u-boot/drivers/usb/eth/smsc95xx.c
Stefan Roese 2eb60902a0 net: smsc95xx: Add support for another SMSC95xx variant
This patch adds support for the SMSC9500 with product id 0x9900 which is
equipped in the "EXSYS USB 2.0" etherner USB adapter.

Tested on omap3_beagle.

Signed-off-by: Stefan Roese <sr@denx.de>
2013-08-19 12:34:18 -05:00

883 lines
21 KiB
C

/*
* Copyright (c) 2011 The Chromium OS Authors.
* Copyright (C) 2009 NVIDIA, Corporation
*
* SPDX-License-Identifier: GPL-2.0+
*/
#include <asm/unaligned.h>
#include <common.h>
#include <usb.h>
#include <linux/mii.h>
#include "usb_ether.h"
#include <malloc.h>
/* SMSC LAN95xx based USB 2.0 Ethernet Devices */
/* Tx command words */
#define TX_CMD_A_FIRST_SEG_ 0x00002000
#define TX_CMD_A_LAST_SEG_ 0x00001000
/* Rx status word */
#define RX_STS_FL_ 0x3FFF0000 /* Frame Length */
#define RX_STS_ES_ 0x00008000 /* Error Summary */
/* SCSRs */
#define ID_REV 0x00
#define INT_STS 0x08
#define TX_CFG 0x10
#define TX_CFG_ON_ 0x00000004
#define HW_CFG 0x14
#define HW_CFG_BIR_ 0x00001000
#define HW_CFG_RXDOFF_ 0x00000600
#define HW_CFG_MEF_ 0x00000020
#define HW_CFG_BCE_ 0x00000002
#define HW_CFG_LRST_ 0x00000008
#define PM_CTRL 0x20
#define PM_CTL_PHY_RST_ 0x00000010
#define AFC_CFG 0x2C
/*
* Hi watermark = 15.5Kb (~10 mtu pkts)
* low watermark = 3k (~2 mtu pkts)
* backpressure duration = ~ 350us
* Apply FC on any frame.
*/
#define AFC_CFG_DEFAULT 0x00F830A1
#define E2P_CMD 0x30
#define E2P_CMD_BUSY_ 0x80000000
#define E2P_CMD_READ_ 0x00000000
#define E2P_CMD_TIMEOUT_ 0x00000400
#define E2P_CMD_LOADED_ 0x00000200
#define E2P_CMD_ADDR_ 0x000001FF
#define E2P_DATA 0x34
#define BURST_CAP 0x38
#define INT_EP_CTL 0x68
#define INT_EP_CTL_PHY_INT_ 0x00008000
#define BULK_IN_DLY 0x6C
/* MAC CSRs */
#define MAC_CR 0x100
#define MAC_CR_MCPAS_ 0x00080000
#define MAC_CR_PRMS_ 0x00040000
#define MAC_CR_HPFILT_ 0x00002000
#define MAC_CR_TXEN_ 0x00000008
#define MAC_CR_RXEN_ 0x00000004
#define ADDRH 0x104
#define ADDRL 0x108
#define MII_ADDR 0x114
#define MII_WRITE_ 0x02
#define MII_BUSY_ 0x01
#define MII_READ_ 0x00 /* ~of MII Write bit */
#define MII_DATA 0x118
#define FLOW 0x11C
#define VLAN1 0x120
#define COE_CR 0x130
#define Tx_COE_EN_ 0x00010000
#define Rx_COE_EN_ 0x00000001
/* Vendor-specific PHY Definitions */
#define PHY_INT_SRC 29
#define PHY_INT_MASK 30
#define PHY_INT_MASK_ANEG_COMP_ ((u16)0x0040)
#define PHY_INT_MASK_LINK_DOWN_ ((u16)0x0010)
