mirror of
https://github.com/AsahiLinux/u-boot
synced 2024-12-05 11:00:15 +00:00
d16b38f427
The current recommendation for best security practice from the US government is to use SHA384 for TOP SECRET [1]. This patch adds support for SHA384 and SHA512 in the hash command, and also allows FIT images to be hashed with these algorithms, and signed with sha384,rsaXXXX and sha512,rsaXXXX The SHA implementation is adapted from the linux kernel implementation. [1] Commercial National Security Algorithm Suite http://www.iad.gov/iad/programs/iad-initiatives/cnsa-suite.cfm Signed-off-by: Reuben Dowle <reuben.dowle@4rf.com>
663 lines
20 KiB
Text
663 lines
20 KiB
Text
menu "Library routines"
|
|
|
|
config BCH
|
|
bool "Enable Software based BCH ECC"
|
|
help
|
|
Enables software based BCH ECC algorithm present in lib/bch.c
|
|
This is used by SoC platforms which do not have built-in ELM
|
|
hardware engine required for BCH ECC correction.
|
|
|
|
config BINMAN_FDT
|
|
bool "Allow access to binman information in the device tree"
|
|
depends on BINMAN && OF_CONTROL
|
|
default y
|
|
help
|
|
This enables U-Boot to access information about binman entries,
|
|
stored in the device tree in a binman node. Typical uses are to
|
|
locate entries in the firmware image. See binman.h for the available
|
|
functionality.
|
|
|
|
config CC_OPTIMIZE_LIBS_FOR_SPEED
|
|
bool "Optimize libraries for speed"
|
|
help
|
|
Enabling this option will pass "-O2" to gcc when compiling
|
|
under "lib" directory.
|
|
|
|
If unsure, say N.
|
|
|
|
config DYNAMIC_CRC_TABLE
|
|
bool "Enable Dynamic tables for CRC"
|
|
help
|
|
Enable this option to calculate entries for CRC tables at runtime.
|
|
This can be helpful when reducing the size of the build image
|
|
|
|
config HAVE_ARCH_IOMAP
|
|
bool
|
|
help
|
|
Enable this option if architecture provides io{read,write}{8,16,32}
|
|
I/O accessor functions.
|
|
|
|
config HAVE_PRIVATE_LIBGCC
|
|
bool
|
|
|
|
config LIB_UUID
|
|
bool
|
|
|
|
config PRINTF
|
|
bool
|
|
default y
|
|
|
|
config SPL_PRINTF
|
|
bool
|
|
select SPL_SPRINTF
|
|
select SPL_STRTO if !SPL_USE_TINY_PRINTF
|
|
|
|
config TPL_PRINTF
|
|
bool
|
|
select TPL_SPRINTF
|
|
select TPL_STRTO if !TPL_USE_TINY_PRINTF
|
|
|
|
config SPRINTF
|
|
bool
|
|
default y
|
|
|
|
config SPL_SPRINTF
|
|
bool
|
|
|
|
config TPL_SPRINTF
|
|
bool
|
|
|
|
config STRTO
|
|
bool
|
|
default y
|
|
|
|
config SPL_STRTO
|
|
bool
|
|
|
|
config TPL_STRTO
|
|
bool
|
|
|
|
config IMAGE_SPARSE
|
|
bool
|
|
|
|
config IMAGE_SPARSE_FILLBUF_SIZE
|
|
hex "Android sparse image CHUNK_TYPE_FILL buffer size"
|
|
default 0x80000
|
|
depends on IMAGE_SPARSE
|
|
help
|
|
Set the size of the fill buffer used when processing CHUNK_TYPE_FILL
|
|
chunks.
|
|
|
|
config USE_PRIVATE_LIBGCC
|
|
bool "Use private libgcc"
|
|
depends on HAVE_PRIVATE_LIBGCC
|
|
default y if HAVE_PRIVATE_LIBGCC && ((ARM && !ARM64) || MIPS)
|
|
help
|
|
This option allows you to use the built-in libgcc implementation
|
|
of U-Boot instead of the one provided by the compiler.
|
|
If unsure, say N.
|
|
|
|
config SYS_HZ
|
|
int
|
|
default 1000
|
|
help
|
|
The frequency of the timer returned by get_timer().
|
|
get_timer() must operate in milliseconds and this option must be
|
|
set to 1000.
