u-boot/drivers/ram/stm32mp1/stm32mp1_tuning.c
Simon Glass c05ed00afb common: Drop linux/delay.h from common header
Move this uncommon header out of the common header.

Signed-off-by: Simon Glass <sjg@chromium.org>
2020-05-18 21:19:23 -04:00

1538 lines
43 KiB
C

// SPDX-License-Identifier: GPL-2.0+ OR BSD-3-Clause
/*
* Copyright (C) 2019, STMicroelectronics - All Rights Reserved
*/
#include <common.h>
#include <console.h>
#include <clk.h>
#include <log.h>
#include <ram.h>
#include <rand.h>
#include <reset.h>
#include <asm/io.h>
#include <linux/bitops.h>
#include <linux/delay.h>
#include <linux/iopoll.h>
#include "stm32mp1_ddr_regs.h"
#include "stm32mp1_ddr.h"
#include "stm32mp1_tests.h"
#define MAX_DQS_PHASE_IDX _144deg
#define MAX_DQS_UNIT_IDX 7
#define MAX_GSL_IDX 5
#define MAX_GPS_IDX 3
/* Number of bytes used in this SW. ( min 1--> max 4). */
#define NUM_BYTES 4
enum dqs_phase_enum {
_36deg = 0,
_54deg = 1,
_72deg = 2,
_90deg = 3,
_108deg = 4,
_126deg = 5,
_144deg = 6
};
/* BIST Result struct */
struct BIST_result {
/* Overall test result:
* 0 Fail (any bit failed) ,
* 1 Success (All bits success)
*/
bool test_result;
/* 1: true, all fail / 0: False, not all bits fail */
bool all_bits_fail;
bool bit_i_test_result[8]; /* 0 fail / 1 success */
};
/* a struct that defines tuning parameters of a byte. */
struct tuning_position {
u8 phase; /* DQS phase */
u8 unit; /* DQS unit delay */
u32 bits_delay; /* Bits deskew in this byte */
};
/* 36deg, 54deg, 72deg, 90deg, 108deg, 126deg, 144deg */
const u8 dx_dll_phase[7] = {3, 2, 1, 0, 14, 13, 12};
static u8 BIST_error_max = 1;
static u32 BIST_seed = 0x1234ABCD;
static u8 get_nb_bytes(struct stm32mp1_ddrctl *ctl)
{
u32 data_bus = readl(&ctl->mstr) & DDRCTRL_MSTR_DATA_BUS_WIDTH_MASK;
u8 nb_bytes = NUM_BYTES;
switch (data_bus) {
case DDRCTRL_MSTR_DATA_BUS_WIDTH_HALF:
nb_bytes /= 2;
break;
case DDRCTRL_MSTR_DATA_BUS_WIDTH_QUARTER:
nb_bytes /= 4;
break;
default:
break;
}
return nb_bytes;
}
static u8 get_nb_bank(struct stm32mp1_ddrctl *ctl)
{
/* Count bank address bits */
u8 bits = 0;
u32 reg, val;
reg = readl(&ctl->addrmap1);
/* addrmap1.addrmap_bank_b1 */
val = (reg & GENMASK(5, 0)) >> 0;
if (val <= 31)
bits++;
/* addrmap1.addrmap_bank_b2 */
val = (reg & GENMASK(13, 8)) >> 8;
if (val <= 31)
bits++;
/* addrmap1.addrmap_bank_b3 */
val = (reg & GENMASK(21, 16)) >> 16;
if (val <= 31)
bits++;
return bits;
}
static u8 get_nb_col(struct stm32mp1_ddrctl *ctl)
{
u8 bits;
u32 reg, val;
/* Count column address bits, start at 2 for b0 and b1 (fixed) */
bits = 2;
reg = readl(&ctl->addrmap2);
/* addrmap2.addrmap_col_b2 */
val = (reg & GENMASK(3, 0)) >> 0;
if (val <= 7)
bits++;
/* addrmap2.addrmap_col_b3 */
val = (reg & GENMASK(11, 8)) >> 8;
if (val <= 7)
bits++;
/* addrmap2.addrmap_col_b4 */
val = (reg & GENMASK(19, 16)) >> 16;
if (val <= 7)
bits++;
/* addrmap2.addrmap_col_b5 */
