYTE* ip = (const BYTE*) cSrc;
size_t hSize = HUF_readDTableX2_wksp(dctx, cSrc, cSrcSize,
workSpace, wkspSize);
if (HUF_isError(hSize)) return hSize;
if (hSize >= cSrcSize) return ERROR(srcSize_wrong);
ip += hSize; cSrcSize -= hSize;
return HUF_decompress4X2_usingDTable_internal(dst, dstSize, ip, cSrcSize, dctx, bmi2);
}
size_t HUF_decompress4X2_DCtx_wksp(HUF_DTable* dctx, void* dst, size_t dstSize,
const void* cSrc, size_t cSrcSize,
void* workSpace, size_t wkspSize)
{
return HUF_decompress4X2_DCtx_wksp_bmi2(dctx, dst, dstSize, cSrc, cSrcSize, workSpace, wkspSize, /* bmi2 */ 0);
}
#endif /* HUF_FORCE_DECOMPRESS_X1 */
/* ***********************************/
/* Universal decompression selectors */
/* ***********************************/
size_t HUF_decompress1X_usingDTable(void* dst, size_t maxDstSize,
const void* cSrc, size_t cSrcSize,
const HUF_DTable* DTable)
{
DTableDesc const dtd = HUF_getDTableDesc(DTable);
#if defined(HUF_FORCE_DECOMPRESS_X1)
(void)dtd;
assert(dtd.tableType == 0);
return HUF_decompress1X1_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable, /* bmi2 */ 0);
#elif defined(HUF_FORCE_DECOMPRESS_X2)
(void)dtd;
assert(dtd.tableType == 1);
return HUF_decompress1X2_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable, /* bmi2 */ 0);
#else
return dtd.tableType ? HUF_decompress1X2_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable, /* bmi2 */ 0) :
HUF_decompress1X1_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable, /* bmi2 */ 0);
#endif
}
size_t HUF_decompress4X_usingDTable(void* dst, size_t maxDstSize,
const void* cSrc, size_t cSrcSize,
const HUF_DTable* DTable)
{
DTableDesc const dtd = HUF_getDTableDesc(DTable);
#if defined(HUF_FORCE_DECOMPRESS_X1)
(void)dtd;
assert(dtd.tableType == 0);
return HUF_decompress4X1_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable, /* bmi2 */ 0);
#elif defined(HUF_FORCE_DECOMPRESS_X2)
(void)dtd;
assert(dtd.tableType == 1);
return HUF_decompress4X2_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable, /* bmi2 */ 0);
#else
return dtd.tableType ? HUF_decompress4X2_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable, /* bmi2 */ 0) :
HUF_decompress4X1_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable, /* bmi2 */ 0);
#endif
}
#if !defined(HUF_FORCE_DECOMPRESS_X1) && !defined(HUF_FORCE_DECOMPRESS_X2)
typedef struct { U32 tableTime; U32 decode256Time; } algo_time_t;
static const algo_time_t algoTime[16 /* Quantization */][2 /* single, double */] =
{
/* single, double, quad */
{{0,0}, {1,1}}, /* Q==0 : impossible */
{{0,0}, {1,1}}, /* Q==1 : impossible */
{{ 150,216}, { 381,119}}, /* Q == 2 : 12-18% */
{{ 170,205}, { 514,112}}, /* Q == 3 : 18-25% */
{{ 177,199}, { 539,110}}, /* Q == 4 : 25-32% */
{{ 197,194}, { 644,107}}, /* Q == 5 : 32-38% */
{{ 221,192}, { 735,107}}, /* Q == 6 : 38-44% */
{{ 256,189}, { 881,106}}, /* Q == 7 : 44-50% */
{{ 359,188}, {1167,109}}, /* Q == 8 : 50-56% */
{{ 582,187}, {1570,114}}, /* Q == 9 : 56-62% */
{{ 688,187}, {1712,122}}, /* Q ==10 : 62-69% */
{{ 825,186}, {1965,136}}, /* Q ==11 : 69-75% */
{{ 976,185}, {2131,150}}, /* Q ==12 : 75-81% */
{{1180,186}, {2070,175}}, /* Q ==13 : 81-87% */
{{1377,185}, {1731,202}}, /* Q ==14 : 87-93% */
{{1412,185}, {1695,202}}, /* Q ==15 : 93-99% */
};
#endif
/* HUF_selectDecoder() :
* Tells which decoder is likely to decode faster,
* based on a set of pre-computed metrics.