|
|
|
|
config SPL_USE_TINY_PRINTF
|
|
bool "Enable tiny printf() version in SPL"
|
|
depends on SPL
|
|
default y
|
|
help
|
|
This option enables a tiny, stripped down printf version.
|
|
This should only be used in space limited environments,
|
|
like SPL versions with hard memory limits. This version
|
|
reduces the code size by about 2.5KiB on armv7.
|
|
|
|
The supported format specifiers are %c, %s, %u/%d and %x.
|
|
|
|
config TPL_USE_TINY_PRINTF
|
|
bool "Enable tiny printf() version in TPL"
|
|
depends on TPL
|
|
default y if SPL_USE_TINY_PRINTF
|
|
help
|
|
This option enables a tiny, stripped down printf version.
|
|
This should only be used in space limited environments,
|
|
like SPL versions with hard memory limits. This version
|
|
reduces the code size by about 2.5KiB on armv7.
|
|
|
|
The supported format specifiers are %c, %s, %u/%d and %x.
|
|
|
|
config PANIC_HANG
|
|
bool "Do not reset the system on fatal error"
|
|
help
|
|
Define this option to stop the system in case of a fatal error,
|
|
so that you have to reset it manually. This is probably NOT a good
|
|
idea for an embedded system where you want the system to reboot
|
|
automatically as fast as possible, but it may be useful during
|
|
development since you can try to debug the conditions that lead to
|
|
the situation.
|
|
|
|
config REGEX
|
|
bool "Enable regular expression support"
|
|
default y if NET
|
|
help
|
|
If this variable is defined, U-Boot is linked against the
|
|
SLRE (Super Light Regular Expression) library, which adds
|
|
regex support to some commands, for example "env grep" and
|
|
"setexpr".
|
|
|
|
choice
|
|
prompt "Pseudo-random library support type"
|
|
depends on NET_RANDOM_ETHADDR || RANDOM_UUID || CMD_UUID || \
|
|
RNG_SANDBOX || UT_LIB && AES
|
|
default LIB_RAND
|
|
help
|
|
Select the library to provide pseudo-random number generator
|
|
functions. LIB_HW_RAND supports certain hardware engines that
|
|
provide this functionality. If in doubt, select LIB_RAND.
|
|
|
|
config LIB_RAND
|
|
bool "Pseudo-random library support"
|
|
|
|
config LIB_HW_RAND
|
|
bool "HW Engine for random library support"
|
|
|
|
endchoice
|
|
|
|
config SPL_TINY_MEMSET
|
|
bool "Use a very small memset() in SPL"
|
|
help
|
|
The faster memset() is the arch-specific one (if available) enabled
|
|
by CONFIG_USE_ARCH_MEMSET. If that is not enabled, we can still get
|
|
better performance by writing a word at a time. But in very
|
|
size-constrained environments even this may be too big. Enable this
|
|
option to reduce code size slightly at the cost of some speed.
|
|
|
|
config TPL_TINY_MEMSET
|
|
bool "Use a very small memset() in TPL"
|
|
help
|
|
The faster memset() is the arch-specific one (if available) enabled
|
|
by CONFIG_USE_ARCH_MEMSET. If that is not enabled, we can still get
|
|
better performance by writing a word at a time. But in very
|
|
size-constrained environments even this may be too big. Enable this
|
|
option to reduce code size slightly at the cost of some speed.
|
|
|
|
config RBTREE
|
|
bool
|
|
|
|
config BITREVERSE
|
|
bool "Bit reverse library from Linux"
|
|
|
|
config TRACE
|
|
bool "Support for tracing of function calls and timing"
|
|
imply CMD_TRACE
|
|
help
|
|
Enables function tracing within U-Boot. This allows recording of call
|
|
traces including timing information. The command can write data to
|
|
memory for exporting for analysis (e.g. using bootchart).
|
|
See doc/README.trace for full details.
|
|
|
|
config TRACE_BUFFER_SIZE
|
|
hex "Size of trace buffer in U-Boot"
|
|
depends on TRACE
|
|
default 0x01000000
|
|
help
|
|
Sets the size of the trace buffer in U-Boot. This is allocated from
|
|
memory during relocation. If this buffer is too small, the trace
|
|
history will be truncated, with later records omitted.
|
|
|
|
If early trace is enabled (i.e. before relocation), this buffer must
|
|
be large enough to include all the data from the early trace buffer as
|
|
well, since this is copied over to the main buffer during relocation.
