2
0
Fork 0
mirror of https://github.com/AsahiLinux/u-boot synced 2025-01-07 10:48:54 +00:00
u-boot/drivers/ram/k3-ddrss/lpddr4_32bit.c
Dave Gerlach a8c13c777e ram: k3-ddrss: Introduce common driver with J7 SoC support
Introduce a new version of the ddr driver which has the ability to
support different variations of the controller. Also introduce support
for the 32bit variation of the controller which is what was already
supported by the previous version used for J721e and J7200.

Signed-off-by: Dave Gerlach <d-gerlach@ti.com>
2021-05-12 16:30:52 +05:30

302 lines
8.8 KiB
C

// SPDX-License-Identifier: BSD-3-Clause
/*
* Cadence DDR Driver
*
* Copyright (C) 2012-2021 Cadence Design Systems, Inc.
* Copyright (C) 2018-2021 Texas Instruments Incorporated - https://www.ti.com/
*/
#include <errno.h>
#include "cps_drv_lpddr4.h"
#include "lpddr4_ctl_regs.h"
#include "lpddr4_if.h"
#include "lpddr4.h"
#include "lpddr4_structs_if.h"
static void lpddr4_setrxoffseterror(lpddr4_ctlregs *ctlregbase, lpddr4_debuginfo *debuginfo, bool *errorfound);
u32 lpddr4_enablepiinitiator(const lpddr4_privatedata *pd)
{
u32 result = 0U;
u32 regval = 0U;
lpddr4_ctlregs *ctlregbase = (lpddr4_ctlregs *)pd->ctlbase;
regval = CPS_FLD_SET(LPDDR4__PI_INIT_LVL_EN__FLD, CPS_REG_READ(&(ctlregbase->LPDDR4__PI_INIT_LVL_EN__REG)));
regval = CPS_FLD_SET(LPDDR4__PI_NORMAL_LVL_SEQ__FLD, regval);
CPS_REG_WRITE((&(ctlregbase->LPDDR4__PI_INIT_LVL_EN__REG)), regval);
return result;
}
u32 lpddr4_getctlinterruptmask(const lpddr4_privatedata *pd, u64 *mask)
{
u32 result = 0U;
u32 lowermask = 0U;
result = lpddr4_getctlinterruptmasksf(pd, mask);
if (result == (u32)0) {
lpddr4_ctlregs *ctlregbase = (lpddr4_ctlregs *)pd->ctlbase;
lowermask = (u32)(CPS_FLD_READ(LPDDR4__INT_MASK_0__FLD, CPS_REG_READ(&(ctlregbase->LPDDR4__INT_MASK_0__REG))));
*mask = (u64)(CPS_FLD_READ(LPDDR4__INT_MASK_1__FLD, CPS_REG_READ(&(ctlregbase->LPDDR4__INT_MASK_1__REG))));
*mask = (u64)((*mask << WORD_SHIFT) | lowermask);
}
return result;
}
u32 lpddr4_setctlinterruptmask(const lpddr4_privatedata *pd, const u64 *mask)
{
u32 result;
u32 regval = 0;
const u64 ui64one = 1ULL;
const u32 ui32irqcount = (u32)LPDDR4_INTR_LOR_BITS + 1U;
result = lpddr4_setctlinterruptmasksf(pd, mask);
if ((result == (u32)0) && (ui32irqcount < 64U)) {
if (*mask >= (ui64one << ui32irqcount))
result = (u32)EINVAL;
}
if (result == (u32)0) {
lpddr4_ctlregs *ctlregbase = (lpddr4_ctlregs *)pd->ctlbase;
regval = (u32)(*mask & WORD_MASK);
regval = CPS_FLD_WRITE(LPDDR4__INT_MASK_0__FLD, CPS_REG_READ(&(ctlregbase->LPDDR4__INT_MASK_0__REG)), regval);
CPS_REG_WRITE(&(ctlregbase->LPDDR4__INT_MASK_0__REG), regval);
regval = (u32)((*mask >> WORD_SHIFT) & WORD_MASK);
regval = CPS_FLD_WRITE(LPDDR4__INT_MASK_1__FLD, CPS_REG_READ(&(ctlregbase->LPDDR4__INT_MASK_1__REG)), regval);
CPS_REG_WRITE(&(ctlregbase->LPDDR4__INT_MASK_1__REG), regval);
}
return result;
}
u32 lpddr4_checkctlinterrupt(const lpddr4_privatedata *pd, lpddr4_intr_ctlinterrupt intr, bool *irqstatus)
{
u32 result;
u32 ctlirqstatus = 0;
u32 fieldshift = 0;
