mirror of
https://github.com/AsahiLinux/u-boot
synced 2025-01-02 08:18:57 +00:00
5752d6ae8d
spi_mem_default_supports_op() rejects DTR ops by default to ensure that the controller drivers that haven't been updated with DTR support continue to reject them. It also makes sure that controllers that don't support DTR mode at all (which is most of them at the moment) also reject them. This means that controller drivers that want to support DTR mode can't use spi_mem_default_supports_op(). Driver authors have to roll their own supports_op() function and mimic the buswidth checks. Or even worse, driver authors might skip it completely or get it wrong. Add spi_mem_dtr_supports_op(). It provides a basic sanity check for DTR ops and performs the buswidth requirement check. Move the logic for checking buswidth in spi_mem_default_supports_op() to a separate function so the logic is not repeated twice. Signed-off-by: Pratyush Yadav <p.yadav@ti.com> Acked-by: Jagan Teki <jagan@amarulasolutions.com>
567 lines
15 KiB
C
567 lines
15 KiB
C
// SPDX-License-Identifier: GPL-2.0+
|
|
/*
|
|
* Copyright (C) 2018 Exceet Electronics GmbH
|
|
* Copyright (C) 2018 Bootlin
|
|
*
|
|
* Author: Boris Brezillon <boris.brezillon@bootlin.com>
|
|
*/
|
|
|
|
#ifndef __UBOOT__
|
|
#include <log.h>
|
|
#include <dm/devres.h>
|
|
#include <linux/dmaengine.h>
|
|
#include <linux/pm_runtime.h>
|
|
#include "internals.h"
|
|
#else
|
|
#include <common.h>
|
|
#include <dm.h>
|
|
#include <errno.h>
|
|
#include <malloc.h>
|
|
#include <spi.h>
|
|
#include <spi.h>
|
|
#include <spi-mem.h>
|
|
#include <dm/device_compat.h>
|
|
#endif
|
|
|
|
#ifndef __UBOOT__
|
|
/**
|
|
* spi_controller_dma_map_mem_op_data() - DMA-map the buffer attached to a
|
|
* memory operation
|
|
* @ctlr: the SPI controller requesting this dma_map()
|
|
* @op: the memory operation containing the buffer to map
|
|
* @sgt: a pointer to a non-initialized sg_table that will be filled by this
|
|
* function
|
|
*
|
|
* Some controllers might want to do DMA on the data buffer embedded in @op.
|
|
* This helper prepares everything for you and provides a ready-to-use
|
|
* sg_table. This function is not intended to be called from spi drivers.
|
|
* Only SPI controller drivers should use it.
|
|
* Note that the caller must ensure the memory region pointed by
|
|
* op->data.buf.{in,out} is DMA-able before calling this function.
|
|
*
|
|
* Return: 0 in case of success, a negative error code otherwise.
|
|
*/
|
|
int spi_controller_dma_map_mem_op_data(struct spi_controller *ctlr,
|
|
const struct spi_mem_op *op,
|
|
struct sg_table *sgt)
|
|
{
|
|
struct device *dmadev;
|
|
|
|
if (!op->data.nbytes)
|
|
return -EINVAL;
|
|
|
|
if (op->data.dir == SPI_MEM_DATA_OUT && ctlr->dma_tx)
|
|
dmadev = ctlr->dma_tx->device->dev;
|
|
else if (op->data.dir == SPI_MEM_DATA_IN && ctlr->dma_rx)
|
|
dmadev = ctlr->dma_rx->device->dev;
|
|
else
|
|
dmadev = ctlr->dev.parent;
|
|
|
|
if (!dmadev)
|
|
return -EINVAL;
|
|
|
|
return spi_map_buf(ctlr, dmadev, sgt, op->data.buf.in, op->data.nbytes,
|
|
op->data.dir == SPI_MEM_DATA_IN ?