|
|
|
|
A trace record is emitted for each function call and each record is
|
|
12 bytes (see struct trace_call). A suggested minimum size is 1MB. If
|
|
the size is too small then 'trace stats' will show a message saying
|
|
how many records were dropped due to buffer overflow.
|
|
|
|
config TRACE_CALL_DEPTH_LIMIT
|
|
int "Trace call depth limit"
|
|
depends on TRACE
|
|
default 15
|
|
help
|
|
Sets the maximum call depth up to which function calls are recorded.
|
|
|
|
config TRACE_EARLY
|
|
bool "Enable tracing before relocation"
|
|
depends on TRACE
|
|
help
|
|
Sometimes it is helpful to trace execution of U-Boot before
|
|
relocation. This is possible by using a arch-specific, fixed buffer
|
|
position in memory. Enable this option to start tracing as early as
|
|
possible after U-Boot starts.
|
|
|
|
config TRACE_EARLY_SIZE
|
|
hex "Size of early trace buffer in U-Boot"
|
|
depends on TRACE_EARLY
|
|
default 0x00100000
|
|
help
|
|
Sets the size of the early trace buffer in bytes. This is used to hold
|
|
tracing information before relocation.
|
|
|
|
config TRACE_EARLY_CALL_DEPTH_LIMIT
|
|
int "Early trace call depth limit"
|
|
depends on TRACE_EARLY
|
|
default 200
|
|
help
|
|
Sets the maximum call depth up to which function calls are recorded
|
|
during early tracing.
|
|
|
|
config TRACE_EARLY_ADDR
|
|
hex "Address of early trace buffer in U-Boot"
|
|
depends on TRACE_EARLY
|
|
default 0x00100000
|
|
help
|
|
Sets the address of the early trace buffer in U-Boot. This memory
|
|
must be accessible before relocation.
|
|
|
|
A trace record is emitted for each function call and each record is
|
|
12 bytes (see struct trace_call). A suggested minimum size is 1MB. If
|
|
the size is too small then the message which says the amount of early
|
|
data being coped will the the same as the
|
|
|
|
source lib/dhry/Kconfig
|
|
|
|
menu "Security support"
|
|
|
|
config AES
|
|
bool "Support the AES algorithm"
|
|
help
|
|
This provides a means to encrypt and decrypt data using the AES
|
|
(Advanced Encryption Standard). This algorithm uses a symetric key
|
|
and is widely used as a streaming cipher. Different key lengths are
|
|
supported by the algorithm but only a 128-bit key is supported at
|
|
present.
|
|
|
|
source lib/rsa/Kconfig
|
|
source lib/crypto/Kconfig
|
|
|
|
config TPM
|
|
bool "Trusted Platform Module (TPM) Support"
|
|
depends on DM
|
|
help
|
|
This enables support for TPMs which can be used to provide security
|
|
features for your board. The TPM can be connected via LPC or I2C
|
|
and a sandbox TPM is provided for testing purposes. Use the 'tpm'
|
|
command to interactive the TPM. Driver model support is provided
|
|
for the low-level TPM interface, but only one TPM is supported at
|
|
a time by the TPM library.
|
|
|
|
config SPL_TPM
|
|
bool "Trusted Platform Module (TPM) Support in SPL"
|
|
depends on SPL_DM
|
|
help
|
|
This enables support for TPMs which can be used to provide security
|
|
features for your board. The TPM can be connected via LPC or I2C
|
|
and a sandbox TPM is provided for testing purposes. Use the 'tpm'
|
|
command to interactive the TPM. Driver model support is provided
|
|
for the low-level TPM interface, but only one TPM is supported at
|
|
a time by the TPM library.
|
|
|
|
config TPL_TPM
|
|
bool "Trusted Platform Module (TPM) Support in TPL"
|
|
depends on TPL_DM
|
|
help
|
|
This enables support for TPMs which can be used to provide security
|
|
features for your board. The TPM can be connected via LPC or I2C
|
|
and a sandbox TPM is provided for testing purposes. Use the 'tpm'
|
|
command to interactive the TPM. Driver model support is provided
|
|
for the low-level TPM interface, but only one TPM is supported at
|
|
a time by the TPM library.
|
|
|
|
endmenu
|
|
|
|
menu "Android Verified Boot"
|
|
|
|
config LIBAVB
|
|
bool "Android Verified Boot 2.0 support"
|
|
depends on ANDROID_BOOT_IMAGE
|
|
default n
|
|
help
|
|
This enables support of Android Verified Boot 2.0 which can be used
|
|
to assure the end user of the integrity of the software running on a
|
|
device. Introduces such features as boot chain of trust, rollback
|
|
protection etc.