result = LPDDR4_INTR_CheckCtlIntSF(pd, intr, irqstatus);
if (result == (u32)0) {
lpddr4_ctlregs *ctlregbase = (lpddr4_ctlregs *)pd->ctlbase;
if ((u32)intr >= (u32)WORD_SHIFT) {
ctlirqstatus = CPS_REG_READ(&(ctlregbase->LPDDR4__INT_STATUS_1__REG));
fieldshift = (u32)intr - ((u32)WORD_SHIFT);
} else {
ctlirqstatus = CPS_REG_READ(&(ctlregbase->LPDDR4__INT_STATUS_0__REG));
fieldshift = (u32)intr;
}
if (fieldshift < WORD_SHIFT) {
if (((ctlirqstatus >> fieldshift) & LPDDR4_BIT_MASK) > 0U)
*irqstatus = true;
else
*irqstatus = false;
}
}
return result;
}
u32 lpddr4_ackctlinterrupt(const lpddr4_privatedata *pd, lpddr4_intr_ctlinterrupt intr)
{
u32 result = 0;
u32 regval = 0;
u32 localinterrupt = (u32)intr;
result = LPDDR4_INTR_AckCtlIntSF(pd, intr);
if (result == (u32)0) {
lpddr4_ctlregs *ctlregbase = (lpddr4_ctlregs *)pd->ctlbase;
if (localinterrupt > WORD_SHIFT) {
localinterrupt = (localinterrupt - (u32)WORD_SHIFT);
regval = ((u32)LPDDR4_BIT_MASK << localinterrupt);
CPS_REG_WRITE(&(ctlregbase->LPDDR4__INT_ACK_1__REG), regval);
} else {
regval = ((u32)LPDDR4_BIT_MASK << localinterrupt);
CPS_REG_WRITE(&(ctlregbase->LPDDR4__INT_ACK_0__REG), regval);
}
}
return result;
}
void lpddr4_checkwrlvlerror(lpddr4_ctlregs *ctlregbase, lpddr4_debuginfo *debuginfo, bool *errfoundptr)
{
u32 regval;
u32 errbitmask = 0U;
u32 snum;
volatile u32 *regaddress;
regaddress = (volatile u32 *)(&(ctlregbase->LPDDR4__PHY_WRLVL_ERROR_OBS_0__REG));
errbitmask = (LPDDR4_BIT_MASK << 1) | (LPDDR4_BIT_MASK);
for (snum = 0U; snum < DSLICE_NUM; snum++) {
regval = CPS_REG_READ(regaddress);
if ((regval & errbitmask) != 0U) {
debuginfo->wrlvlerror = CDN_TRUE;
*errfoundptr = true;
}
regaddress = lpddr4_addoffset(regaddress, (u32)SLICE_WIDTH);
}
}
static void lpddr4_setrxoffseterror(lpddr4_ctlregs *ctlregbase, lpddr4_debuginfo *debuginfo, bool *errorfound)
{
volatile u32 *regaddress;
u32 snum = 0U;
u32 errbitmask = 0U;
u32 regval = 0U;
if (*errorfound == (bool)false) {
regaddress = (volatile u32 *)(&(ctlregbase->LPDDR4__PHY_RX_CAL_LOCK_OBS_0__REG));
errbitmask = (RX_CAL_DONE) | (NIBBLE_MASK);
for (snum = (u32)0U; snum < DSLICE_NUM; snum++) {
regval = CPS_FLD_READ(LPDDR4__PHY_RX_CAL_LOCK_OBS_0__FLD, CPS_REG_READ(regaddress));
if ((regval & errbitmask) != RX_CAL_DONE) {
debuginfo->rxoffseterror = (u8)true;
*errorfound = true;
}
regaddress = lpddr4_addoffset(regaddress, (u32)SLICE_WIDTH);
}
}
}
u32 lpddr4_getdebuginitinfo(const lpddr4_privatedata *pd, lpddr4_debuginfo *debuginfo)
{
u32 result = 0U;
bool errorfound = false;
result = lpddr4_getdebuginitinfosf(pd, debuginfo);
if (result == (u32)0) {
lpddr4_ctlregs *ctlregbase = (lpddr4_ctlregs *)pd->ctlbase;
lpddr4_seterrors(ctlregbase, debuginfo, (u8 *)&errorfound);
lpddr4_setsettings(ctlregbase, errorfound);
lpddr4_setrxoffseterror(ctlregbase, debuginfo, &errorfound);
errorfound = (bool)lpddr4_checklvlerrors(pd, debuginfo, errorfound);
}
if (errorfound == (bool)true)
result = (u32)EPROTO;
return result;
}
u32 lpddr4_geteccenable(const lpddr4_privatedata *pd, lpddr4_eccenable *eccparam)
{
u32 result = 0U;