|
|
DMA_FROM_DEVICE : DMA_TO_DEVICE);
|
|
}
|
|
EXPORT_SYMBOL_GPL(spi_controller_dma_map_mem_op_data);
|
|
|
|
/**
|
|
* spi_controller_dma_unmap_mem_op_data() - DMA-unmap the buffer attached to a
|
|
* memory operation
|
|
* @ctlr: the SPI controller requesting this dma_unmap()
|
|
* @op: the memory operation containing the buffer to unmap
|
|
* @sgt: a pointer to an sg_table previously initialized by
|
|
* spi_controller_dma_map_mem_op_data()
|
|
*
|
|
* Some controllers might want to do DMA on the data buffer embedded in @op.
|
|
* This helper prepares things so that the CPU can access the
|
|
* op->data.buf.{in,out} buffer again.
|
|
*
|
|
* This function is not intended to be called from SPI drivers. Only SPI
|
|
* controller drivers should use it.
|
|
*
|
|
* This function should be called after the DMA operation has finished and is
|
|
* only valid if the previous spi_controller_dma_map_mem_op_data() call
|
|
* returned 0.
|
|
*
|
|
* Return: 0 in case of success, a negative error code otherwise.
|
|
*/
|
|
void spi_controller_dma_unmap_mem_op_data(struct spi_controller *ctlr,
|
|
const struct spi_mem_op *op,
|
|
struct sg_table *sgt)
|
|
{
|
|
struct device *dmadev;
|
|
|
|
if (!op->data.nbytes)
|
|
return;
|
|
|
|
if (op->data.dir == SPI_MEM_DATA_OUT && ctlr->dma_tx)
|
|
dmadev = ctlr->dma_tx->device->dev;
|
|
else if (op->data.dir == SPI_MEM_DATA_IN && ctlr->dma_rx)
|
|
dmadev = ctlr->dma_rx->device->dev;
|
|
else
|
|
dmadev = ctlr->dev.parent;
|
|
|
|
spi_unmap_buf(ctlr, dmadev, sgt,
|
|
op->data.dir == SPI_MEM_DATA_IN ?
|
|
DMA_FROM_DEVICE : DMA_TO_DEVICE);
|
|
}
|
|
EXPORT_SYMBOL_GPL(spi_controller_dma_unmap_mem_op_data);
|
|
#endif /* __UBOOT__ */
|
|
|
|
static int spi_check_buswidth_req(struct spi_slave *slave, u8 buswidth, bool tx)
|
|
{
|
|
u32 mode = slave->mode;
|
|
|
|
switch (buswidth) {
|
|
case 1:
|
|
return 0;
|
|
|
|
case 2:
|
|
if ((tx && (mode & (SPI_TX_DUAL | SPI_TX_QUAD))) ||
|
|
(!tx && (mode & (SPI_RX_DUAL | SPI_RX_QUAD))))
|
|
return 0;
|
|
|
|
break;
|
|
|
|
case 4:
|
|
if ((tx && (mode & SPI_TX_QUAD)) ||
|
|
(!tx && (mode & SPI_RX_QUAD)))
|
|
return 0;
|
|
|
|
break;
|
|
case 8:
|
|
if ((tx && (mode & SPI_TX_OCTAL)) ||
|
|
(!tx && (mode & SPI_RX_OCTAL)))
|
|
return 0;
|
|
|
|
break;
|
|
|
|
default:
|
|
break;
|
|
}
|
|
|
|
return -ENOTSUPP;
|
|
}
|
|
|
|
static bool spi_mem_check_buswidth(struct spi_slave *slave,
|
|
const struct spi_mem_op *op)
|
|
{
|
|
if (spi_check_buswidth_req(slave, op->cmd.buswidth, true))
|
|
return false;
|
|
|
|
if (op->addr.nbytes &&
|
|
spi_check_buswidth_req(slave, op->addr.buswidth, true))
|
|
return false;
|
|
|
|
if (op->dummy.nbytes &&
|
|
spi_check_buswidth_req(slave, op->dummy.buswidth, true))
|
|
return false;
|
|
|
|
if (op->data.dir != SPI_MEM_NO_DATA &&
|
|
spi_check_buswidth_req(slave, op->data.buswidth,
|
|
op->data.dir == SPI_MEM_DATA_OUT))
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
bool spi_mem_dtr_supports_op(struct spi_slave *slave,