|
|
|
|
endmenu
|
|
|
|
menu "Hashing Support"
|
|
|
|
config SHA1
|
|
bool "Enable SHA1 support"
|
|
help
|
|
This option enables support of hashing using SHA1 algorithm.
|
|
The hash is calculated in software.
|
|
The SHA1 algorithm produces a 160-bit (20-byte) hash value
|
|
(digest).
|
|
|
|
config SHA256
|
|
bool "Enable SHA256 support"
|
|
help
|
|
This option enables support of hashing using SHA256 algorithm.
|
|
The hash is calculated in software.
|
|
The SHA256 algorithm produces a 256-bit (32-byte) hash value
|
|
(digest).
|
|
|
|
config SHA512_ALGO
|
|
bool "Enable SHA512 algorithm"
|
|
help
|
|
This option enables support of internal SHA512 algorithm.
|
|
|
|
config SHA512
|
|
bool "Enable SHA512 support"
|
|
depends on SHA512_ALGO
|
|
help
|
|
This option enables support of hashing using SHA512 algorithm.
|
|
The hash is calculated in software.
|
|
The SHA512 algorithm produces a 512-bit (64-byte) hash value
|
|
(digest).
|
|
|
|
config SHA384
|
|
bool "Enable SHA384 support"
|
|
depends on SHA512_ALGO
|
|
help
|
|
This option enables support of hashing using SHA384 algorithm.
|
|
The hash is calculated in software.
|
|
The SHA384 algorithm produces a 384-bit (48-byte) hash value
|
|
(digest).
|
|
|
|
config SHA_HW_ACCEL
|
|
bool "Enable hashing using hardware"
|
|
help
|
|
This option enables hardware acceleration
|
|
for SHA1/SHA256 hashing.
|
|
This affects the 'hash' command and also the
|
|
hash_lookup_algo() function.
|
|
|
|
config SHA_PROG_HW_ACCEL
|
|
bool "Enable Progressive hashing support using hardware"
|
|
depends on SHA_HW_ACCEL
|
|
help
|
|
This option enables hardware-acceleration for
|
|
SHA1/SHA256 progressive hashing.
|
|
Data can be streamed in a block at a time and the hashing
|
|
is performed in hardware.
|
|
|
|
config MD5
|
|
bool "Support MD5 algorithm"
|
|
help
|
|
This option enables MD5 support. MD5 is an algorithm designed
|
|
in 1991 that produces a 16-byte digest (or checksum) from its input
|
|
data. It has a number of vulnerabilities which preclude its use in
|
|
security applications, but it can be useful for providing a quick
|
|
checksum of a block of data.
|
|
|
|
config SPL_MD5
|
|
bool "Support MD5 algorithm in SPL"
|
|
help
|
|
This option enables MD5 support in SPL. MD5 is an algorithm designed
|
|
in 1991 that produces a 16-byte digest (or checksum) from its input
|
|
data. It has a number of vulnerabilities which preclude its use in
|
|
security applications, but it can be useful for providing a quick
|
|
checksum of a block of data.
|
|
|
|
config CRC32C
|
|
bool
|
|
|
|
config XXHASH
|
|
bool
|
|
|
|
endmenu
|
|
|
|
menu "Compression Support"
|
|
|
|
config LZ4
|
|
bool "Enable LZ4 decompression support"
|
|
help
|
|
If this option is set, support for LZ4 compressed images
|
|
is included. The LZ4 algorithm can run in-place as long as the
|
|
compressed image is loaded to the end of the output buffer, and
|
|
trades lower compression ratios for much faster decompression.
|
|
|
|
NOTE: This implements the release version of the LZ4 frame
|
|
format as generated by default by the 'lz4' command line tool.
|
|
This is not the same as the outdated, less efficient legacy
|
|
frame format currently (2015) implemented in the Linux kernel
|
|
(generated by 'lz4 -l'). The two formats are incompatible.
|
|
|
|
config LZMA
|
|
bool "Enable LZMA decompression support"
|
|
help
|
|
This enables support for LZMA (Lempel-Ziv-Markov chain algorithm),
|
|
a dictionary compression algorithm that provides a high compression
|
|
ratio and fairly fast decompression speed. See also
|
|
CONFIG_CMD_LZMADEC which provides a decode command.