#define PHY_INT_MASK_DEFAULT_ (PHY_INT_MASK_ANEG_COMP_ | \
PHY_INT_MASK_LINK_DOWN_)
/* USB Vendor Requests */
#define USB_VENDOR_REQUEST_WRITE_REGISTER 0xA0
#define USB_VENDOR_REQUEST_READ_REGISTER 0xA1
/* Some extra defines */
#define HS_USB_PKT_SIZE 512
#define FS_USB_PKT_SIZE 64
#define DEFAULT_HS_BURST_CAP_SIZE (16 * 1024 + 5 * HS_USB_PKT_SIZE)
#define DEFAULT_FS_BURST_CAP_SIZE (6 * 1024 + 33 * FS_USB_PKT_SIZE)
#define DEFAULT_BULK_IN_DELAY 0x00002000
#define MAX_SINGLE_PACKET_SIZE 2048
#define EEPROM_MAC_OFFSET 0x01
#define SMSC95XX_INTERNAL_PHY_ID 1
#define ETH_P_8021Q 0x8100 /* 802.1Q VLAN Extended Header */
/* local defines */
#define SMSC95XX_BASE_NAME "sms"
#define USB_CTRL_SET_TIMEOUT 5000
#define USB_CTRL_GET_TIMEOUT 5000
#define USB_BULK_SEND_TIMEOUT 5000
#define USB_BULK_RECV_TIMEOUT 5000
#define AX_RX_URB_SIZE 2048
#define PHY_CONNECT_TIMEOUT 5000
#define TURBO_MODE
/* local vars */
static int curr_eth_dev; /* index for name of next device detected */
/* driver private */
struct smsc95xx_private {
size_t rx_urb_size; /* maximum USB URB size */
u32 mac_cr; /* MAC control register value */
int have_hwaddr; /* 1 if we have a hardware MAC address */
};
/*
* Smsc95xx infrastructure commands
*/
static int smsc95xx_write_reg(struct ueth_data *dev, u32 index, u32 data)
{
int len;
ALLOC_CACHE_ALIGN_BUFFER(u32, tmpbuf, 1);
cpu_to_le32s(&data);
tmpbuf[0] = data;
len = usb_control_msg(dev->pusb_dev, usb_sndctrlpipe(dev->pusb_dev, 0),
USB_VENDOR_REQUEST_WRITE_REGISTER,
USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_DEVICE,
00, index, tmpbuf, sizeof(data), USB_CTRL_SET_TIMEOUT);
if (len != sizeof(data)) {
debug("smsc95xx_write_reg failed: index=%d, data=%d, len=%d",
index, data, len);
return -1;
}
return 0;
}
static int smsc95xx_read_reg(struct ueth_data *dev, u32 index, u32 *data)
{
int len;
ALLOC_CACHE_ALIGN_BUFFER(u32, tmpbuf, 1);
len = usb_control_msg(dev->pusb_dev, usb_rcvctrlpipe(dev->pusb_dev, 0),
USB_VENDOR_REQUEST_READ_REGISTER,
USB_DIR_IN | USB_TYPE_VENDOR | USB_RECIP_DEVICE,
00, index, tmpbuf, sizeof(data), USB_CTRL_GET_TIMEOUT);
*data = tmpbuf[0];
if (len != sizeof(data)) {
debug("smsc95xx_read_reg failed: index=%d, len=%d",
index, len);
return -1;
}
le32_to_cpus(data);
return 0;
}
/* Loop until the read is completed with timeout */
static int smsc95xx_phy_wait_not_busy(struct ueth_data *dev)
{
unsigned long start_time = get_timer(0);
u32 val;
do {
smsc95xx_read_reg(dev, MII_ADDR, &val);