|
|
const struct spi_mem_op *op)
|
|
{
|
|
if (op->cmd.buswidth == 8 && op->cmd.nbytes % 2)
|
|
return false;
|
|
|
|
if (op->addr.nbytes && op->addr.buswidth == 8 && op->addr.nbytes % 2)
|
|
return false;
|
|
|
|
if (op->dummy.nbytes && op->dummy.buswidth == 8 && op->dummy.nbytes % 2)
|
|
return false;
|
|
|
|
if (op->data.dir != SPI_MEM_NO_DATA &&
|
|
op->dummy.buswidth == 8 && op->data.nbytes % 2)
|
|
return false;
|
|
|
|
return spi_mem_check_buswidth(slave, op);
|
|
}
|
|
EXPORT_SYMBOL_GPL(spi_mem_dtr_supports_op);
|
|
|
|
bool spi_mem_default_supports_op(struct spi_slave *slave,
|
|
const struct spi_mem_op *op)
|
|
{
|
|
if (op->cmd.dtr || op->addr.dtr || op->dummy.dtr || op->data.dtr)
|
|
return false;
|
|
|
|
if (op->cmd.nbytes != 1)
|
|
return false;
|
|
|
|
return spi_mem_check_buswidth(slave, op);
|
|
}
|
|
EXPORT_SYMBOL_GPL(spi_mem_default_supports_op);
|
|
|
|
/**
|
|
* spi_mem_supports_op() - Check if a memory device and the controller it is
|
|
* connected to support a specific memory operation
|
|
* @slave: the SPI device
|
|
* @op: the memory operation to check
|
|
*
|
|
* Some controllers are only supporting Single or Dual IOs, others might only
|
|
* support specific opcodes, or it can even be that the controller and device
|
|
* both support Quad IOs but the hardware prevents you from using it because
|
|
* only 2 IO lines are connected.
|
|
*
|
|
* This function checks whether a specific operation is supported.
|
|
*
|
|
* Return: true if @op is supported, false otherwise.
|
|
*/
|
|
bool spi_mem_supports_op(struct spi_slave *slave,
|
|
const struct spi_mem_op *op)
|
|
{
|
|
struct udevice *bus = slave->dev->parent;
|
|
struct dm_spi_ops *ops = spi_get_ops(bus);
|
|
|
|
if (ops->mem_ops && ops->mem_ops->supports_op)
|
|
return ops->mem_ops->supports_op(slave, op);
|
|
|
|
return spi_mem_default_supports_op(slave, op);
|
|
}
|
|
EXPORT_SYMBOL_GPL(spi_mem_supports_op);
|
|
|
|
/**
|
|
* spi_mem_exec_op() - Execute a memory operation
|
|
* @slave: the SPI device
|
|
* @op: the memory operation to execute
|
|
*
|
|
* Executes a memory operation.
|
|
*
|
|
* This function first checks that @op is supported and then tries to execute
|
|
* it.
|
|
*
|
|
* Return: 0 in case of success, a negative error code otherwise.
|
|
*/
|
|
int spi_mem_exec_op(struct spi_slave *slave, const struct spi_mem_op *op)
|
|
{
|
|
struct udevice *bus = slave->dev->parent;
|
|
struct dm_spi_ops *ops = spi_get_ops(bus);
|
|
unsigned int pos = 0;
|
|
const u8 *tx_buf = NULL;
|
|
u8 *rx_buf = NULL;
|
|
int op_len;
|
|
u32 flag;
|
|
int ret;
|
|
int i;
|
|
|
|
if (!spi_mem_supports_op(slave, op))
|
|
return -ENOTSUPP;
|
|
|
|
ret = spi_claim_bus(slave);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
if (ops->mem_ops && ops->mem_ops->exec_op) {
|
|
#ifndef __UBOOT__
|
|
/*
|
|
* Flush the message queue before executing our SPI memory
|
|
* operation to prevent preemption of regular SPI transfers.