val = (reg & GENMASK(27, 24)) >> 24;
if (val <= 7)
bits++;
reg = readl(&ctl->addrmap3);
/* addrmap3.addrmap_col_b6 */
val = (reg & GENMASK(3, 0)) >> 0;
if (val <= 7)
bits++;
/* addrmap3.addrmap_col_b7 */
val = (reg & GENMASK(11, 8)) >> 8;
if (val <= 7)
bits++;
/* addrmap3.addrmap_col_b8 */
val = (reg & GENMASK(19, 16)) >> 16;
if (val <= 7)
bits++;
/* addrmap3.addrmap_col_b9 */
val = (reg & GENMASK(27, 24)) >> 24;
if (val <= 7)
bits++;
reg = readl(&ctl->addrmap4);
/* addrmap4.addrmap_col_b10 */
val = (reg & GENMASK(3, 0)) >> 0;
if (val <= 7)
bits++;
/* addrmap4.addrmap_col_b11 */
val = (reg & GENMASK(11, 8)) >> 8;
if (val <= 7)
bits++;
return bits;
}
static u8 get_nb_row(struct stm32mp1_ddrctl *ctl)
{
/* Count row address bits */
u8 bits = 0;
u32 reg, val;
reg = readl(&ctl->addrmap5);
/* addrmap5.addrmap_row_b0 */
val = (reg & GENMASK(3, 0)) >> 0;
if (val <= 11)
bits++;
/* addrmap5.addrmap_row_b1 */
val = (reg & GENMASK(11, 8)) >> 8;
if (val <= 11)
bits++;
/* addrmap5.addrmap_row_b2_10 */
val = (reg & GENMASK(19, 16)) >> 16;
if (val <= 11)
bits += 9;
else
printf("warning: addrmap5.addrmap_row_b2_10 not supported\n");
/* addrmap5.addrmap_row_b11 */
val = (reg & GENMASK(27, 24)) >> 24;
if (val <= 11)
bits++;
reg = readl(&ctl->addrmap6);
/* addrmap6.addrmap_row_b12 */
val = (reg & GENMASK(3, 0)) >> 0;
if (val <= 7)
bits++;
/* addrmap6.addrmap_row_b13 */
val = (reg & GENMASK(11, 8)) >> 8;
if (val <= 7)
bits++;
/* addrmap6.addrmap_row_b14 */
val = (reg & GENMASK(19, 16)) >> 16;
if (val <= 7)
bits++;
/* addrmap6.addrmap_row_b15 */
val = (reg & GENMASK(27, 24)) >> 24;
if (val <= 7)
bits++;
return bits;
}
static void itm_soft_reset(struct stm32mp1_ddrphy *phy)
{
stm32mp1_ddrphy_init(phy, DDRPHYC_PIR_ITMSRST);
}
/* Read DQ unit delay register and provides the retrieved value for DQS
* We are assuming that we have the same delay when clocking
* by DQS and when clocking by DQSN
*/
static u8 DQ_unit_index(struct stm32mp1_ddrphy *phy, u8 byte, u8 bit)
{
u32 index;
u32 addr = DXNDQTR(phy, byte);
/* We are assuming that we have the same delay when clocking by DQS
* and when clocking by DQSN : use only the low bits
*/
index = (readl(addr) >> DDRPHYC_DXNDQTR_DQDLY_SHIFT(bit))
& DDRPHYC_DXNDQTR_DQDLY_LOW_MASK;
pr_debug("%s: [%x]: %x => DQ unit index = %x\n",
__func__, addr, readl(addr), index);
return index;
}
/* Sets the DQS phase delay for a byte lane.
*phase delay is specified by giving the index of the desired delay
* in the dx_dll_phase array.
*/
static void DQS_phase_delay(struct stm32mp1_ddrphy *phy, u8 byte, u8 phase_idx)
{
u8 sdphase_val = 0;
/* Write DXNDLLCR.SDPHASE = dx_dll_phase(phase_index); */
sdphase_val = dx_dll_phase[phase_idx];
clrsetbits_le32(DXNDLLCR(phy, byte),
DDRPHYC_DXNDLLCR_SDPHASE_MASK,
sdphase_val << DDRPHYC_DXNDLLCR_SDPHASE_SHIFT);
}
/* Sets the DQS unit delay for a byte lane.
