mirror of
https://github.com/AsahiLinux/u-boot
synced 2024-12-03 01:50:25 +00:00
5f93227ce0
Some versions of the Zynq first stage boot loader enable PCAP loopback during boot regardless of whether or not the boot image includes PL configuration. This behavior only appears in certain boot modes (notably QSPI boot). Attempting to configure the PL with the loopback bit set will result in timeouts and will prevent successful configuration. In order to avoid this problem, and to avoid dependency on the version of the FSBL used to boot the system, ensure that the loopback enable bit is cleared when loading the driver. Signed-off-by: Soren Brinkmann <soren.brinkmann@xilinx.com> Signed-off-by: Michal Simek <michal.simek@xilinx.com>
343 lines
8.7 KiB
C
343 lines
8.7 KiB
C
/*
|
|
* (C) Copyright 2012-2013, Xilinx, Michal Simek
|
|
*
|
|
* (C) Copyright 2012
|
|
* Joe Hershberger <joe.hershberger@ni.com>
|
|
*
|
|
* SPDX-License-Identifier: GPL-2.0+
|
|
*/
|
|
|
|
#include <common.h>
|
|
#include <asm/io.h>
|
|
#include <zynqpl.h>
|
|
#include <asm/arch/hardware.h>
|
|
#include <asm/arch/sys_proto.h>
|
|
|
|
#define DEVCFG_CTRL_PCFG_PROG_B 0x40000000
|
|
#define DEVCFG_ISR_FATAL_ERROR_MASK 0x00740040
|
|
#define DEVCFG_ISR_ERROR_FLAGS_MASK 0x00340840
|
|
#define DEVCFG_ISR_RX_FIFO_OV 0x00040000
|
|
#define DEVCFG_ISR_DMA_DONE 0x00002000
|
|
#define DEVCFG_ISR_PCFG_DONE 0x00000004
|
|
#define DEVCFG_STATUS_DMA_CMD_Q_F 0x80000000
|
|
#define DEVCFG_STATUS_DMA_CMD_Q_E 0x40000000
|
|
#define DEVCFG_STATUS_DMA_DONE_CNT_MASK 0x30000000
|
|
#define DEVCFG_STATUS_PCFG_INIT 0x00000010
|
|
#define DEVCFG_MCTRL_PCAP_LPBK 0x00000010
|
|
#define DEVCFG_MCTRL_RFIFO_FLUSH 0x00000002
|
|
#define DEVCFG_MCTRL_WFIFO_FLUSH 0x00000001
|
|
|
|
#ifndef CONFIG_SYS_FPGA_WAIT
|
|
#define CONFIG_SYS_FPGA_WAIT CONFIG_SYS_HZ/100 /* 10 ms */
|
|
#endif
|
|
|
|
#ifndef CONFIG_SYS_FPGA_PROG_TIME
|
|
#define CONFIG_SYS_FPGA_PROG_TIME (CONFIG_SYS_HZ * 4) /* 4 s */
|
|
#endif
|
|
|
|
int zynq_info(Xilinx_desc *desc)
|
|
{
|
|
return FPGA_SUCCESS;
|
|
}
|
|
|
|
#define DUMMY_WORD 0xffffffff
|
|
|
|
/* Xilinx binary format header */
|
|
static const u32 bin_format[] = {
|
|
DUMMY_WORD, /* Dummy words */
|
|
DUMMY_WORD,
|
|
DUMMY_WORD,
|
|
DUMMY_WORD,
|
|
DUMMY_WORD,
|
|
DUMMY_WORD,
|
|
DUMMY_WORD,
|
|
DUMMY_WORD,
|
|
0x000000bb, /* Sync word */
|
|
0x11220044, /* Sync word */
|
|
DUMMY_WORD,
|
|
DUMMY_WORD,
|
|
0xaa995566, /* Sync word */
|
|
};
|
|
|
|
#define SWAP_NO 1
|
|
#define SWAP_DONE 2
|
|
|
|
/*
|
|
* Load the whole word from unaligned buffer
|
|
* Keep in your mind that it is byte loading on little-endian system