|
|
*/
|
|
spi_flush_queue(ctlr);
|
|
|
|
if (ctlr->auto_runtime_pm) {
|
|
ret = pm_runtime_get_sync(ctlr->dev.parent);
|
|
if (ret < 0) {
|
|
dev_err(&ctlr->dev,
|
|
"Failed to power device: %d\n",
|
|
ret);
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
mutex_lock(&ctlr->bus_lock_mutex);
|
|
mutex_lock(&ctlr->io_mutex);
|
|
#endif
|
|
ret = ops->mem_ops->exec_op(slave, op);
|
|
|
|
#ifndef __UBOOT__
|
|
mutex_unlock(&ctlr->io_mutex);
|
|
mutex_unlock(&ctlr->bus_lock_mutex);
|
|
|
|
if (ctlr->auto_runtime_pm)
|
|
pm_runtime_put(ctlr->dev.parent);
|
|
#endif
|
|
|
|
/*
|
|
* Some controllers only optimize specific paths (typically the
|
|
* read path) and expect the core to use the regular SPI
|
|
* interface in other cases.
|
|
*/
|
|
if (!ret || ret != -ENOTSUPP) {
|
|
spi_release_bus(slave);
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
#ifndef __UBOOT__
|
|
tmpbufsize = op->cmd.nbytes + op->addr.nbytes + op->dummy.nbytes;
|
|
|
|
/*
|
|
* Allocate a buffer to transmit the CMD, ADDR cycles with kmalloc() so
|
|
* we're guaranteed that this buffer is DMA-able, as required by the
|
|
* SPI layer.
|
|
*/
|
|
tmpbuf = kzalloc(tmpbufsize, GFP_KERNEL | GFP_DMA);
|
|
if (!tmpbuf)
|
|
return -ENOMEM;
|
|
|
|
spi_message_init(&msg);
|
|
|
|
tmpbuf[0] = op->cmd.opcode;
|
|
xfers[xferpos].tx_buf = tmpbuf;
|
|
xfers[xferpos].len = op->cmd.nbytes;
|
|
xfers[xferpos].tx_nbits = op->cmd.buswidth;
|
|
spi_message_add_tail(&xfers[xferpos], &msg);
|
|
xferpos++;
|
|
totalxferlen++;
|
|
|
|
if (op->addr.nbytes) {
|
|
int i;
|
|
|
|
for (i = 0; i < op->addr.nbytes; i++)
|
|
tmpbuf[i + 1] = op->addr.val >>
|
|
(8 * (op->addr.nbytes - i - 1));
|
|
|
|
xfers[xferpos].tx_buf = tmpbuf + 1;
|
|
xfers[xferpos].len = op->addr.nbytes;
|
|
xfers[xferpos].tx_nbits = op->addr.buswidth;
|
|
spi_message_add_tail(&xfers[xferpos], &msg);
|
|
xferpos++;
|
|
totalxferlen += op->addr.nbytes;
|
|
}
|
|
|
|
if (op->dummy.nbytes) {
|
|
memset(tmpbuf + op->addr.nbytes + 1, 0xff, op->dummy.nbytes);
|
|
xfers[xferpos].tx_buf = tmpbuf + op->addr.nbytes + 1;
|
|
xfers[xferpos].len = op->dummy.nbytes;
|
|
xfers[xferpos].tx_nbits = op->dummy.buswidth;
|
|
spi_message_add_tail(&xfers[xferpos], &msg);
|
|
xferpos++;
|
|
totalxferlen += op->dummy.nbytes;
|
|
}
|
|
|
|
if (op->data.nbytes) {
|
|
if (op->data.dir == SPI_MEM_DATA_IN) {
|
|
xfers[xferpos].rx_buf = op->data.buf.in;
|
|
xfers[xferpos].rx_nbits = op->data.buswidth;
|
|
} else {
|
|
xfers[xferpos].tx_buf = op->data.buf.out;
|
|
xfers[xferpos].tx_nbits = op->data.buswidth;
|
|
}
|
|
|
|
xfers[xferpos].len = op->data.nbytes;
|
|
spi_message_add_tail(&xfers[xferpos], &msg);
|
|
xferpos++;
|
|
totalxferlen += op->data.nbytes;
|
|
}
|
|
|
|
ret = spi_sync(slave, &msg);
|
|
|
|
kfree(tmpbuf);
|
|
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (msg.actual_length != totalxferlen)
|
|
return -EIO;
|
|
#else
|
|
|
|
if (op->data.nbytes) {
|
|
if (op->data.dir == SPI_MEM_DATA_IN)
|
|
rx_buf = op->data.buf.in;
|
|
else
|
|
tx_buf = op->data.buf.out;
|
|
}
|
|
|
|
op_len = op->cmd.nbytes + op->addr.nbytes + op->dummy.nbytes;
|
|
|
|
/*
|
|
* Avoid using malloc() here so that we can use this code in SPL where
|
|
* simple malloc may be used. That implementation does not allow free()
|
|
* so repeated calls to this code can exhaust the space.