* unit delay is specified by giving the index of the desired delay
* for dgsdly and dqsndly (same value).
*/
static void DQS_unit_delay(struct stm32mp1_ddrphy *phy,
u8 byte, u8 unit_dly_idx)
{
/* Write the same value in DXNDQSTR.DQSDLY and DXNDQSTR.DQSNDLY */
clrsetbits_le32(DXNDQSTR(phy, byte),
DDRPHYC_DXNDQSTR_DQSDLY_MASK |
DDRPHYC_DXNDQSTR_DQSNDLY_MASK,
(unit_dly_idx << DDRPHYC_DXNDQSTR_DQSDLY_SHIFT) |
(unit_dly_idx << DDRPHYC_DXNDQSTR_DQSNDLY_SHIFT));
/* After changing this value, an ITM soft reset (PIR.ITMSRST=1,
* plus PIR.INIT=1) must be issued.
*/
stm32mp1_ddrphy_init(phy, DDRPHYC_PIR_ITMSRST);
}
/* Sets the DQ unit delay for a bit line in particular byte lane.
* unit delay is specified by giving the desired delay
*/
static void set_DQ_unit_delay(struct stm32mp1_ddrphy *phy,
u8 byte, u8 bit,
u8 dq_delay_index)
{
u8 dq_bit_delay_val = dq_delay_index | (dq_delay_index << 2);
/* same value on delay for clock DQ an DQS_b */
clrsetbits_le32(DXNDQTR(phy, byte),
DDRPHYC_DXNDQTR_DQDLY_MASK
<< DDRPHYC_DXNDQTR_DQDLY_SHIFT(bit),
dq_bit_delay_val << DDRPHYC_DXNDQTR_DQDLY_SHIFT(bit));
}
static void set_r0dgsl_delay(struct stm32mp1_ddrphy *phy,
u8 byte, u8 r0dgsl_idx)
{
clrsetbits_le32(DXNDQSTR(phy, byte),
DDRPHYC_DXNDQSTR_R0DGSL_MASK,
r0dgsl_idx << DDRPHYC_DXNDQSTR_R0DGSL_SHIFT);
}
static void set_r0dgps_delay(struct stm32mp1_ddrphy *phy,
u8 byte, u8 r0dgps_idx)
{
clrsetbits_le32(DXNDQSTR(phy, byte),
DDRPHYC_DXNDQSTR_R0DGPS_MASK,
r0dgps_idx << DDRPHYC_DXNDQSTR_R0DGPS_SHIFT);
}
/* Basic BIST configuration for data lane tests. */
static void config_BIST(struct stm32mp1_ddrctl *ctl,
struct stm32mp1_ddrphy *phy)
{
u8 nb_bank = get_nb_bank(ctl);
u8 nb_row = get_nb_row(ctl);
u8 nb_col = get_nb_col(ctl);
/* Selects the SDRAM bank address to be used during BIST. */
u32 bbank = 0;
/* Selects the SDRAM row address to be used during BIST. */
u32 brow = 0;
/* Selects the SDRAM column address to be used during BIST. */
u32 bcol = 0;
/* Selects the value by which the SDRAM address is incremented
* for each write/read access.
*/
u32 bainc = 0x00000008;
/* Specifies the maximum SDRAM rank to be used during BIST.
* The default value is set to maximum ranks minus 1.
* must be 0 with single rank
*/
u32 bmrank = 0;
/* Selects the SDRAM rank to be used during BIST.
* must be 0 with single rank
*/
u32 brank = 0;
/* Specifies the maximum SDRAM bank address to be used during
* BIST before the address & increments to the next rank.
*/
u32 bmbank = (1 << nb_bank) - 1;
/* Specifies the maximum SDRAM row address to be used during
* BIST before the address & increments to the next bank.
*/
u32 bmrow = (1 << nb_row) - 1;
/* Specifies the maximum SDRAM column address to be used during
* BIST before the address & increments to the next row.