|
|
*/
|
|
static u32 load_word(const void *buf, u32 swap)
|
|
{
|
|
u32 word = 0;
|
|
u8 *bitc = (u8 *)buf;
|
|
int p;
|
|
|
|
if (swap == SWAP_NO) {
|
|
for (p = 0; p < 4; p++) {
|
|
word <<= 8;
|
|
word |= bitc[p];
|
|
}
|
|
} else {
|
|
for (p = 3; p >= 0; p--) {
|
|
word <<= 8;
|
|
word |= bitc[p];
|
|
}
|
|
}
|
|
|
|
return word;
|
|
}
|
|
|
|
static u32 check_header(const void *buf)
|
|
{
|
|
u32 i, pattern;
|
|
int swap = SWAP_NO;
|
|
u32 *test = (u32 *)buf;
|
|
|
|
debug("%s: Let's check bitstream header\n", __func__);
|
|
|
|
/* Checking that passing bin is not a bitstream */
|
|
for (i = 0; i < ARRAY_SIZE(bin_format); i++) {
|
|
pattern = load_word(&test[i], swap);
|
|
|
|
/*
|
|
* Bitstreams in binary format are swapped
|
|
* compare to regular bistream.
|
|
* Do not swap dummy word but if swap is done assume
|
|
* that parsing buffer is binary format
|
|
*/
|
|
if ((__swab32(pattern) != DUMMY_WORD) &&
|
|
(__swab32(pattern) == bin_format[i])) {
|
|
pattern = __swab32(pattern);
|
|
swap = SWAP_DONE;
|
|
debug("%s: data swapped - let's swap\n", __func__);
|
|
}
|
|
|
|
debug("%s: %d/%x: pattern %x/%x bin_format\n", __func__, i,
|
|
(u32)&test[i], pattern, bin_format[i]);
|
|
if (pattern != bin_format[i]) {
|
|
debug("%s: Bitstream is not recognized\n", __func__);
|
|
return 0;
|
|
}
|
|
}
|
|
debug("%s: Found bitstream header at %x %s swapinng\n", __func__,
|
|
(u32)buf, swap == SWAP_NO ? "without" : "with");
|
|
|
|
return swap;
|
|
}
|
|
|
|
static void *check_data(u8 *buf, size_t bsize, u32 *swap)
|
|
{
|
|
u32 word, p = 0; /* possition */
|
|
|
|
/* Because buf doesn't need to be aligned let's read it by chars */
|
|
for (p = 0; p < bsize; p++) {
|
|
word = load_word(&buf[p], SWAP_NO);
|
|
debug("%s: word %x %x/%x\n", __func__, word, p, (u32)&buf[p]);
|
|
|
|
/* Find the first bitstream dummy word */
|
|
if (word == DUMMY_WORD) {
|
|
debug("%s: Found dummy word at position %x/%x\n",
|
|
__func__, p, (u32)&buf[p]);
|
|
*swap = check_header(&buf[p]);
|
|
if (*swap) {
|
|
/* FIXME add full bitstream checking here */
|
|
return &buf[p];
|
|
}
|
|
}
|
|
/* Loop can be huge - support CTRL + C */
|
|
if (ctrlc())
|
|
return 0;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
|
|
int zynq_load(Xilinx_desc *desc, const void *buf, size_t bsize)
|
|
{
|
|
unsigned long ts; /* Timestamp */
|
|
u32 partialbit = 0;
|
|
u32 i, control, isr_status, status, swap, diff;
|
|
u32 *buf_start;
|
|
|
|
/* Detect if we are going working with partial or full bitstream */
|
|
if (bsize != desc->size) {
|
|
printf("%s: Working with partial bitstream\n", __func__);