* @return : 0==HUF_decompress4X1, 1==HUF_decompress4X2 .
* Assumption : 0 < dstSize <= 128 KB */
U32 HUF_selectDecoder (size_t dstSize, size_t cSrcSize)
{
assert(dstSize > 0);
assert(dstSize <= 128*1024);
#if defined(HUF_FORCE_DECOMPRESS_X1)
(void)dstSize;
(void)cSrcSize;
return 0;
#elif defined(HUF_FORCE_DECOMPRESS_X2)
(void)dstSize;
(void)cSrcSize;
return 1;
#else
/* decoder timing evaluation */
{ U32 const Q = (cSrcSize >= dstSize) ? 15 : (U32)(cSrcSize * 16 / dstSize); /* Q < 16 */
U32 const D256 = (U32)(dstSize >> 8);
U32 const DTime0 = algoTime[Q][0].tableTime + (algoTime[Q][0].decode256Time * D256);
U32 DTime1 = algoTime[Q][1].tableTime + (algoTime[Q][1].decode256Time * D256);
DTime1 += DTime1 >> 5; /* small advantage to algorithm using less memory, to reduce cache eviction */
return DTime1 < DTime0;
}
#endif
}
size_t HUF_decompress4X_hufOnly_wksp(HUF_DTable* dctx, void* dst,
size_t dstSize, const void* cSrc,
size_t cSrcSize, void* workSpace,
size_t wkspSize)
{
/* validation checks */
if (dstSize == 0) return ERROR(dstSize_tooSmall);
if (cSrcSize == 0) return ERROR(corruption_detected);
{ U32 const algoNb = HUF_selectDecoder(dstSize, cSrcSize);
#if defined(HUF_FORCE_DECOMPRESS_X1)
(void)algoNb;
assert(algoNb == 0);
return HUF_decompress4X1_DCtx_wksp(dctx, dst, dstSize, cSrc, cSrcSize, workSpace, wkspSize);
#elif defined(HUF_FORCE_DECOMPRESS_X2)
(void)algoNb;
assert(algoNb == 1);
return HUF_decompress4X2_DCtx_wksp(dctx, dst, dstSize, cSrc, cSrcSize, workSpace, wkspSize);
#else
return algoNb ? HUF_decompress4X2_DCtx_wksp(dctx, dst, dstSize, cSrc,
cSrcSize, workSpace, wkspSize):
HUF_decompress4X1_DCtx_wksp(dctx, dst, dstSize, cSrc, cSrcSize, workSpace, wkspSize);
#endif
}
}
size_t HUF_decompress1X_DCtx_wksp(HUF_DTable* dctx, void* dst, size_t dstSize,
const void* cSrc, size_t cSrcSize,
void* workSpace, size_t wkspSize)
{
/* validation checks */
if (dstSize == 0) return ERROR(dstSize_tooSmall);
if (cSrcSize > dstSize) return ERROR(corruption_detected); /* invalid */
if (cSrcSize == dstSize) { ZSTD_memcpy(dst, cSrc, dstSize); return dstSize; } /* not compressed */
if (cSrcSize == 1) { ZSTD_memset(dst, *(const BYTE*)cSrc, dstSize); return dstSize; } /* RLE */
{ U32 const algoNb = HUF_selectDecoder(dstSize, cSrcSize);
#if defined(HUF_FORCE_DECOMPRESS_X1)
(void)algoNb;
assert(algoNb == 0);
return HUF_decompress1X1_DCtx_wksp(dctx, dst, dstSize, cSrc,
cSrcSize, workSpace, wkspSize);
#elif defined(HUF_FORCE_DECOMPRESS_X2)
(void)algoNb;
assert(algoNb == 1);
return HUF_decompress1X2_DCtx_wksp(dctx, dst, dstSize, cSrc,
cSrcSize, workSpace, wkspSize);
#else
return algoNb ? HUF_decompress1X2_DCtx_wksp(dctx, dst, dstSize, cSrc,
cSrcSize, workSpace, wkspSize):
HUF_decompress1X1_DCtx_wksp(dctx, dst, dstSize, cSrc,
cSrcSize, workSpace, wkspSize);
#endif
}
}
size_t HUF_decompress1X_usingDTable_bmi2(void* dst, size_t maxDstSize, const void* cSrc, size_t cSrcSize, const HUF_DTable* DTable, int bmi2)