|
|
|
|
config LZO
|
|
bool "Enable LZO decompression support"
|
|
help
|
|
This enables support for LZO compression algorithm.r
|
|
|
|
config GZIP
|
|
bool "Enable gzip decompression support"
|
|
select ZLIB
|
|
default y
|
|
help
|
|
This enables support for GZIP compression algorithm.
|
|
|
|
config GZIP_COMPRESSED
|
|
bool
|
|
select ZLIB
|
|
|
|
config BZIP2
|
|
bool "Enable bzip2 decompression support"
|
|
help
|
|
This enables support for BZIP2 compression algorithm.
|
|
|
|
config ZLIB
|
|
bool
|
|
default y
|
|
help
|
|
This enables ZLIB compression lib.
|
|
|
|
config ZSTD
|
|
bool "Enable Zstandard decompression support"
|
|
select XXHASH
|
|
help
|
|
This enables Zstandard decompression library.
|
|
|
|
config SPL_LZ4
|
|
bool "Enable LZ4 decompression support in SPL"
|
|
help
|
|
This enables support for the LZ4 decompression algorithm in SPL. LZ4
|
|
is a lossless data compression algorithm that is focused on
|
|
fast compression and decompression speed. It belongs to the LZ77
|
|
family of byte-oriented compression schemes.
|
|
|
|
config SPL_LZMA
|
|
bool "Enable LZMA decompression support for SPL build"
|
|
help
|
|
This enables support for LZMA compression algorithm for SPL boot.
|
|
|
|
config SPL_LZO
|
|
bool "Enable LZO decompression support in SPL"
|
|
help
|
|
This enables support for LZO compression algorithm in the SPL.
|
|
|
|
config SPL_GZIP
|
|
bool "Enable gzip decompression support for SPL build"
|
|
select SPL_ZLIB
|
|
help
|
|
This enables support for GZIP compression altorithm for SPL boot.
|
|
|
|
config SPL_ZLIB
|
|
bool
|
|
help
|
|
This enables compression lib for SPL boot.
|
|
|
|
config SPL_ZSTD
|
|
bool "Enable Zstandard decompression support in SPL"
|
|
select XXHASH
|
|
help
|
|
This enables Zstandard decompression library in the SPL.
|
|
|
|
endmenu
|
|
|
|
config ERRNO_STR
|
|
bool "Enable function for getting errno-related string message"
|
|
help
|
|
The function errno_str(int errno), returns a pointer to the errno
|
|
corresponding text message:
|
|
- if errno is null or positive number - a pointer to "Success" message
|
|
- if errno is negative - a pointer to errno related message
|
|
|
|
config HEXDUMP
|
|
bool "Enable hexdump"
|
|
help
|
|
This enables functions for printing dumps of binary data.
|
|
|
|
config OF_LIBFDT
|
|
bool "Enable the FDT library"
|
|
default y if OF_CONTROL
|
|
help
|
|
This enables the FDT library (libfdt). It provides functions for
|
|
accessing binary device tree images in memory, such as adding and
|
|
removing nodes and properties, scanning through the tree and finding
|
|
particular compatible nodes. The library operates on a flattened
|
|
version of the device tree.
|
|
|
|
config OF_LIBFDT_ASSUME_MASK
|
|
hex "Mask of conditions to assume for libfdt"
|
|
depends on OF_LIBFDT || FIT
|
|
default 0
|
|
help
|
|
Use this to change the assumptions made by libfdt about the
|
|
device tree it is working with. A value of 0 means that no assumptions
|
|
are made, and libfdt is able to deal with malicious data. A value of
|
|
0xff means all assumptions are made and any invalid data may cause
|
|
unsafe execution. See FDT_ASSUME_PERFECT, etc. in libfdt_internal.h
|
|
|
|
config OF_LIBFDT_OVERLAY
|
|
bool "Enable the FDT library overlay support"
|
|
depends on OF_LIBFDT
|
|
default y if ARCH_OMAP2PLUS || ARCH_KEYSTONE
|
|
help
|
|
This enables the FDT library (libfdt) overlay support.
|
|
|
|
config SPL_OF_LIBFDT
|
|
bool "Enable the FDT library for SPL"
|
|
default y if SPL_OF_CONTROL
|
|
help
|
|
This enables the FDT library (libfdt). It provides functions for
|
|
accessing binary device tree images in memory, such as adding and
|
|
removing nodes and properties, scanning through the tree and finding
|
|
particular compatible nodes. The library operates on a flattened
|
|
version of the device tree.