|
|
partialbit = 1;
|
|
}
|
|
|
|
buf_start = check_data((u8 *)buf, bsize, &swap);
|
|
if (!buf_start)
|
|
return FPGA_FAIL;
|
|
|
|
/* Check if data is postpone from start */
|
|
diff = (u32)buf_start - (u32)buf;
|
|
if (diff) {
|
|
printf("%s: Bitstream is not validated yet (diff %x)\n",
|
|
__func__, diff);
|
|
return FPGA_FAIL;
|
|
}
|
|
|
|
if ((u32)buf_start & 0x3) {
|
|
u32 *new_buf = (u32 *)((u32)buf & ~0x3);
|
|
|
|
printf("%s: Align buffer at %x to %x(swap %d)\n", __func__,
|
|
(u32)buf_start, (u32)new_buf, swap);
|
|
|
|
for (i = 0; i < (bsize/4); i++)
|
|
new_buf[i] = load_word(&buf_start[i], swap);
|
|
|
|
swap = SWAP_DONE;
|
|
buf = new_buf;
|
|
} else if (swap != SWAP_DONE) {
|
|
/* For bitstream which are aligned */
|
|
u32 *new_buf = (u32 *)buf;
|
|
|
|
printf("%s: Bitstream is not swapped(%d) - swap it\n", __func__,
|
|
swap);
|
|
|
|
for (i = 0; i < (bsize/4); i++)
|
|
new_buf[i] = load_word(&buf_start[i], swap);
|
|
|
|
swap = SWAP_DONE;
|
|
}
|
|
|
|
/* Clear loopback bit */
|
|
clrbits_le32(&devcfg_base->mctrl, DEVCFG_MCTRL_PCAP_LPBK);
|
|
|
|
if (!partialbit) {
|
|
zynq_slcr_devcfg_disable();
|
|
|
|
/* Setting PCFG_PROG_B signal to high */
|
|
control = readl(&devcfg_base->ctrl);
|
|
writel(control | DEVCFG_CTRL_PCFG_PROG_B, &devcfg_base->ctrl);
|
|
/* Setting PCFG_PROG_B signal to low */
|
|
writel(control & ~DEVCFG_CTRL_PCFG_PROG_B, &devcfg_base->ctrl);
|
|
|
|
/* Polling the PCAP_INIT status for Reset */
|
|
ts = get_timer(0);
|
|
while (readl(&devcfg_base->status) & DEVCFG_STATUS_PCFG_INIT) {
|
|
if (get_timer(ts) > CONFIG_SYS_FPGA_WAIT) {
|
|
printf("%s: Timeout wait for INIT to clear\n",
|
|
__func__);
|
|
return FPGA_FAIL;
|
|
}
|
|
}
|
|
|
|
/* Setting PCFG_PROG_B signal to high */
|
|
writel(control | DEVCFG_CTRL_PCFG_PROG_B, &devcfg_base->ctrl);
|
|
|
|
/* Polling the PCAP_INIT status for Set */
|
|
ts = get_timer(0);
|
|
while (!(readl(&devcfg_base->status) &
|
|
DEVCFG_STATUS_PCFG_INIT)) {
|
|
if (get_timer(ts) > CONFIG_SYS_FPGA_WAIT) {
|
|
printf("%s: Timeout wait for INIT to set\n",
|
|
__func__);
|
|
return FPGA_FAIL;
|
|
}
|
|
}
|
|
}
|
|
|
|
isr_status = readl(&devcfg_base->int_sts);
|
|
|
|
/* Clear it all, so if Boot ROM comes back, it can proceed */
|
|
writel(0xFFFFFFFF, &devcfg_base->int_sts);
|
|
|
|
if (isr_status & DEVCFG_ISR_FATAL_ERROR_MASK) {
|
|
debug("%s: Fatal errors in PCAP 0x%X\n", __func__, isr_status);
|
|
|
|
/* If RX FIFO overflow, need to flush RX FIFO first */
|
|
if (isr_status & DEVCFG_ISR_RX_FIFO_OV) {
|
|
writel(DEVCFG_MCTRL_RFIFO_FLUSH, &devcfg_base->mctrl);
|
|
writel(0xFFFFFFFF, &devcfg_base->int_sts);