|
|
*
|
|
* The value of op_len is small, since it does not include the actual
|
|
* data being sent, only the op-code and address. In fact, it should be
|
|
* possible to just use a small fixed value here instead of op_len.
|
|
*/
|
|
u8 op_buf[op_len];
|
|
|
|
op_buf[pos++] = op->cmd.opcode;
|
|
|
|
if (op->addr.nbytes) {
|
|
for (i = 0; i < op->addr.nbytes; i++)
|
|
op_buf[pos + i] = op->addr.val >>
|
|
(8 * (op->addr.nbytes - i - 1));
|
|
|
|
pos += op->addr.nbytes;
|
|
}
|
|
|
|
if (op->dummy.nbytes)
|
|
memset(op_buf + pos, 0xff, op->dummy.nbytes);
|
|
|
|
/* 1st transfer: opcode + address + dummy cycles */
|
|
flag = SPI_XFER_BEGIN;
|
|
/* Make sure to set END bit if no tx or rx data messages follow */
|
|
if (!tx_buf && !rx_buf)
|
|
flag |= SPI_XFER_END;
|
|
|
|
ret = spi_xfer(slave, op_len * 8, op_buf, NULL, flag);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/* 2nd transfer: rx or tx data path */
|
|
if (tx_buf || rx_buf) {
|
|
ret = spi_xfer(slave, op->data.nbytes * 8, tx_buf,
|
|
rx_buf, SPI_XFER_END);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
|
|
spi_release_bus(slave);
|
|
|
|
for (i = 0; i < pos; i++)
|
|
debug("%02x ", op_buf[i]);
|
|
debug("| [%dB %s] ",
|
|
tx_buf || rx_buf ? op->data.nbytes : 0,
|
|
tx_buf || rx_buf ? (tx_buf ? "out" : "in") : "-");
|
|
for (i = 0; i < op->data.nbytes; i++)
|
|
debug("%02x ", tx_buf ? tx_buf[i] : rx_buf[i]);
|
|
debug("[ret %d]\n", ret);
|
|
|
|
if (ret < 0)
|
|
return ret;
|
|
#endif /* __UBOOT__ */
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(spi_mem_exec_op);
|
|
|
|
/**
|
|
* spi_mem_adjust_op_size() - Adjust the data size of a SPI mem operation to
|
|
* match controller limitations
|
|
* @slave: the SPI device
|
|
* @op: the operation to adjust
|
|
*
|
|
* Some controllers have FIFO limitations and must split a data transfer
|
|
* operation into multiple ones, others require a specific alignment for
|
|
* optimized accesses. This function allows SPI mem drivers to split a single
|
|
* operation into multiple sub-operations when required.
|
|
*
|
|
* Return: a negative error code if the controller can't properly adjust @op,
|
|
* 0 otherwise. Note that @op->data.nbytes will be updated if @op
|
|
* can't be handled in a single step.
