mirror of
https://github.com/AsahiLinux/u-boot
synced 2024-11-29 08:01:08 +00:00
cebd1fcec0
Patch by Martin Krause, 08 Nov 2005 In tsc2000_read_channel() the delay after setting the multiplexer to a temperature channel is increased from 1,5 ms to 10 ms. This is to allow the multiplexer inputs to stabilize after huge steps of the input signal level.
362 lines
8.4 KiB
C
362 lines
8.4 KiB
C
/*
|
|
* Functions to access the TSC2000 controller on TRAB board (used for scanning
|
|
* thermo sensors)
|
|
*
|
|
* Copyright (C) 2003 Martin Krause, TQ-Systems GmbH, martin.krause@tqs.de
|
|
*
|
|
* Copyright (C) 2002 DENX Software Engineering, Wolfgang Denk, wd@denx.de
|
|
*
|
|
* See file CREDITS for list of people who contributed to this
|
|
* project.
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License as
|
|
* published by the Free Software Foundation; either version 2 of
|
|
* the License, or (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software
|
|
* Foundation, Inc., 59 Temple Place, Suite 330, Boston,
|
|
* MA 02111-1307 USA
|
|
*/
|
|
|
|
#include <common.h>
|
|
#include <s3c2400.h>
|
|
#include "tsc2000.h"
|
|
|
|
#include "Pt1000_temp_data.h"
|
|
|
|
/* helper function */
|
|
#define abs(value) (((value) < 0) ? ((value)*-1) : (value))
|
|
|
|
/*
|
|
* Maximal allowed deviation between two immediate meassurments of an analog
|
|
* thermo channel. 1 DIGIT = 0.0276 °C. This is used to filter sporadic
|
|
* "jumps" in measurment.
|
|
*/
|
|
#define MAX_DEVIATION 18 /* unit: DIGITs of adc; 18 DIGIT = 0.5 °C */
|
|
|
|
void spi_init(void)
|
|
{
|
|
S3C24X0_GPIO * const gpio = S3C24X0_GetBase_GPIO();
|
|
S3C24X0_SPI * const spi = S3C24X0_GetBase_SPI();
|
|
int i;
|
|
|
|
/* Configure I/O ports. */
|
|
gpio->PDCON = (gpio->PDCON & 0xF3FFFF) | 0x040000;
|
|
gpio->PGCON = (gpio->PGCON & 0x0F3FFF) | 0x008000;
|
|
gpio->PGCON = (gpio->PGCON & 0x0CFFFF) | 0x020000;
|
|
gpio->PGCON = (gpio->PGCON & 0x03FFFF) | 0x080000;
|
|
|
|
CLR_CS_TOUCH();
|
|
|
|
spi->ch[0].SPPRE = 0x1F; /* Baud-rate ca. 514kHz */
|
|
spi->ch[0].SPPIN = 0x01; /* SPI-MOSI holds Level after last bit */
|
|
spi->ch[0].SPCON = 0x1A; /* Polling, Prescaler, Master, CPOL=0,
|
|
CPHA=1 */
|
|
|
|
/* Dummy byte ensures clock to be low. */
|
|
for (i = 0; i < 10; i++) {
|
|
spi->ch[0].SPTDAT = 0xFF;
|
|
}
|
|
spi_wait_transmit_done();
|
|
}
|
|
|
|
|
|
void spi_wait_transmit_done(void)
|
|
{
|
|
S3C24X0_SPI * const spi = S3C24X0_GetBase_SPI();
|
|
|
|
while (!(spi->ch[0].SPSTA & 0x01)); /* wait until transfer is done */
|
|
}
|
|
|
|
|
|
void tsc2000_write(unsigned short reg, unsigned short data)
|
|
{
|
|
S3C24X0_SPI * const spi = S3C24X0_GetBase_SPI();
|
|
unsigned int command;
|
|
|
|
SET_CS_TOUCH();
|
|
command = reg;
|
|
spi->ch[0].SPTDAT = (command & 0xFF00) >> 8;
|
|
spi_wait_transmit_done();
|
|
spi->ch[0].SPTDAT = (command & 0x00FF);
|
|
spi_wait_transmit_done();
|
|
spi->ch[0].SPTDAT = (data & 0xFF00) >> 8;
|
|
spi_wait_transmit_done();
|
|
spi->ch[0].SPTDAT = (data & 0x00FF);
|
|
spi_wait_transmit_done();
|
|
|
|
CLR_CS_TOUCH();
|
|
}
|
|
|
|
|
|
unsigned short tsc2000_read (unsigned short reg)
|
|
{
|
|
unsigned short command, data;