{
DTableDesc const dtd = HUF_getDTableDesc(DTable);
#if defined(HUF_FORCE_DECOMPRESS_X1)
(void)dtd;
assert(dtd.tableType == 0);
return HUF_decompress1X1_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable, bmi2);
#elif defined(HUF_FORCE_DECOMPRESS_X2)
(void)dtd;
assert(dtd.tableType == 1);
return HUF_decompress1X2_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable, bmi2);
#else
return dtd.tableType ? HUF_decompress1X2_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable, bmi2) :
HUF_decompress1X1_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable, bmi2);
#endif
}
#ifndef HUF_FORCE_DECOMPRESS_X2
size_t HUF_decompress1X1_DCtx_wksp_bmi2(HUF_DTable* dctx, void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize, void* workSpace, size_t wkspSize, int bmi2)
{
const BYTE* ip = (const BYTE*) cSrc;
size_t const hSize = HUF_readDTableX1_wksp_bmi2(dctx, cSrc, cSrcSize, workSpace, wkspSize, bmi2);
if (HUF_isError(hSize)) return hSize;
if (hSize >= cSrcSize) return ERROR(srcSize_wrong);
ip += hSize; cSrcSize -= hSize;
return HUF_decompress1X1_usingDTable_internal(dst, dstSize, ip, cSrcSize, dctx, bmi2);
}
#endif
size_t HUF_decompress4X_usingDTable_bmi2(void* dst, size_t maxDstSize, const void* cSrc, size_t cSrcSize, const HUF_DTable* DTable, int bmi2)
{
DTableDesc const dtd = HUF_getDTableDesc(DTable);
#if defined(HUF_FORCE_DECOMPRESS_X1)
(void)dtd;
assert(dtd.tableType == 0);
return HUF_decompress4X1_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable, bmi2);
#elif defined(HUF_FORCE_DECOMPRESS_X2)
(void)dtd;
assert(dtd.tableType == 1);
return HUF_decompress4X2_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable, bmi2);
#else
return dtd.tableType ? HUF_decompress4X2_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable, bmi2) :
HUF_decompress4X1_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable, bmi2);
#endif
}
size_t HUF_decompress4X_hufOnly_wksp_bmi2(HUF_DTable* dctx, void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize, void* workSpace, size_t wkspSize, int bmi2)
{
/* validation checks */
if (dstSize == 0) return ERROR(dstSize_tooSmall);
if (cSrcSize == 0) return ERROR(corruption_detected);
{ U32 const algoNb = HUF_selectDecoder(dstSize, cSrcSize);
#if defined(HUF_FORCE_DECOMPRESS_X1)
(void)algoNb;
assert(algoNb == 0);
return HUF_decompress4X1_DCtx_wksp_bmi2(dctx, dst, dstSize, cSrc, cSrcSize, workSpace, wkspSize, bmi2);
#elif defined(HUF_FORCE_DECOMPRESS_X2)
(void)algoNb;
assert(algoNb == 1);
return HUF_decompress4X2_DCtx_wksp_bmi2(dctx, dst, dstSize, cSrc, cSrcSize, workSpace, wkspSize, bmi2);
#else
return algoNb ? HUF_decompress4X2_DCtx_wksp_bmi2(dctx, dst, dstSize, cSrc, cSrcSize, workSpace, wkspSize, bmi2) :
HUF_decompress4X1_DCtx_wksp_bmi2(dctx, dst, dstSize, cSrc, cSrcSize, workSpace, wkspSize, bmi2);
#endif
}
}