|
|
}
|
|
return FPGA_FAIL;
|
|
}
|
|
|
|
status = readl(&devcfg_base->status);
|
|
|
|
debug("%s: Status = 0x%08X\n", __func__, status);
|
|
|
|
if (status & DEVCFG_STATUS_DMA_CMD_Q_F) {
|
|
debug("%s: Error: device busy\n", __func__);
|
|
return FPGA_FAIL;
|
|
}
|
|
|
|
debug("%s: Device ready\n", __func__);
|
|
|
|
if (!(status & DEVCFG_STATUS_DMA_CMD_Q_E)) {
|
|
if (!(readl(&devcfg_base->int_sts) & DEVCFG_ISR_DMA_DONE)) {
|
|
/* Error state, transfer cannot occur */
|
|
debug("%s: ISR indicates error\n", __func__);
|
|
return FPGA_FAIL;
|
|
} else {
|
|
/* Clear out the status */
|
|
writel(DEVCFG_ISR_DMA_DONE, &devcfg_base->int_sts);
|
|
}
|
|
}
|
|
|
|
if (status & DEVCFG_STATUS_DMA_DONE_CNT_MASK) {
|
|
/* Clear the count of completed DMA transfers */
|
|
writel(DEVCFG_STATUS_DMA_DONE_CNT_MASK, &devcfg_base->status);
|
|
}
|
|
|
|
debug("%s: Source = 0x%08X\n", __func__, (u32)buf);
|
|
debug("%s: Size = %zu\n", __func__, bsize);
|
|
|
|
/* Set up the transfer */
|
|
writel((u32)buf | 1, &devcfg_base->dma_src_addr);
|
|
writel(0xFFFFFFFF, &devcfg_base->dma_dst_addr);
|
|
writel(bsize >> 2, &devcfg_base->dma_src_len);
|
|
writel(0, &devcfg_base->dma_dst_len);
|
|
|
|
isr_status = readl(&devcfg_base->int_sts);
|
|
|
|
/* Polling the PCAP_INIT status for Set */
|
|
ts = get_timer(0);
|
|
while (!(isr_status & DEVCFG_ISR_DMA_DONE)) {
|
|
if (isr_status & DEVCFG_ISR_ERROR_FLAGS_MASK) {
|
|
debug("%s: Error: isr = 0x%08X\n", __func__,
|
|
isr_status);
|
|
debug("%s: Write count = 0x%08X\n", __func__,
|
|
readl(&devcfg_base->write_count));
|
|
debug("%s: Read count = 0x%08X\n", __func__,
|
|
readl(&devcfg_base->read_count));
|
|
|
|
return FPGA_FAIL;
|
|
}
|
|
if (get_timer(ts) > CONFIG_SYS_FPGA_PROG_TIME) {
|
|
printf("%s: Timeout wait for DMA to complete\n",
|
|
__func__);
|
|
return FPGA_FAIL;
|
|
}
|
|
isr_status = readl(&devcfg_base->int_sts);
|
|
}
|
|
|
|
debug("%s: DMA transfer is done\n", __func__);
|
|
|
|
/* Check FPGA configuration completion */
|
|
ts = get_timer(0);
|
|
while (!(isr_status & DEVCFG_ISR_PCFG_DONE)) {
|
|
if (get_timer(ts) > CONFIG_SYS_FPGA_WAIT) {
|
|
printf("%s: Timeout wait for FPGA to config\n",
|
|
__func__);
|
|
return FPGA_FAIL;
|
|
}
|
|
isr_status = readl(&devcfg_base->int_sts);
|
|
}
|
|
|
|
debug("%s: FPGA config done\n", __func__);
|
|
|
|
/* Clear out the DMA status */
|
|
writel(DEVCFG_ISR_DMA_DONE, &devcfg_base->int_sts);
|
|
|
|
if (!partialbit)
|
|
zynq_slcr_devcfg_enable();
|
|
|
|
return FPGA_SUCCESS;
|
|
}
|
|
|
|
int zynq_dump(Xilinx_desc *desc, const void *buf, size_t bsize)
|
|
{
|
|
return FPGA_FAIL;
|
|
}
|