|
|
*/
|
|
int spi_mem_adjust_op_size(struct spi_slave *slave, struct spi_mem_op *op)
|
|
{
|
|
struct udevice *bus = slave->dev->parent;
|
|
struct dm_spi_ops *ops = spi_get_ops(bus);
|
|
|
|
if (ops->mem_ops && ops->mem_ops->adjust_op_size)
|
|
return ops->mem_ops->adjust_op_size(slave, op);
|
|
|
|
if (!ops->mem_ops || !ops->mem_ops->exec_op) {
|
|
unsigned int len;
|
|
|
|
len = op->cmd.nbytes + op->addr.nbytes + op->dummy.nbytes;
|
|
if (slave->max_write_size && len > slave->max_write_size)
|
|
return -EINVAL;
|
|
|
|
if (op->data.dir == SPI_MEM_DATA_IN) {
|
|
if (slave->max_read_size)
|
|
op->data.nbytes = min(op->data.nbytes,
|
|
slave->max_read_size);
|
|
} else if (slave->max_write_size) {
|
|
op->data.nbytes = min(op->data.nbytes,
|
|
slave->max_write_size - len);
|
|
}
|
|
|
|
if (!op->data.nbytes)
|
|
return -EINVAL;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(spi_mem_adjust_op_size);
|
|
|
|
#ifndef __UBOOT__
|
|
static inline struct spi_mem_driver *to_spi_mem_drv(struct device_driver *drv)
|
|
{
|
|
return container_of(drv, struct spi_mem_driver, spidrv.driver);
|
|
}
|
|
|
|
static int spi_mem_probe(struct spi_device *spi)
|
|
{
|
|
struct spi_mem_driver *memdrv = to_spi_mem_drv(spi->dev.driver);
|
|
struct spi_mem *mem;
|
|
|
|
mem = devm_kzalloc(&spi->dev, sizeof(*mem), GFP_KERNEL);
|
|
if (!mem)
|
|
return -ENOMEM;
|
|
|
|
mem->spi = spi;
|
|
spi_set_drvdata(spi, mem);
|
|
|
|
return memdrv->probe(mem);
|
|
}
|
|
|
|
static int spi_mem_remove(struct spi_device *spi)
|
|
{
|
|
struct spi_mem_driver *memdrv = to_spi_mem_drv(spi->dev.driver);
|
|
struct spi_mem *mem = spi_get_drvdata(spi);
|
|
|
|
if (memdrv->remove)
|
|
return memdrv->remove(mem);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void spi_mem_shutdown(struct spi_device *spi)
|
|
{
|
|
struct spi_mem_driver *memdrv = to_spi_mem_drv(spi->dev.driver);
|
|
struct spi_mem *mem = spi_get_drvdata(spi);
|
|
|
|
if (memdrv->shutdown)
|
|
memdrv->shutdown(mem);
|
|
}
|
|
|
|
/**
|
|
* spi_mem_driver_register_with_owner() - Register a SPI memory driver
|
|
* @memdrv: the SPI memory driver to register
|
|
* @owner: the owner of this driver
|
|
*
|
|
* Registers a SPI memory driver.
|
|
*
|
|
* Return: 0 in case of success, a negative error core otherwise.
|
|
*/
|
|
|
|
int spi_mem_driver_register_with_owner(struct spi_mem_driver *memdrv,
|
|
struct module *owner)
|
|
{
|
|
memdrv->spidrv.probe = spi_mem_probe;
|
|
memdrv->spidrv.remove = spi_mem_remove;
|
|
memdrv->spidrv.shutdown = spi_mem_shutdown;
|
|
|
|
return __spi_register_driver(owner, &memdrv->spidrv);
|
|
}
|
|
EXPORT_SYMBOL_GPL(spi_mem_driver_register_with_owner);
|
|
|
|
/**
|
|
* spi_mem_driver_unregister_with_owner() - Unregister a SPI memory driver
|
|
* @memdrv: the SPI memory driver to unregister
|
|
*
|
|
* Unregisters a SPI memory driver.
|
|
*/
|
|
void spi_mem_driver_unregister(struct spi_mem_driver *memdrv)
|
|
{
|
|
spi_unregister_driver(&memdrv->spidrv);
|
|
}
|
|
EXPORT_SYMBOL_GPL(spi_mem_driver_unregister);
|
|
#endif /* __UBOOT__ */
|