*/
u32 bmcol = (1 << nb_col) - 1;
u32 bmode_conf = 0x00000001; /* DRam mode */
u32 bdxen_conf = 0x00000001; /* BIST on Data byte */
u32 bdpat_conf = 0x00000002; /* Select LFSR pattern */
/*Setup BIST for DRAM mode, and LFSR-random data pattern.*/
/*Write BISTRR.BMODE = 1?b1;*/
/*Write BISTRR.BDXEN = 1?b1;*/
/*Write BISTRR.BDPAT = 2?b10;*/
/* reset BIST */
writel(0x3, &phy->bistrr);
writel((bmode_conf << 3) | (bdxen_conf << 14) | (bdpat_conf << 17),
&phy->bistrr);
/*Setup BIST Word Count*/
/*Write BISTWCR.BWCNT = 16?b0008;*/
writel(0x00000200, &phy->bistwcr); /* A multiple of BL/2 */
writel(bcol | (brow << 12) | (bbank << 28), &phy->bistar0);
writel(brank | (bmrank << 2) | (bainc << 4), &phy->bistar1);
writel(bmcol | (bmrow << 12) | (bmbank << 28), &phy->bistar2);
}
/* Select the Byte lane to be tested by BIST. */
static void BIST_datx8_sel(struct stm32mp1_ddrphy *phy, u8 datx8)
{
clrsetbits_le32(&phy->bistrr,
DDRPHYC_BISTRR_BDXSEL_MASK,
datx8 << DDRPHYC_BISTRR_BDXSEL_SHIFT);
/*(For example, selecting Byte Lane 3, BISTRR.BDXSEL = 4?b0011)*/
/* Write BISTRR.BDXSEL = datx8; */
}
/* Perform BIST Write_Read test on a byte lane and return test result. */
static void BIST_test(struct stm32mp1_ddrphy *phy, u8 byte,
struct BIST_result *bist)
{
bool result = true; /* BIST_SUCCESS */
u32 cnt = 0;
u32 error = 0;
u32 val;
int ret;
bist->test_result = true;
run:
itm_soft_reset(phy);
/*Perform BIST Reset*/
/* Write BISTRR.BINST = 3?b011; */
clrsetbits_le32(&phy->bistrr,
0x00000007,
0x00000003);
/*Re-seed LFSR*/
/* Write BISTLSR.SEED = 32'h1234ABCD; */
if (BIST_seed)
writel(BIST_seed, &phy->bistlsr);
else
writel(rand(), &phy->bistlsr);
/* some delay to reset BIST */
udelay(10);
/*Perform BIST Run*/
clrsetbits_le32(&phy->bistrr,
0x00000007,
0x00000001);
/* Write BISTRR.BINST = 3?b001; */
/* poll on BISTGSR.BDONE and wait max 1000 us */
ret = readl_poll_timeout(&phy->bistgsr, val,
val & DDRPHYC_BISTGSR_BDDONE, 1000);
if (ret < 0) {
printf("warning: BIST timeout\n");
result = false; /* BIST_FAIL; */
/*Perform BIST Stop */
clrsetbits_le32(&phy->bistrr, 0x00000007, 0x00000002);
} else {
/*Check if received correct number of words*/
/* if (Read BISTWCSR.DXWCNT = Read BISTWCR.BWCNT) */
if (((readl(&phy->bistwcsr)) >> DDRPHYC_BISTWCSR_DXWCNT_SHIFT)
== readl(&phy->bistwcr)) {
/*Determine if there is a data comparison error*/
/* if (Read BISTGSR.BDXERR = 1?b0) */
if (readl(&phy->bistgsr) & DDRPHYC_BISTGSR_BDXERR)
result = false; /* BIST_FAIL; */
else
result = true; /* BIST_SUCCESS; */
} else {
result = false; /* BIST_FAIL; */
}
}
/* loop while success */
cnt++;
if (result && cnt != 1000)
goto run;
if (!result)
error++;
if (error < BIST_error_max) {
if (cnt != 1000)
goto run;
bist->test_result = true;
} else {
bist->test_result = false;
}
}
/* After running the deskew algo, this function applies the new DQ delays
* by reading them from the array "deskew_delay"and writing in PHY registers.
* The bits that are not deskewed parfectly (too much skew on them,
* or data eye very wide) are marked in the array deskew_non_converge.