|
|
S3C24X0_SPI * const spi = S3C24X0_GetBase_SPI();
|
|
|
|
SET_CS_TOUCH();
|
|
command = 0x8000 | reg;
|
|
|
|
spi->ch[0].SPTDAT = (command & 0xFF00) >> 8;
|
|
spi_wait_transmit_done();
|
|
spi->ch[0].SPTDAT = (command & 0x00FF);
|
|
spi_wait_transmit_done();
|
|
|
|
spi->ch[0].SPTDAT = 0xFF;
|
|
spi_wait_transmit_done();
|
|
data = spi->ch[0].SPRDAT;
|
|
spi->ch[0].SPTDAT = 0xFF;
|
|
spi_wait_transmit_done();
|
|
|
|
CLR_CS_TOUCH();
|
|
return (spi->ch[0].SPRDAT & 0x0FF) | (data << 8);
|
|
}
|
|
|
|
|
|
void tsc2000_set_mux (unsigned int channel)
|
|
{
|
|
S3C24X0_GPIO * const gpio = S3C24X0_GetBase_GPIO();
|
|
|
|
CLR_MUX1_ENABLE; CLR_MUX2_ENABLE;
|
|
CLR_MUX3_ENABLE; CLR_MUX4_ENABLE;
|
|
switch (channel) {
|
|
case 0:
|
|
CLR_MUX0; CLR_MUX1;
|
|
SET_MUX1_ENABLE;
|
|
break;
|
|
case 1:
|
|
SET_MUX0; CLR_MUX1;
|
|
SET_MUX1_ENABLE;
|
|
break;
|
|
case 2:
|
|
CLR_MUX0; SET_MUX1;
|
|
SET_MUX1_ENABLE;
|
|
break;
|
|
case 3:
|
|
SET_MUX0; SET_MUX1;
|
|
SET_MUX1_ENABLE;
|
|
break;
|
|
case 4:
|
|
CLR_MUX0; CLR_MUX1;
|
|
SET_MUX2_ENABLE;
|
|
break;
|
|
case 5:
|
|
SET_MUX0; CLR_MUX1;
|
|
SET_MUX2_ENABLE;
|
|
break;
|
|
case 6:
|
|
CLR_MUX0; SET_MUX1;
|
|
SET_MUX2_ENABLE;
|
|
break;
|
|
case 7:
|
|
SET_MUX0; SET_MUX1;
|
|
SET_MUX2_ENABLE;
|
|
break;
|
|
case 8:
|
|
CLR_MUX0; CLR_MUX1;
|
|
SET_MUX3_ENABLE;
|
|
break;
|
|
case 9:
|
|
SET_MUX0; CLR_MUX1;
|
|
SET_MUX3_ENABLE;
|
|
break;
|
|
case 10:
|
|
CLR_MUX0; SET_MUX1;
|
|
SET_MUX3_ENABLE;
|
|
break;
|
|
case 11:
|
|
SET_MUX0; SET_MUX1;
|
|
SET_MUX3_ENABLE;
|
|
break;
|
|
case 12:
|
|
CLR_MUX0; CLR_MUX1;
|
|
SET_MUX4_ENABLE;
|
|
break;
|
|
case 13:
|
|
SET_MUX0; CLR_MUX1;
|
|
SET_MUX4_ENABLE;
|
|
break;
|
|
case 14:
|
|
CLR_MUX0; SET_MUX1;
|
|
SET_MUX4_ENABLE;
|
|
break;
|
|
case 15:
|
|
SET_MUX0; SET_MUX1;
|
|
SET_MUX4_ENABLE;
|
|
break;
|
|
default:
|
|
CLR_MUX0; CLR_MUX1;
|
|
}
|
|
}
|
|
|
|
|
|
void tsc2000_set_range (unsigned int range)
|
|
{
|
|
S3C24X0_GPIO * const gpio = S3C24X0_GetBase_GPIO();
|
|
|
|
switch (range) {
|
|
case 1:
|
|
CLR_SEL_TEMP_V_0; SET_SEL_TEMP_V_1;
|
|
CLR_SEL_TEMP_V_2; CLR_SEL_TEMP_V_3;
|
|
break;
|
|
case 2:
|
|
CLR_SEL_TEMP_V_0; CLR_SEL_TEMP_V_1;
|
|
CLR_SEL_TEMP_V_2; SET_SEL_TEMP_V_3;
|
|
break;
|
|
case 3:
|
|
SET_SEL_TEMP_V_0; CLR_SEL_TEMP_V_1;
|
|
SET_SEL_TEMP_V_2; CLR_SEL_TEMP_V_3;
|
|
break;
|
|
}
|
|
}
|
|
|
|
|
|
u16 tsc2000_read_channel (unsigned int channel)
|
|
{
|
|
u16 res;
|
|
|
|
tsc2000_set_mux(channel);
|
|
udelay(20 * TSC2000_DELAY_BASE);
|
|
|
|
tsc2000_write(TSC2000_REG_ADC, 0x2036);
|
|
adc_wait_conversion_done ();
|
|
res = tsc2000_read(TSC2000_REG_AUX1);
|
|
return res;
|
|
}
|
|
|
|
|
|
s32 tsc2000_contact_temp (void)
|
|
{
|
|
long adc_pt1000, offset;
|
|
long u_pt1000;
|
|
long contact_temp;
|
|
long temp1, temp2;
|
|
|
|
tsc2000_reg_init ();
|
|
tsc2000_set_range (3);
|
|
|
|
/*
|
|
* Because of sporadic "jumps" in the measured adc values every
|
|
* channel is read two times. If there is a significant difference
|
|
* between the two measurements, then print an error and do a third
|
|
* measurement, because it is very unlikely that a successive third
|
|
* measurement goes also wrong.
