mirror of
https://github.com/AsahiLinux/u-boot
synced 2024-12-12 14:23:00 +00:00
33c215af4b
At present PCI address transaction is not supported so drivers must manually read the correct BAR after reading the device tree info. The ns16550 has a suitable implementation, so move this code into the core DM support. Note that there is no live-tree equivalent at present. Signed-off-by: Simon Glass <sjg@chromium.org> Reviewed-by: Bin Meng <bmeng.cn@gmail.com> Tested-by: Bin Meng <bmeng.cn@gmail.com> [bmeng: correct the unclear comments in test.dts] Signed-off-by: Bin Meng <bmeng.cn@gmail.com>
341 lines
10 KiB
C
341 lines
10 KiB
C
// SPDX-License-Identifier: GPL-2.0+
|
|
/*
|
|
* Copyright (C) 2015 Google, Inc
|
|
*/
|
|
|
|
#include <common.h>
|
|
#include <dm.h>
|
|
#include <asm/io.h>
|
|
#include <asm/test.h>
|
|
#include <dm/test.h>
|
|
#include <test/ut.h>
|
|
|
|
/* Test that sandbox PCI works correctly */
|
|
static int dm_test_pci_base(struct unit_test_state *uts)
|
|
{
|
|
struct udevice *bus;
|
|
|
|
ut_assertok(uclass_get_device(UCLASS_PCI, 0, &bus));
|
|
|
|
return 0;
|
|
}
|
|
DM_TEST(dm_test_pci_base, DM_TESTF_SCAN_PDATA | DM_TESTF_SCAN_FDT);
|
|
|
|
/* Test that sandbox PCI bus numbering and device works correctly */
|
|
static int dm_test_pci_busdev(struct unit_test_state *uts)
|
|
{
|
|
struct udevice *bus;
|
|
struct udevice *swap;
|
|
u16 vendor, device;
|
|
|
|
/* Test bus#0 and its devices */
|
|
ut_assertok(uclass_get_device_by_seq(UCLASS_PCI, 0, &bus));
|
|
|
|
ut_assertok(dm_pci_bus_find_bdf(PCI_BDF(0, 0x00, 0), &swap));
|
|
vendor = 0;
|
|
ut_assertok(dm_pci_read_config16(swap, PCI_VENDOR_ID, &vendor));
|
|
ut_asserteq(SANDBOX_PCI_VENDOR_ID, vendor);
|
|
ut_assertok(dm_pci_bus_find_bdf(PCI_BDF(0, 0x1f, 0), &swap));
|
|
device = 0;
|
|
ut_assertok(dm_pci_read_config16(swap, PCI_DEVICE_ID, &device));
|
|
ut_asserteq(SANDBOX_PCI_SWAP_CASE_EMUL_ID, device);
|
|
|
|
/* Test bus#1 and its devices */
|
|
ut_assertok(uclass_get_device_by_seq(UCLASS_PCI, 1, &bus));
|
|
|
|
ut_assertok(dm_pci_bus_find_bdf(PCI_BDF(1, 0x08, 0), &swap));
|
|
vendor = 0;
|
|
ut_assertok(dm_pci_read_config16(swap, PCI_VENDOR_ID, &vendor));
|
|
ut_asserteq(SANDBOX_PCI_VENDOR_ID, vendor);
|
|
ut_assertok(dm_pci_bus_find_bdf(PCI_BDF(1, 0x0c, 0), &swap));
|
|
device = 0;
|
|
ut_assertok(dm_pci_read_config16(swap, PCI_DEVICE_ID, &device));
|
|
ut_asserteq(SANDBOX_PCI_SWAP_CASE_EMUL_ID, device);
|
|
|
|
return 0;
|
|
}
|
|
DM_TEST(dm_test_pci_busdev, DM_TESTF_SCAN_PDATA | DM_TESTF_SCAN_FDT);
|
|
|
|
/* Test that we can use the swapcase device correctly */
|
|
static int dm_test_pci_swapcase(struct unit_test_state *uts)
|
|
{
|
|
struct udevice *swap;
|
|
ulong io_addr, mem_addr;
|
|
char *ptr;
|
|
|
|
/* Check that asking for the device 0 automatically fires up PCI */
|
|
ut_assertok(dm_pci_bus_find_bdf(PCI_BDF(0, 0x00, 0), &swap));
|
|
|
|
/* First test I/O */
|
|
io_addr = dm_pci_read_bar32(swap, 0);
|
|
outb(2, io_addr);
|
|
ut_asserteq(2, inb(io_addr));
|
|
|
|
/*
|
|
* Now test memory mapping - note we must unmap and remap to cause
|
|
* the swapcase emulation to see our data and response.