u32 fldval = 0U;
result = lpddr4_geteccenablesf(pd, eccparam);
if (result == (u32)0) {
lpddr4_ctlregs *ctlregbase = (lpddr4_ctlregs *)pd->ctlbase;
fldval = CPS_FLD_READ(LPDDR4__ECC_ENABLE__FLD, CPS_REG_READ(&(ctlregbase->LPDDR4__ECC_ENABLE__REG)));
switch (fldval) {
case 3:
*eccparam = LPDDR4_ECC_ERR_DETECT_CORRECT;
break;
case 2:
*eccparam = LPDDR4_ECC_ERR_DETECT;
break;
case 1:
*eccparam = LPDDR4_ECC_ENABLED;
break;
default:
*eccparam = LPDDR4_ECC_DISABLED;
break;
}
}
return result;
}
u32 lpddr4_seteccenable(const lpddr4_privatedata *pd, const lpddr4_eccenable *eccparam)
{
u32 result = 0U;
u32 regval = 0U;
result = lpddr4_seteccenablesf(pd, eccparam);
if (result == (u32)0) {
lpddr4_ctlregs *ctlregbase = (lpddr4_ctlregs *)pd->ctlbase;
regval = CPS_FLD_WRITE(LPDDR4__ECC_ENABLE__FLD, CPS_REG_READ(&(ctlregbase->LPDDR4__ECC_ENABLE__REG)), *eccparam);
CPS_REG_WRITE(&(ctlregbase->LPDDR4__ECC_ENABLE__REG), regval);
}
return result;
}
u32 lpddr4_getreducmode(const lpddr4_privatedata *pd, lpddr4_reducmode *mode)
{
u32 result = 0U;
result = lpddr4_getreducmodesf(pd, mode);
if (result == (u32)0) {
lpddr4_ctlregs *ctlregbase = (lpddr4_ctlregs *)pd->ctlbase;
if (CPS_FLD_READ(LPDDR4__REDUC__FLD, CPS_REG_READ(&(ctlregbase->LPDDR4__REDUC__REG))) == 0U)
*mode = LPDDR4_REDUC_ON;
else
*mode = LPDDR4_REDUC_OFF;
}
return result;
}
u32 lpddr4_setreducmode(const lpddr4_privatedata *pd, const lpddr4_reducmode *mode)
{
u32 result = 0U;
u32 regval = 0U;
result = lpddr4_setreducmodesf(pd, mode);
if (result == (u32)0) {
lpddr4_ctlregs *ctlregbase = (lpddr4_ctlregs *)pd->ctlbase;
regval = (u32)CPS_FLD_WRITE(LPDDR4__REDUC__FLD, CPS_REG_READ(&(ctlregbase->LPDDR4__REDUC__REG)), *mode);
CPS_REG_WRITE(&(ctlregbase->LPDDR4__REDUC__REG), regval);
}
return result;
}
u32 lpddr4_checkmmrreaderror(const lpddr4_privatedata *pd, u64 *mmrvalue, u8 *mrrstatus)
{
u32 lowerdata;
lpddr4_ctlregs *ctlregbase = (lpddr4_ctlregs *)pd->ctlbase;
u32 result = (u32)0;
if (lpddr4_pollctlirq(pd, LPDDR4_INTR_MRR_ERROR, 100) == 0U) {
*mrrstatus = (u8)CPS_FLD_READ(LPDDR4__MRR_ERROR_STATUS__FLD, CPS_REG_READ(&(ctlregbase->LPDDR4__MRR_ERROR_STATUS__REG)));
*mmrvalue = (u64)0;
result = (u32)EIO;
} else {
*mrrstatus = (u8)0;
lowerdata = CPS_REG_READ(&(ctlregbase->LPDDR4__PERIPHERAL_MRR_DATA_0__REG));
*mmrvalue = CPS_REG_READ(&(ctlregbase->LPDDR4__PERIPHERAL_MRR_DATA_1__REG));
*mmrvalue = (u64)((*mmrvalue << WORD_SHIFT) | lowerdata);
result = lpddr4_ackctlinterrupt(pd, LPDDR4_INTR_MR_READ_DONE);
}
return result;
}
#ifdef REG_WRITE_VERIF
u32 lpddr4_getdslicemask(u32 dslicenum, u32 arrayoffset)
{
u32 rwmask = 0U;
switch (dslicenum) {
case 0:
if (arrayoffset < DSLICE0_REG_COUNT)
rwmask = g_lpddr4_data_slice_0_rw_mask[arrayoffset];
break;
case 1:
if (arrayoffset < DSLICE1_REG_COUNT)
rwmask = g_lpddr4_data_slice_1_rw_mask[arrayoffset];
break;
case 2:
if (arrayoffset < DSLICE2_REG_COUNT)
rwmask = g_lpddr4_data_slice_2_rw_mask[arrayoffset];
break;
default:
if (arrayoffset < DSLICE3_REG_COUNT)
rwmask = g_lpddr4_data_slice_3_rw_mask[arrayoffset];
break;
}
return rwmask;
}
#endif