if (!(val & MII_BUSY_))
return 0;
} while (get_timer(start_time) < 1 * 1000 * 1000);
return -1;
}
static int smsc95xx_mdio_read(struct ueth_data *dev, int phy_id, int idx)
{
u32 val, addr;
/* confirm MII not busy */
if (smsc95xx_phy_wait_not_busy(dev)) {
debug("MII is busy in smsc95xx_mdio_read\n");
return -1;
}
/* set the address, index & direction (read from PHY) */
addr = (phy_id << 11) | (idx << 6) | MII_READ_;
smsc95xx_write_reg(dev, MII_ADDR, addr);
if (smsc95xx_phy_wait_not_busy(dev)) {
debug("Timed out reading MII reg %02X\n", idx);
return -1;
}
smsc95xx_read_reg(dev, MII_DATA, &val);
return (u16)(val & 0xFFFF);
}
static void smsc95xx_mdio_write(struct ueth_data *dev, int phy_id, int idx,
int regval)
{
u32 val, addr;
/* confirm MII not busy */
if (smsc95xx_phy_wait_not_busy(dev)) {
debug("MII is busy in smsc95xx_mdio_write\n");
return;
}
val = regval;
smsc95xx_write_reg(dev, MII_DATA, val);
/* set the address, index & direction (write to PHY) */
addr = (phy_id << 11) | (idx << 6) | MII_WRITE_;
smsc95xx_write_reg(dev, MII_ADDR, addr);
if (smsc95xx_phy_wait_not_busy(dev))
debug("Timed out writing MII reg %02X\n", idx);
}
static int smsc95xx_eeprom_confirm_not_busy(struct ueth_data *dev)
{
unsigned long start_time = get_timer(0);
u32 val;
do {
smsc95xx_read_reg(dev, E2P_CMD, &val);
if (!(val & E2P_CMD_BUSY_))
return 0;
udelay(40);
} while (get_timer(start_time) < 1 * 1000 * 1000);
debug("EEPROM is busy\n");
return -1;
}
static int smsc95xx_wait_eeprom(struct ueth_data *dev)
{
unsigned long start_time = get_timer(0);
u32 val;
do {
smsc95xx_read_reg(dev, E2P_CMD, &val);
if (!(val & E2P_CMD_BUSY_) || (val & E2P_CMD_TIMEOUT_))
break;
udelay(40);
} while (get_timer(start_time) < 1 * 1000 * 1000);
if (val & (E2P_CMD_TIMEOUT_ | E2P_CMD_BUSY_)) {
debug("EEPROM read operation timeout\n");
return -1;
}
return 0;
}
static int smsc95xx_read_eeprom(struct ueth_data *dev, u32 offset, u32 length,
u8 *data)
{
u32 val;
int i, ret;
ret = smsc95xx_eeprom_confirm_not_busy(dev);
if (ret)
return ret;
for (i = 0; i < length; i++) {
val = E2P_CMD_BUSY_ | E2P_CMD_READ_ | (offset & E2P_CMD_ADDR_);
smsc95xx_write_reg(dev, E2P_CMD, val);
ret = smsc95xx_wait_eeprom(dev);
if (ret < 0)
return ret;
smsc95xx_read_reg(dev, E2P_DATA, &val);
data[i] = val & 0xFF;
offset++;
}
return 0;
}
/*
* mii_nway_restart - restart NWay (autonegotiation) for this interface
*
* Returns 0 on success, negative on error.