|
|
*/
|
|
mem_addr = dm_pci_read_bar32(swap, 1);
|
|
ptr = map_sysmem(mem_addr, 20);
|
|
strcpy(ptr, "This is a TesT");
|
|
unmap_sysmem(ptr);
|
|
|
|
ptr = map_sysmem(mem_addr, 20);
|
|
ut_asserteq_str("tHIS IS A tESt", ptr);
|
|
unmap_sysmem(ptr);
|
|
|
|
/* Check that asking for the device 1 automatically fires up PCI */
|
|
ut_assertok(dm_pci_bus_find_bdf(PCI_BDF(0, 0x1f, 0), &swap));
|
|
|
|
/* First test I/O */
|
|
io_addr = dm_pci_read_bar32(swap, 0);
|
|
outb(2, io_addr);
|
|
ut_asserteq(2, inb(io_addr));
|
|
|
|
/*
|
|
* Now test memory mapping - note we must unmap and remap to cause
|
|
* the swapcase emulation to see our data and response.
|
|
*/
|
|
mem_addr = dm_pci_read_bar32(swap, 1);
|
|
ptr = map_sysmem(mem_addr, 20);
|
|
strcpy(ptr, "This is a TesT");
|
|
unmap_sysmem(ptr);
|
|
|
|
ptr = map_sysmem(mem_addr, 20);
|
|
ut_asserteq_str("tHIS IS A tESt", ptr);
|
|
unmap_sysmem(ptr);
|
|
|
|
return 0;
|
|
}
|
|
DM_TEST(dm_test_pci_swapcase, DM_TESTF_SCAN_PDATA | DM_TESTF_SCAN_FDT);
|
|
|
|
/* Test that we can dynamically bind the device driver correctly */
|
|
static int dm_test_pci_drvdata(struct unit_test_state *uts)
|
|
{
|
|
struct udevice *bus, *swap;
|
|
|
|
/* Check that asking for the device automatically fires up PCI */
|
|
ut_assertok(uclass_get_device_by_seq(UCLASS_PCI, 1, &bus));
|
|
|
|
ut_assertok(dm_pci_bus_find_bdf(PCI_BDF(1, 0x08, 0), &swap));
|
|
ut_asserteq(SWAP_CASE_DRV_DATA, swap->driver_data);
|
|
ut_assertok(dev_of_valid(swap));
|
|
ut_assertok(dm_pci_bus_find_bdf(PCI_BDF(1, 0x0c, 0), &swap));
|
|
ut_asserteq(SWAP_CASE_DRV_DATA, swap->driver_data);
|
|
ut_assertok(dev_of_valid(swap));
|
|
ut_assertok(dm_pci_bus_find_bdf(PCI_BDF(1, 0x10, 0), &swap));
|
|
ut_asserteq(SWAP_CASE_DRV_DATA, swap->driver_data);
|
|
ut_assertok(!dev_of_valid(swap));
|
|
|
|
return 0;
|
|
}
|
|
DM_TEST(dm_test_pci_drvdata, DM_TESTF_SCAN_PDATA | DM_TESTF_SCAN_FDT);
|
|
|
|
/* Test that devices on PCI bus#2 can be accessed correctly */
|
|
static int dm_test_pci_mixed(struct unit_test_state *uts)
|
|
{
|
|
/* PCI bus#2 has both statically and dynamic declared devices */
|
|
struct udevice *bus, *swap;
|
|
u16 vendor, device;
|
|
ulong io_addr, mem_addr;
|
|
char *ptr;
|
|
|
|