*/
static void apply_deskew_results(struct stm32mp1_ddrphy *phy, u8 byte,
u8 deskew_delay[NUM_BYTES][8],
u8 deskew_non_converge[NUM_BYTES][8])
{
u8 bit_i;
u8 index;
for (bit_i = 0; bit_i < 8; bit_i++) {
set_DQ_unit_delay(phy, byte, bit_i, deskew_delay[byte][bit_i]);
index = DQ_unit_index(phy, byte, bit_i);
pr_debug("Byte %d ; bit %d : The new DQ delay (%d) index=%d [delta=%d, 3 is the default]",
byte, bit_i, deskew_delay[byte][bit_i],
index, index - 3);
printf("Byte %d, bit %d, DQ delay = %d",
byte, bit_i, deskew_delay[byte][bit_i]);
if (deskew_non_converge[byte][bit_i] == 1)
pr_debug(" - not converged : still more skew");
printf("\n");
}
}
/* DQ Bit de-skew algorithm.
* Deskews data lines as much as possible.
* 1. Add delay to DQS line until finding the failure
* (normally a hold time violation)
* 2. Reduce DQS line by small steps until finding the very first time
* we go back to "Pass" condition.
* 3. For each DQ line, Reduce DQ delay until finding the very first failure
* (normally a hold time fail)
* 4. When all bits are at their first failure delay, we can consider them
* aligned.
* Handle conrer situation (Can't find Pass-fail, or fail-pass transitions
* at any step)
* TODO Provide a return Status. Improve doc
*/
static enum test_result bit_deskew(struct stm32mp1_ddrctl *ctl,
struct stm32mp1_ddrphy *phy, char *string)
{
/* New DQ delay value (index), set during Deskew algo */
u8 deskew_delay[NUM_BYTES][8];
/*If there is still skew on a bit, mark this bit. */
u8 deskew_non_converge[NUM_BYTES][8];
struct BIST_result result;
s8 dqs_unit_delay_index = 0;
u8 datx8 = 0;
u8 bit_i = 0;
s8 phase_idx = 0;
s8 bit_i_delay_index = 0;
u8 success = 0;
struct tuning_position last_right_ok;
u8 force_stop = 0;
u8 fail_found;
u8 error = 0;
u8 nb_bytes = get_nb_bytes(ctl);
/* u8 last_pass_dqs_unit = 0; */
memset(deskew_delay, 0, sizeof(deskew_delay));
memset(deskew_non_converge, 0, sizeof(deskew_non_converge));
/*Disable DQS Drift Compensation*/
clrbits_le32(&phy->pgcr, DDRPHYC_PGCR_DFTCMP);
/*Disable all bytes*/
/* Disable automatic power down of DLL and IOs when disabling
* a byte (To avoid having to add programming and delay
* for a DLL re-lock when later re-enabling a disabled Byte Lane)
*/
clrbits_le32(&phy->pgcr, DDRPHYC_PGCR_PDDISDX);
/* Disable all data bytes */
clrbits_le32(&phy->dx0gcr, DDRPHYC_DXNGCR_DXEN);
clrbits_le32(&phy->dx1gcr, DDRPHYC_DXNGCR_DXEN);
clrbits_le32(&phy->dx2gcr, DDRPHYC_DXNGCR_DXEN);
clrbits_le32(&phy->dx3gcr, DDRPHYC_DXNGCR_DXEN);
/* Config the BIST block */
config_BIST(ctl, phy);
pr_debug("BIST Config done.\n");
/* Train each byte */
for (datx8 = 0; datx8 < nb_bytes; datx8++) {
if (ctrlc()) {
sprintf(string, "interrupted at byte %d/%d, error=%d",
datx8 + 1, nb_bytes, error);
return TEST_FAILED;
}
pr_debug("\n======================\n");
pr_debug("Start deskew byte %d .\n", datx8);
pr_debug("======================\n");
/* Enable Byte (DXNGCR, bit DXEN) */
setbits_le32(DXNGCR(phy, datx8), DDRPHYC_DXNGCR_DXEN);
/* Select the byte lane for comparison of read data */
BIST_datx8_sel(phy, datx8);
/* Set all DQDLYn to maximum value. All bits within the byte
* will be delayed with DQSTR = 2 instead of max = 3
* to avoid inter bits fail influence
*/
writel(0xAAAAAAAA, DXNDQTR(phy, datx8));
/* Set the DQS phase delay to 90 DEG (default).