*/
static int mii_nway_restart(struct ueth_data *dev)
{
int bmcr;
int r = -1;
/* if autoneg is off, it's an error */
bmcr = smsc95xx_mdio_read(dev, dev->phy_id, MII_BMCR);
if (bmcr & BMCR_ANENABLE) {
bmcr |= BMCR_ANRESTART;
smsc95xx_mdio_write(dev, dev->phy_id, MII_BMCR, bmcr);
r = 0;
}
return r;
}
static int smsc95xx_phy_initialize(struct ueth_data *dev)
{
smsc95xx_mdio_write(dev, dev->phy_id, MII_BMCR, BMCR_RESET);
smsc95xx_mdio_write(dev, dev->phy_id, MII_ADVERTISE,
ADVERTISE_ALL | ADVERTISE_CSMA | ADVERTISE_PAUSE_CAP |
ADVERTISE_PAUSE_ASYM);
/* read to clear */
smsc95xx_mdio_read(dev, dev->phy_id, PHY_INT_SRC);
smsc95xx_mdio_write(dev, dev->phy_id, PHY_INT_MASK,
PHY_INT_MASK_DEFAULT_);
mii_nway_restart(dev);
debug("phy initialised succesfully\n");
return 0;
}
static int smsc95xx_init_mac_address(struct eth_device *eth,
struct ueth_data *dev)
{
/* try reading mac address from EEPROM */
if (smsc95xx_read_eeprom(dev, EEPROM_MAC_OFFSET, ETH_ALEN,
eth->enetaddr) == 0) {
if (is_valid_ether_addr(eth->enetaddr)) {
/* eeprom values are valid so use them */
debug("MAC address read from EEPROM\n");
return 0;
}
}
/*
* No eeprom, or eeprom values are invalid. Generating a random MAC
* address is not safe. Just return an error.
*/
return -1;
}
static int smsc95xx_write_hwaddr(struct eth_device *eth)
{
struct ueth_data *dev = (struct ueth_data *)eth->priv;
struct smsc95xx_private *priv = dev->dev_priv;
u32 addr_lo = __get_unaligned_le32(&eth->enetaddr[0]);
u32 addr_hi = __get_unaligned_le16(&eth->enetaddr[4]);
int ret;
/* set hardware address */
debug("** %s()\n", __func__);
ret = smsc95xx_write_reg(dev, ADDRL, addr_lo);
if (ret < 0)
return ret;
ret = smsc95xx_write_reg(dev, ADDRH, addr_hi);
if (ret < 0)
return ret;
debug("MAC %pM\n", eth->enetaddr);
priv->have_hwaddr = 1;
return 0;
}
/* Enable or disable Tx & Rx checksum offload engines */
static int smsc95xx_set_csums(struct ueth_data *dev,
int use_tx_csum, int use_rx_csum)
{
u32 read_buf;
int ret = smsc95xx_read_reg(dev, COE_CR, &read_buf);
if (ret < 0)
return ret;
if (use_tx_csum)
read_buf |= Tx_COE_EN_;
else
read_buf &= ~Tx_COE_EN_;
if (use_rx_csum)
read_buf |= Rx_COE_EN_;
else
read_buf &= ~Rx_COE_EN_;
ret = smsc95xx_write_reg(dev, COE_CR, read_buf);
if (ret < 0)
return ret;
debug("COE_CR = 0x%08x\n", read_buf);
return 0;
}
static void smsc95xx_set_multicast(struct ueth_data *dev)
{
struct smsc95xx_private *priv = dev->dev_priv;
/* No multicast in u-boot */
priv->mac_cr &= ~(MAC_CR_PRMS_ | MAC_CR_MCPAS_ | MAC_CR_HPFILT_);
}
/* starts the TX path */
static void smsc95xx_start_tx_path(struct ueth_data *dev)
{
struct smsc95xx_private *priv = dev->dev_priv;
u32 reg_val;
/* Enable Tx at MAC */
priv->mac_cr |= MAC_CR_TXEN_;