|
|
|
|
config SPL_OF_LIBFDT_ASSUME_MASK
|
|
hex "Mask of conditions to assume for libfdt"
|
|
depends on SPL_OF_LIBFDT || FIT
|
|
default 0xff
|
|
help
|
|
Use this to change the assumptions made by libfdt in SPL about the
|
|
device tree it is working with. A value of 0 means that no assumptions
|
|
are made, and libfdt is able to deal with malicious data. A value of
|
|
0xff means all assumptions are made and any invalid data may cause
|
|
unsafe execution. See FDT_ASSUME_PERFECT, etc. in libfdt_internal.h
|
|
|
|
config TPL_OF_LIBFDT
|
|
bool "Enable the FDT library for TPL"
|
|
default y if TPL_OF_CONTROL
|
|
help
|
|
This enables the FDT library (libfdt). It provides functions for
|
|
accessing binary device tree images in memory, such as adding and
|
|
removing nodes and properties, scanning through the tree and finding
|
|
particular compatible nodes. The library operates on a flattened
|
|
version of the device tree.
|
|
|
|
config TPL_OF_LIBFDT_ASSUME_MASK
|
|
hex "Mask of conditions to assume for libfdt"
|
|
depends on TPL_OF_LIBFDT || FIT
|
|
default 0xff
|
|
help
|
|
Use this to change the assumptions made by libfdt in TPL about the
|
|
device tree it is working with. A value of 0 means that no assumptions
|
|
are made, and libfdt is able to deal with malicious data. A value of
|
|
0xff means all assumptions are made and any invalid data may cause
|
|
unsafe execution. See FDT_ASSUME_PERFECT, etc. in libfdt_internal.h
|
|
|
|
config FDT_FIXUP_PARTITIONS
|
|
bool "overwrite MTD partitions in DTS through defined in 'mtdparts'"
|
|
depends on OF_LIBFDT
|
|
depends on CMD_MTDPARTS
|
|
help
|
|
Allow overwriting defined partitions in the device tree blob
|
|
using partition info defined in the 'mtdparts' environment
|
|
variable.
|
|
|
|
menu "System tables"
|
|
depends on (!EFI && !SYS_COREBOOT) || (ARM && EFI_LOADER)
|
|
|
|
config GENERATE_SMBIOS_TABLE
|
|
bool "Generate an SMBIOS (System Management BIOS) table"
|
|
default y
|
|
depends on X86 || EFI_LOADER
|
|
help
|
|
The System Management BIOS (SMBIOS) specification addresses how
|
|
motherboard and system vendors present management information about
|
|
their products in a standard format by extending the BIOS interface
|
|
on Intel architecture systems.
|
|
|
|
Check http://www.dmtf.org/standards/smbios for details.
|
|
|
|
config SMBIOS_MANUFACTURER
|
|
string "SMBIOS Manufacturer"
|
|
depends on GENERATE_SMBIOS_TABLE
|
|
default SYS_VENDOR
|
|
help
|
|
The board manufacturer to store in SMBIOS structures.
|
|
Change this to override the default one (CONFIG_SYS_VENDOR).
|
|
|
|
config SMBIOS_PRODUCT_NAME
|
|
string "SMBIOS Product Name"
|
|
depends on GENERATE_SMBIOS_TABLE
|
|
default SYS_BOARD
|
|
help
|
|
The product name to store in SMBIOS structures.
|
|
Change this to override the default one (CONFIG_SYS_BOARD).
|
|
|
|
endmenu
|
|
|
|
config ASN1_COMPILER
|
|
bool
|
|
|
|
config ASN1_DECODER
|
|
bool
|
|
help
|
|
Enable asn1 decoder library.
|
|
|
|
config OID_REGISTRY
|
|
bool
|
|
help
|
|
Enable fast lookup object identifier registry.
|
|
|
|
source lib/efi/Kconfig
|
|
source lib/efi_loader/Kconfig
|
|
source lib/optee/Kconfig
|
|
|
|
config TEST_FDTDEC
|
|
bool "enable fdtdec test"
|
|
depends on OF_LIBFDT
|
|
|
|
config LIB_DATE
|
|
bool
|
|
|
|
config LIB_ELF
|
|
bool
|
|
help
|
|
Supoort basic elf loading/validating functions.
|
|
This supports fir 32 bit and 64 bit versions.
|
|
|
|
endmenu
|