ut_assertok(uclass_get_device_by_seq(UCLASS_PCI, 2, &bus));
|
|
|
|
/* Test the dynamic device */
|
|
ut_assertok(dm_pci_bus_find_bdf(PCI_BDF(2, 0x08, 0), &swap));
|
|
vendor = 0;
|
|
ut_assertok(dm_pci_read_config16(swap, PCI_VENDOR_ID, &vendor));
|
|
ut_asserteq(SANDBOX_PCI_VENDOR_ID, vendor);
|
|
|
|
/* First test I/O */
|
|
io_addr = dm_pci_read_bar32(swap, 0);
|
|
outb(2, io_addr);
|
|
ut_asserteq(2, inb(io_addr));
|
|
|
|
/*
|
|
* Now test memory mapping - note we must unmap and remap to cause
|
|
* the swapcase emulation to see our data and response.
|
|
*/
|
|
mem_addr = dm_pci_read_bar32(swap, 1);
|
|
ptr = map_sysmem(mem_addr, 30);
|
|
strcpy(ptr, "This is a TesT oN dYNAMIc");
|
|
unmap_sysmem(ptr);
|
|
|
|
ptr = map_sysmem(mem_addr, 30);
|
|
ut_asserteq_str("tHIS IS A tESt On DynamiC", ptr);
|
|
unmap_sysmem(ptr);
|
|
|
|
/* Test the static device */
|
|
ut_assertok(dm_pci_bus_find_bdf(PCI_BDF(2, 0x1f, 0), &swap));
|
|
device = 0;
|
|
ut_assertok(dm_pci_read_config16(swap, PCI_DEVICE_ID, &device));
|
|
ut_asserteq(SANDBOX_PCI_SWAP_CASE_EMUL_ID, device);
|
|
|
|
/* First test I/O */
|
|
io_addr = dm_pci_read_bar32(swap, 0);
|
|
outb(2, io_addr);
|
|
ut_asserteq(2, inb(io_addr));
|
|
|
|
/*
|
|
* Now test memory mapping - note we must unmap and remap to cause
|
|
* the swapcase emulation to see our data and response.
|
|
*/
|
|
mem_addr = dm_pci_read_bar32(swap, 1);
|
|
ptr = map_sysmem(mem_addr, 30);
|
|
strcpy(ptr, "This is a TesT oN sTATIc");
|
|
unmap_sysmem(ptr);
|
|
|
|
ptr = map_sysmem(mem_addr, 30);
|
|
ut_asserteq_str("tHIS IS A tESt On StatiC", ptr);
|
|
unmap_sysmem(ptr);
|
|
|
|
return 0;
|
|
}
|
|
DM_TEST(dm_test_pci_mixed, DM_TESTF_SCAN_PDATA | DM_TESTF_SCAN_FDT);
|
|
|
|
/* Test looking up PCI capability and extended capability */
|
|
static int dm_test_pci_cap(struct unit_test_state *uts)
|
|
{
|
|
struct udevice *bus, *swap;
|
|
int cap;
|
|
|
|
ut_assertok(uclass_get_device_by_seq(UCLASS_PCI, 0, &bus));
|
|
ut_assertok(dm_pci_bus_find_bdf(PCI_BDF(0, 0x1f, 0), &swap));
|
|
|
|
/* look up PCI_CAP_ID_EXP */
|
|
cap = dm_pci_find_capability(swap, PCI_CAP_ID_EXP);
|
|
ut_asserteq(PCI_CAP_ID_EXP_OFFSET, cap);
|
|
|
|
/* look up PCI_CAP_ID_PCIX */
|
|
cap = dm_pci_find_capability(swap, PCI_CAP_ID_PCIX);
|
|
ut_asserteq(0, cap);