smsc95xx_write_reg(dev, MAC_CR, priv->mac_cr);
/* Enable Tx at SCSRs */
reg_val = TX_CFG_ON_;
smsc95xx_write_reg(dev, TX_CFG, reg_val);
}
/* Starts the Receive path */
static void smsc95xx_start_rx_path(struct ueth_data *dev)
{
struct smsc95xx_private *priv = dev->dev_priv;
priv->mac_cr |= MAC_CR_RXEN_;
smsc95xx_write_reg(dev, MAC_CR, priv->mac_cr);
}
/*
* Smsc95xx callbacks
*/
static int smsc95xx_init(struct eth_device *eth, bd_t *bd)
{
int ret;
u32 write_buf;
u32 read_buf;
u32 burst_cap;
int timeout;
struct ueth_data *dev = (struct ueth_data *)eth->priv;
struct smsc95xx_private *priv =
(struct smsc95xx_private *)dev->dev_priv;
#define TIMEOUT_RESOLUTION 50 /* ms */
int link_detected;
debug("** %s()\n", __func__);
dev->phy_id = SMSC95XX_INTERNAL_PHY_ID; /* fixed phy id */
write_buf = HW_CFG_LRST_;
ret = smsc95xx_write_reg(dev, HW_CFG, write_buf);
if (ret < 0)
return ret;
timeout = 0;
do {
ret = smsc95xx_read_reg(dev, HW_CFG, &read_buf);
if (ret < 0)
return ret;
udelay(10 * 1000);
timeout++;
} while ((read_buf & HW_CFG_LRST_) && (timeout < 100));
if (timeout >= 100) {
debug("timeout waiting for completion of Lite Reset\n");
return -1;
}
write_buf = PM_CTL_PHY_RST_;
ret = smsc95xx_write_reg(dev, PM_CTRL, write_buf);
if (ret < 0)
return ret;
timeout = 0;
do {
ret = smsc95xx_read_reg(dev, PM_CTRL, &read_buf);
if (ret < 0)
return ret;
udelay(10 * 1000);
timeout++;
} while ((read_buf & PM_CTL_PHY_RST_) && (timeout < 100));
if (timeout >= 100) {
debug("timeout waiting for PHY Reset\n");
return -1;
}
if (!priv->have_hwaddr && smsc95xx_init_mac_address(eth, dev) == 0)
priv->have_hwaddr = 1;
if (!priv->have_hwaddr) {
puts("Error: SMSC95xx: No MAC address set - set usbethaddr\n");
return -1;
}
if (smsc95xx_write_hwaddr(eth) < 0)
return -1;
ret = smsc95xx_read_reg(dev, HW_CFG, &read_buf);
if (ret < 0)
return ret;
debug("Read Value from HW_CFG : 0x%08x\n", read_buf);
read_buf |= HW_CFG_BIR_;
ret = smsc95xx_write_reg(dev, HW_CFG, read_buf);
if (ret < 0)
return ret;
ret = smsc95xx_read_reg(dev, HW_CFG, &read_buf);
if (ret < 0)
return ret;
debug("Read Value from HW_CFG after writing "
"HW_CFG_BIR_: 0x%08x\n", read_buf);
#ifdef TURBO_MODE
if (dev->pusb_dev->speed == USB_SPEED_HIGH) {
burst_cap = DEFAULT_HS_BURST_CAP_SIZE / HS_USB_PKT_SIZE;
priv->rx_urb_size = DEFAULT_HS_BURST_CAP_SIZE;
} else {
burst_cap = DEFAULT_FS_BURST_CAP_SIZE / FS_USB_PKT_SIZE;
priv->rx_urb_size = DEFAULT_FS_BURST_CAP_SIZE;
}
#else
burst_cap = 0;
priv->rx_urb_size = MAX_SINGLE_PACKET_SIZE;
#endif
debug("rx_urb_size=%ld\n", (ulong)priv->rx_urb_size);
ret = smsc95xx_write_reg(dev, BURST_CAP, burst_cap);
if (ret < 0)
return ret;
ret = smsc95xx_read_reg(dev, BURST_CAP, &read_buf);
if (ret < 0)
return ret;