* What is defined here is the index of the desired config
* in the PHASE array.
*/
phase_idx = _90deg;
/* Set DQS unit delay to the max value. */
dqs_unit_delay_index = MAX_DQS_UNIT_IDX;
DQS_unit_delay(phy, datx8, dqs_unit_delay_index);
DQS_phase_delay(phy, datx8, phase_idx);
/* Issue a DLL soft reset */
clrbits_le32(DXNDLLCR(phy, datx8), DDRPHYC_DXNDLLCR_DLLSRST);
setbits_le32(DXNDLLCR(phy, datx8), DDRPHYC_DXNDLLCR_DLLSRST);
/* Test this typical init condition */
BIST_test(phy, datx8, &result);
success = result.test_result;
/* If the test pass in this typical condition,
* start the algo with it.
* Else, look for Pass init condition
*/
if (!success) {
pr_debug("Fail at init condtion. Let's look for a good init condition.\n");
success = 0; /* init */
/* Make sure we start with a PASS condition before
* looking for a fail condition.
* Find the first PASS PHASE condition
*/
/* escape if we find a PASS */
pr_debug("increase Phase idx\n");
while (!success && (phase_idx <= MAX_DQS_PHASE_IDX)) {
DQS_phase_delay(phy, datx8, phase_idx);
BIST_test(phy, datx8, &result);
success = result.test_result;
phase_idx++;
}
/* if ended with success
* ==>> Restore the fist success condition
*/
if (success)
phase_idx--; /* because it ended with ++ */
}
if (ctrlc()) {
sprintf(string, "interrupted at byte %d/%d, error=%d",
datx8 + 1, nb_bytes, error);
return TEST_FAILED;
}
/* We couldn't find a successful condition, its seems
* we have hold violation, lets try reduce DQS_unit Delay
*/
if (!success) {
/* We couldn't find a successful condition, its seems
* we have hold violation, lets try reduce DQS_unit
* Delay
*/
pr_debug("Still fail. Try decrease DQS Unit delay\n");
phase_idx = 0;
dqs_unit_delay_index = 0;
DQS_phase_delay(phy, datx8, phase_idx);
/* escape if we find a PASS */
while (!success &&
(dqs_unit_delay_index <=
MAX_DQS_UNIT_IDX)) {
DQS_unit_delay(phy, datx8,
dqs_unit_delay_index);
BIST_test(phy, datx8, &result);
success = result.test_result;
dqs_unit_delay_index++;
}
if (success) {
/* Restore the first success condition*/
dqs_unit_delay_index--;
/* last_pass_dqs_unit = dqs_unit_delay_index;*/
DQS_unit_delay(phy, datx8,
dqs_unit_delay_index);
} else {
/* No need to continue,
* there is no pass region.
*/
force_stop = 1;
}
}
/* There is an initial PASS condition
* Look for the first failing condition by PHASE stepping.
* This part of the algo can finish without converging.
*/
if (force_stop) {
printf("Result: Failed ");
printf("[Cannot Deskew lines, ");
printf("there is no PASS region]\n");
error++;
continue;
}
if (ctrlc()) {
sprintf(string, "interrupted at byte %d/%d, error=%d",
datx8 + 1, nb_bytes, error);
return TEST_FAILED;
}
pr_debug("there is a pass region for phase idx %d\n",
phase_idx);
pr_debug("Step1: Find the first failing condition\n");
/* Look for the first failing condition by PHASE stepping.
* This part of the algo can finish without converging.
*/
/* escape if we find a fail (hold time violation)
* condition at any bit or if out of delay range.
*/
while (success && (phase_idx <= MAX_DQS_PHASE_IDX)) {
DQS_phase_delay(phy, datx8, phase_idx);
BIST_test(phy, datx8, &result);
success = result.test_result;
phase_idx++;
}
if (ctrlc()) {
sprintf(string, "interrupted at byte %d/%d, error=%d",
datx8 + 1, nb_bytes, error);
return TEST_FAILED;
}
/* if the loop ended with a failing condition at any bit,
* lets look for the first previous success condition by unit
* stepping (minimal delay)
*/
if (!success) {
pr_debug("Fail region (PHASE) found phase idx %d\n",
phase_idx);
pr_debug("Let's look for first success by DQS Unit steps\n");
/* This part, the algo always converge */
phase_idx--;
/* escape if we find a success condition
* or if out of delay range.