|
|
|
|
/* look up PCI_CAP_ID_MSIX starting from PCI_CAP_ID_PM_OFFSET */
|
|
cap = dm_pci_find_next_capability(swap, PCI_CAP_ID_PM_OFFSET,
|
|
PCI_CAP_ID_MSIX);
|
|
ut_asserteq(PCI_CAP_ID_MSIX_OFFSET, cap);
|
|
|
|
/* look up PCI_CAP_ID_VNDR starting from PCI_CAP_ID_EXP_OFFSET */
|
|
cap = dm_pci_find_next_capability(swap, PCI_CAP_ID_EXP_OFFSET,
|
|
PCI_CAP_ID_VNDR);
|
|
ut_asserteq(0, cap);
|
|
|
|
ut_assertok(uclass_get_device_by_seq(UCLASS_PCI, 1, &bus));
|
|
ut_assertok(dm_pci_bus_find_bdf(PCI_BDF(1, 0x08, 0), &swap));
|
|
|
|
/* look up PCI_EXT_CAP_ID_DSN */
|
|
cap = dm_pci_find_ext_capability(swap, PCI_EXT_CAP_ID_DSN);
|
|
ut_asserteq(PCI_EXT_CAP_ID_DSN_OFFSET, cap);
|
|
|
|
/* look up PCI_EXT_CAP_ID_SRIOV */
|
|
cap = dm_pci_find_ext_capability(swap, PCI_EXT_CAP_ID_SRIOV);
|
|
ut_asserteq(0, cap);
|
|
|
|
/* look up PCI_EXT_CAP_ID_DSN starting from PCI_EXT_CAP_ID_ERR_OFFSET */
|
|
cap = dm_pci_find_next_ext_capability(swap, PCI_EXT_CAP_ID_ERR_OFFSET,
|
|
PCI_EXT_CAP_ID_DSN);
|
|
ut_asserteq(PCI_EXT_CAP_ID_DSN_OFFSET, cap);
|
|
|
|
/* look up PCI_EXT_CAP_ID_RCRB starting from PCI_EXT_CAP_ID_VC_OFFSET */
|
|
cap = dm_pci_find_next_ext_capability(swap, PCI_EXT_CAP_ID_VC_OFFSET,
|
|
PCI_EXT_CAP_ID_RCRB);
|
|
ut_asserteq(0, cap);
|
|
|
|
return 0;
|
|
}
|
|
DM_TEST(dm_test_pci_cap, DM_TESTF_SCAN_PDATA | DM_TESTF_SCAN_FDT);
|
|
|
|
/* Test looking up BARs in EA capability structure */
|
|
static int dm_test_pci_ea(struct unit_test_state *uts)
|
|
{
|
|
struct udevice *bus, *swap;
|
|
void *bar;
|
|
int cap;
|
|
|
|
/*
|
|
* use emulated device mapping function, we're not using real physical
|
|
* addresses in this test
|
|
*/
|
|
sandbox_set_enable_pci_map(true);
|
|
|
|
ut_assertok(uclass_get_device_by_seq(UCLASS_PCI, 0, &bus));
|
|
ut_assertok(dm_pci_bus_find_bdf(PCI_BDF(0, 0x01, 0), &swap));
|
|
|
|
/* look up PCI_CAP_ID_EA */
|
|
cap = dm_pci_find_capability(swap, PCI_CAP_ID_EA);
|
|
ut_asserteq(PCI_CAP_ID_EA_OFFSET, cap);
|
|
|
|
/* test swap case in BAR 1 */
|
|
bar = dm_pci_map_bar(swap, PCI_BASE_ADDRESS_0, 0);
|
|
ut_assertnonnull(bar);
|
|
*(int *)bar = 2; /* swap upper/lower */
|
|
|
|
bar = dm_pci_map_bar(swap, PCI_BASE_ADDRESS_1, 0);
|
|
ut_assertnonnull(bar);
|
|
strcpy(bar, "ea TEST");
|