debug("Read Value from BURST_CAP after writing: 0x%08x\n", read_buf);
read_buf = DEFAULT_BULK_IN_DELAY;
ret = smsc95xx_write_reg(dev, BULK_IN_DLY, read_buf);
if (ret < 0)
return ret;
ret = smsc95xx_read_reg(dev, BULK_IN_DLY, &read_buf);
if (ret < 0)
return ret;
debug("Read Value from BULK_IN_DLY after writing: "
"0x%08x\n", read_buf);
ret = smsc95xx_read_reg(dev, HW_CFG, &read_buf);
if (ret < 0)
return ret;
debug("Read Value from HW_CFG: 0x%08x\n", read_buf);
#ifdef TURBO_MODE
read_buf |= (HW_CFG_MEF_ | HW_CFG_BCE_);
#endif
read_buf &= ~HW_CFG_RXDOFF_;
#define NET_IP_ALIGN 0
read_buf |= NET_IP_ALIGN << 9;
ret = smsc95xx_write_reg(dev, HW_CFG, read_buf);
if (ret < 0)
return ret;
ret = smsc95xx_read_reg(dev, HW_CFG, &read_buf);
if (ret < 0)
return ret;
debug("Read Value from HW_CFG after writing: 0x%08x\n", read_buf);
write_buf = 0xFFFFFFFF;
ret = smsc95xx_write_reg(dev, INT_STS, write_buf);
if (ret < 0)
return ret;
ret = smsc95xx_read_reg(dev, ID_REV, &read_buf);
if (ret < 0)
return ret;
debug("ID_REV = 0x%08x\n", read_buf);
/* Init Tx */
write_buf = 0;
ret = smsc95xx_write_reg(dev, FLOW, write_buf);
if (ret < 0)
return ret;
read_buf = AFC_CFG_DEFAULT;
ret = smsc95xx_write_reg(dev, AFC_CFG, read_buf);
if (ret < 0)
return ret;
ret = smsc95xx_read_reg(dev, MAC_CR, &priv->mac_cr);
if (ret < 0)
return ret;
/* Init Rx. Set Vlan */
write_buf = (u32)ETH_P_8021Q;
ret = smsc95xx_write_reg(dev, VLAN1, write_buf);
if (ret < 0)
return ret;
/* Disable checksum offload engines */
ret = smsc95xx_set_csums(dev, 0, 0);
if (ret < 0) {
debug("Failed to set csum offload: %d\n", ret);
return ret;
}
smsc95xx_set_multicast(dev);
if (smsc95xx_phy_initialize(dev) < 0)
return -1;
ret = smsc95xx_read_reg(dev, INT_EP_CTL, &read_buf);
if (ret < 0)
return ret;
/* enable PHY interrupts */
read_buf |= INT_EP_CTL_PHY_INT_;
ret = smsc95xx_write_reg(dev, INT_EP_CTL, read_buf);
if (ret < 0)
return ret;
smsc95xx_start_tx_path(dev);
smsc95xx_start_rx_path(dev);
timeout = 0;
do {
link_detected = smsc95xx_mdio_read(dev, dev->phy_id, MII_BMSR)
& BMSR_LSTATUS;
if (!link_detected) {
if (timeout == 0)
printf("Waiting for Ethernet connection... ");
udelay(TIMEOUT_RESOLUTION * 1000);
timeout += TIMEOUT_RESOLUTION;
}
} while (!link_detected && timeout < PHY_CONNECT_TIMEOUT);
if (link_detected) {
if (timeout != 0)
printf("done.\n");
} else {
printf("unable to connect.\n");
return -1;
}
return 0;
}
static int smsc95xx_send(struct eth_device *eth, void* packet, int length)
{
struct ueth_data *dev = (struct ueth_data *)eth->priv;
int err;
int actual_len;
u32 tx_cmd_a;
u32 tx_cmd_b;
ALLOC_CACHE_ALIGN_BUFFER(unsigned char, msg,
PKTSIZE + sizeof(tx_cmd_a) + sizeof(tx_cmd_b));
debug("** %s(), len %d, buf %#x\n", __func__, length, (int)msg);