|
|
*/
|
|
temp1 = tsc2000_read_channel (14);
|
|
temp2 = tsc2000_read_channel (14);
|
|
if (abs(temp2 - temp1) < MAX_DEVIATION)
|
|
adc_pt1000 = temp2;
|
|
else {
|
|
printf ("%s: read adc value (channel 14) exceeded max allowed "
|
|
"deviation: %d * 0.0276 °C\n",
|
|
__FUNCTION__, MAX_DEVIATION);
|
|
printf ("adc value 1: %ld DIGITs\nadc value 2: %ld DIGITs\n",
|
|
temp1, temp2);
|
|
adc_pt1000 = tsc2000_read_channel (14);
|
|
printf ("use (third read) adc value: adc_pt1000 = "
|
|
"%ld DIGITs\n", adc_pt1000);
|
|
}
|
|
debug ("read channel 14 (pt1000 adc value): %ld\n", adc_pt1000);
|
|
|
|
temp1 = tsc2000_read_channel (15);
|
|
temp2 = tsc2000_read_channel (15);
|
|
if (abs(temp2 - temp1) < MAX_DEVIATION)
|
|
offset = temp2;
|
|
else {
|
|
printf ("%s: read adc value (channel 15) exceeded max allowed "
|
|
"deviation: %d * 0.0276 °C\n",
|
|
__FUNCTION__, MAX_DEVIATION);
|
|
printf ("adc value 1: %ld DIGITs\nadc value 2: %ld DIGITs\n",
|
|
temp1, temp2);
|
|
offset = tsc2000_read_channel (15);
|
|
printf ("use (third read) adc value: offset = %ld DIGITs\n",
|
|
offset);
|
|
}
|
|
debug ("read channel 15 (offset): %ld\n", offset);
|
|
|
|
/*
|
|
* Formula for calculating voltage drop on PT1000 resistor: u_pt1000 =
|
|
* x_range3 * (adc_raw - offset) / 10. Formula to calculate x_range3:
|
|
* x_range3 = (2500 * (1000000 + err_vref + err_amp3)) / (4095*6). The
|
|
* error correction Values err_vref and err_amp3 are assumed as 0 in
|
|
* u-boot, because this could cause only a very small error (< 1%).
|
|
*/
|
|
u_pt1000 = (101750 * (adc_pt1000 - offset)) / 10;
|
|
debug ("u_pt1000: %ld\n", u_pt1000);
|
|
|
|
if (tsc2000_interpolate(u_pt1000, Pt1000_temp_table,
|
|
&contact_temp) == -1) {
|
|
printf ("%s: error interpolating PT1000 vlaue\n",
|
|
__FUNCTION__);
|
|
return (-1000);
|
|
}
|
|
debug ("contact_temp: %ld\n", contact_temp);
|
|
|
|
return contact_temp;
|
|
}
|
|
|
|
|
|
void tsc2000_reg_init (void)
|
|
{
|
|
S3C24X0_GPIO * const gpio = S3C24X0_GetBase_GPIO();
|
|
|
|
tsc2000_write(TSC2000_REG_ADC, 0x2036);
|
|
tsc2000_write(TSC2000_REG_REF, 0x0011);
|
|
tsc2000_write(TSC2000_REG_DACCTL, 0x0000);
|
|
|
|
CON_MUX0;
|
|
CON_MUX1;
|
|
|
|
CON_MUX1_ENABLE;
|
|
CON_MUX2_ENABLE;
|
|
CON_MUX3_ENABLE;
|
|
CON_MUX4_ENABLE;
|
|
|
|
CON_SEL_TEMP_V_0;
|
|
CON_SEL_TEMP_V_1;
|
|
CON_SEL_TEMP_V_2;
|
|
CON_SEL_TEMP_V_3;
|
|
|
|
tsc2000_set_mux(0);
|
|
tsc2000_set_range(0);
|
|
}
|
|
|
|
|
|
int tsc2000_interpolate(long value, long data[][2], long *result)
|
|
{
|
|
int i;
|
|
|
|
/* the data is sorted and the first element is upper
|
|
* limit so we can easily check for out-of-band values
|
|
*/
|
|
if (data[0][0] < value || data[1][0] > value)
|
|
return -1;
|
|
|
|
i = 1;
|
|
while (data[i][0] < value)
|
|
i++;
|
|
|
|
/* To prevent overflow we have to store the intermediate
|
|
result in 'long long'.
|
|
*/
|
|
|
|
*result = data[i-1][1] +
|
|
((unsigned long long)(data[i][1] - data[i-1][1])
|
|
* (unsigned long long)(value - data[i-1][0]))
|
|
/ (data[i][0] - data[i-1][0]);
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
void adc_wait_conversion_done(void)
|
|
{
|
|
while (!(tsc2000_read(TSC2000_REG_ADC) & (1 << 14)));
|
|
}
|