|
unmap_sysmem(bar);
|
|
bar = dm_pci_map_bar(swap, PCI_BASE_ADDRESS_1, 0);
|
|
ut_assertnonnull(bar);
|
|
ut_asserteq_str("EA test", bar);
|
|
|
|
/* test magic values in BARs2, 4; BAR 3 is n/a */
|
|
bar = dm_pci_map_bar(swap, PCI_BASE_ADDRESS_2, 0);
|
|
ut_assertnonnull(bar);
|
|
ut_asserteq(PCI_EA_BAR2_MAGIC, *(u32 *)bar);
|
|
|
|
bar = dm_pci_map_bar(swap, PCI_BASE_ADDRESS_3, 0);
|
|
ut_assertnull(bar);
|
|
|
|
bar = dm_pci_map_bar(swap, PCI_BASE_ADDRESS_4, 0);
|
|
ut_assertnonnull(bar);
|
|
ut_asserteq(PCI_EA_BAR4_MAGIC, *(u32 *)bar);
|
|
|
|
return 0;
|
|
}
|
|
DM_TEST(dm_test_pci_ea, DM_TESTF_SCAN_PDATA | DM_TESTF_SCAN_FDT);
|
|
|
|
/* Test the dev_read_addr_pci() function */
|
|
static int dm_test_pci_addr_flat(struct unit_test_state *uts)
|
|
{
|
|
struct udevice *swap1f, *swap1;
|
|
ulong io_addr, mem_addr;
|
|
|
|
ut_assertok(dm_pci_bus_find_bdf(PCI_BDF(0, 0x1f, 0), &swap1f));
|
|
io_addr = dm_pci_read_bar32(swap1f, 0);
|
|
ut_asserteq(io_addr, dev_read_addr_pci(swap1f));
|
|
|
|
/*
|
|
* This device has both I/O and MEM spaces but the MEM space appears
|
|
* first
|
|
*/
|
|
ut_assertok(dm_pci_bus_find_bdf(PCI_BDF(0, 0x1, 0), &swap1));
|
|
mem_addr = dm_pci_read_bar32(swap1, 1);
|
|
ut_asserteq(mem_addr, dev_read_addr_pci(swap1));
|
|
|
|
return 0;
|
|
}
|
|
DM_TEST(dm_test_pci_addr_flat, DM_TESTF_SCAN_PDATA | DM_TESTF_SCAN_FDT |
|
|
DM_TESTF_FLAT_TREE);
|
|
|
|
/*
|
|
* Test the dev_read_addr_pci() function with livetree. That function is
|
|
* not currently fully implemented, in that it fails to return the BAR address.
|
|
* Once that is implemented this test can be removed and dm_test_pci_addr_flat()
|
|
* can be used for both flattree and livetree by removing the DM_TESTF_FLAT_TREE
|
|
* flag above.
|
|
*/
|
|
static int dm_test_pci_addr_live(struct unit_test_state *uts)
|
|
{
|
|
struct udevice *swap1f, *swap1;
|
|
|
|
ut_assertok(dm_pci_bus_find_bdf(PCI_BDF(0, 0x1f, 0), &swap1f));
|
|
ut_asserteq(FDT_ADDR_T_NONE, dev_read_addr_pci(swap1f));
|
|
|
|
ut_assertok(dm_pci_bus_find_bdf(PCI_BDF(0, 0x1, 0), &swap1));
|
|
ut_asserteq(FDT_ADDR_T_NONE, dev_read_addr_pci(swap1));
|
|
|
|
return 0;
|
|
}
|
|
DM_TEST(dm_test_pci_addr_live, DM_TESTF_SCAN_PDATA | DM_TESTF_SCAN_FDT |
|
|
DM_TESTF_LIVE_TREE);
|