if (length > PKTSIZE)
return -1;
tx_cmd_a = (u32)length | TX_CMD_A_FIRST_SEG_ | TX_CMD_A_LAST_SEG_;
tx_cmd_b = (u32)length;
cpu_to_le32s(&tx_cmd_a);
cpu_to_le32s(&tx_cmd_b);
/* prepend cmd_a and cmd_b */
memcpy(msg, &tx_cmd_a, sizeof(tx_cmd_a));
memcpy(msg + sizeof(tx_cmd_a), &tx_cmd_b, sizeof(tx_cmd_b));
memcpy(msg + sizeof(tx_cmd_a) + sizeof(tx_cmd_b), (void *)packet,
length);
err = usb_bulk_msg(dev->pusb_dev,
usb_sndbulkpipe(dev->pusb_dev, dev->ep_out),
(void *)msg,
length + sizeof(tx_cmd_a) + sizeof(tx_cmd_b),
&actual_len,
USB_BULK_SEND_TIMEOUT);
debug("Tx: len = %u, actual = %u, err = %d\n",
length + sizeof(tx_cmd_a) + sizeof(tx_cmd_b),
actual_len, err);
return err;
}
static int smsc95xx_recv(struct eth_device *eth)
{
struct ueth_data *dev = (struct ueth_data *)eth->priv;
DEFINE_CACHE_ALIGN_BUFFER(unsigned char, recv_buf, AX_RX_URB_SIZE);
unsigned char *buf_ptr;
int err;
int actual_len;
u32 packet_len;
int cur_buf_align;
debug("** %s()\n", __func__);
err = usb_bulk_msg(dev->pusb_dev,
usb_rcvbulkpipe(dev->pusb_dev, dev->ep_in),
(void *)recv_buf,
AX_RX_URB_SIZE,
&actual_len,
USB_BULK_RECV_TIMEOUT);
debug("Rx: len = %u, actual = %u, err = %d\n", AX_RX_URB_SIZE,
actual_len, err);
if (err != 0) {
debug("Rx: failed to receive\n");
return -1;
}
if (actual_len > AX_RX_URB_SIZE) {
debug("Rx: received too many bytes %d\n", actual_len);
return -1;
}
buf_ptr = recv_buf;
while (actual_len > 0) {
/*
* 1st 4 bytes contain the length of the actual data plus error
* info. Extract data length.
*/
if (actual_len < sizeof(packet_len)) {
debug("Rx: incomplete packet length\n");
return -1;
}
memcpy(&packet_len, buf_ptr, sizeof(packet_len));
le32_to_cpus(&packet_len);
if (packet_len & RX_STS_ES_) {
debug("Rx: Error header=%#x", packet_len);
return -1;
}
packet_len = ((packet_len & RX_STS_FL_) >> 16);
if (packet_len > actual_len - sizeof(packet_len)) {
debug("Rx: too large packet: %d\n", packet_len);
return -1;
}
/* Notify net stack */
NetReceive(buf_ptr + sizeof(packet_len), packet_len - 4);
/* Adjust for next iteration */
actual_len -= sizeof(packet_len) + packet_len;
buf_ptr += sizeof(packet_len) + packet_len;
cur_buf_align = (int)buf_ptr - (int)recv_buf;
if (cur_buf_align & 0x03) {
int align = 4 - (cur_buf_align & 0x03);
actual_len -= align;
buf_ptr += align;
}
}
return err;
}
static void smsc95xx_halt(struct eth_device *eth)
{
debug("** %s()\n", __func__);
}
/*
* SMSC probing functions
*/
void smsc95xx_eth_before_probe(void)
{
curr_eth_dev = 0;
}
struct smsc95xx_dongle {
unsigned short vendor;
unsigned short product;
};
static const struct smsc95xx_dongle smsc95xx_dongles[] = {
{ 0x0424, 0xec00 }, /* LAN9512/LAN9514 Ethernet */
{ 0x0424, 0x9500 }, /* LAN9500 Ethernet */
{ 0x0424, 0x9730 }, /* LAN9730 Ethernet (HSIC) */
{ 0x0424, 0x9900 }, /* SMSC9500 USB Ethernet Device (SAL10) */
{ 0x0000, 0x0000 } /* END - Do not remove */
};
/* Probe to see if a new device is actually an SMSC device */
int smsc95xx_eth_probe(struct usb_device *dev, unsigned int ifnum,
struct ueth_data *ss)
{
struct usb_interface *iface;
struct usb_interface_descriptor *iface_desc;
int i;
/* let's examine the device now */
iface = &dev->config.if_desc[ifnum];
iface_desc = &dev->config.if_desc[ifnum].desc;
for (i = 0; smsc95xx_dongles[i].vendor != 0; i++) {
if (dev->descriptor.idVendor == smsc95xx_dongles[i].vendor &&
dev->descriptor.idProduct == smsc95xx_dongles[i].product)
/* Found a supported dongle */
break;
}
if (smsc95xx_dongles[i].vendor == 0)
return 0;
/* At this point, we know we've got a live one */
debug("\n\nUSB Ethernet device detected\n");
memset(ss, '\0', sizeof(struct ueth_data));
/* Initialize the ueth_data structure with some useful info */
ss->ifnum = ifnum;
ss->pusb_dev = dev;
ss->subclass = iface_desc->bInterfaceSubClass;
ss->protocol = iface_desc->bInterfaceProtocol;
/*
* We are expecting a minimum of 3 endpoints - in, out (bulk), and int.
* We will ignore any others.
*/
for (i = 0; i < iface_desc->bNumEndpoints; i++) {
/* is it an BULK endpoint? */
if ((iface->ep_desc[i].bmAttributes &
USB_ENDPOINT_XFERTYPE_MASK) == USB_ENDPOINT_XFER_BULK) {
if (iface->ep_desc[i].bEndpointAddress & USB_DIR_IN)
ss->ep_in =
iface->ep_desc[i].bEndpointAddress &
USB_ENDPOINT_NUMBER_MASK;
else
ss->ep_out =
iface->ep_desc[i].bEndpointAddress &
USB_ENDPOINT_NUMBER_MASK;
}
/* is it an interrupt endpoint? */
if ((iface->ep_desc[i].bmAttributes &
USB_ENDPOINT_XFERTYPE_MASK) == USB_ENDPOINT_XFER_INT) {
ss->ep_int = iface->ep_desc[i].bEndpointAddress &
USB_ENDPOINT_NUMBER_MASK;
ss->irqinterval = iface->ep_desc[i].bInterval;
}
}
debug("Endpoints In %d Out %d Int %d\n",
ss->ep_in, ss->ep_out, ss->ep_int);
/* Do some basic sanity checks, and bail if we find a problem */
if (usb_set_interface(dev, iface_desc->bInterfaceNumber, 0) ||
!ss->ep_in || !ss->ep_out || !ss->ep_int) {
debug("Problems with device\n");
return 0;
}
dev->privptr = (void *)ss;
/* alloc driver private */
ss->dev_priv = calloc(1, sizeof(struct smsc95xx_private));
if (!ss->dev_priv)
return 0;
return 1;
}
int smsc95xx_eth_get_info(struct usb_device *dev, struct ueth_data *ss,
struct eth_device *eth)
{
debug("** %s()\n", __func__);
if (!eth) {
debug("%s: missing parameter.\n", __func__);
return 0;
}
sprintf(eth->name, "%s%d", SMSC95XX_BASE_NAME, curr_eth_dev++);
eth->init = smsc95xx_init;
eth->send = smsc95xx_send;
eth->recv = smsc95xx_recv;
eth->halt = smsc95xx_halt;
eth->write_hwaddr = smsc95xx_write_hwaddr;
eth->priv = ss;
return 1;
}