*/
while (!success && dqs_unit_delay_index >= 0) {
DQS_unit_delay(phy, datx8,
dqs_unit_delay_index);
BIST_test(phy, datx8, &result);
success = result.test_result;
dqs_unit_delay_index--;
}
/* if the loop ended with a success condition,
* the last delay Right OK (before hold violation)
* condition is then defined as following:
*/
if (success) {
/* Hold the dely parameters of the the last
* delay Right OK condition.
* -1 to get back to current condition
*/
last_right_ok.phase = phase_idx;
/*+1 to get back to current condition */
last_right_ok.unit = dqs_unit_delay_index + 1;
last_right_ok.bits_delay = 0xFFFFFFFF;
pr_debug("Found %d\n", dqs_unit_delay_index);
} else {
/* the last OK condition is then with the
* previous phase_idx.
* -2 instead of -1 because at the last
* iteration of the while(),
* we incremented phase_idx
*/
last_right_ok.phase = phase_idx - 1;
/* Nominal+1. Because we want the previous
* delay after reducing the phase delay.
*/
last_right_ok.unit = 1;
last_right_ok.bits_delay = 0xFFFFFFFF;
pr_debug("Not Found : try previous phase %d\n",
phase_idx - 1);
DQS_phase_delay(phy, datx8, phase_idx - 1);
dqs_unit_delay_index = 0;
success = true;
while (success &&
(dqs_unit_delay_index <
MAX_DQS_UNIT_IDX)) {
DQS_unit_delay(phy, datx8,
dqs_unit_delay_index);
BIST_test(phy, datx8, &result);
success = result.test_result;
dqs_unit_delay_index++;
pr_debug("dqs_unit_delay_index = %d, result = %d\n",
dqs_unit_delay_index, success);
}
if (!success) {
last_right_ok.unit =
dqs_unit_delay_index - 1;
} else {
last_right_ok.unit = 0;
pr_debug("ERROR: failed region not FOUND");
}
}
} else {
/* we can't find a failing condition at all bits
* ==> Just hold the last test condition
* (the max DQS delay)
* which is the most likely,
* the closest to a hold violation
* If we can't find a Fail condition after
* the Pass region, stick at this position
* In order to have max chances to find a fail
* when reducing DQ delays.
*/
last_right_ok.phase = MAX_DQS_PHASE_IDX;
last_right_ok.unit = MAX_DQS_UNIT_IDX;
last_right_ok.bits_delay = 0xFFFFFFFF;
pr_debug("Can't find the a fail condition\n");
}
/* step 2:
* if we arrive at this stage, it means that we found the last
* Right OK condition (by tweeking the DQS delay). Or we simply
* pushed DQS delay to the max
* This means that by reducing the delay on some DQ bits,
* we should find a failing condition.
*/
printf("Byte %d, DQS unit = %d, phase = %d\n",
datx8, last_right_ok.unit, last_right_ok.phase);
pr_debug("Step2, unit = %d, phase = %d, bits delay=%x\n",
last_right_ok.unit, last_right_ok.phase,
last_right_ok.bits_delay);
/* Restore the last_right_ok condtion. */
DQS_unit_delay(phy, datx8, last_right_ok.unit);
DQS_phase_delay(phy, datx8, last_right_ok.phase);
writel(last_right_ok.bits_delay, DXNDQTR(phy, datx8));
/* train each bit
* reduce delay on each bit, and perform a write/read test
* and stop at the very first time it fails.
* the goal is the find the first failing condition
* for each bit.
* When we achieve this condition< for all the bits,
* we are sure they are aligned (+/- step resolution)
*/
fail_found = 0;
for (bit_i = 0; bit_i < 8; bit_i++) {
if (ctrlc()) {
sprintf(string,
"interrupted at byte %d/%d, error=%d",
datx8 + 1, nb_bytes, error);
return error;
}
pr_debug("deskewing bit %d:\n", bit_i);
success = 1; /* init */
/* Set all DQDLYn to maximum value.
* Only bit_i will be down-delayed
* ==> if we have a fail, it will be definitely
* from bit_i
*/
writel(0xFFFFFFFF, DXNDQTR(phy, datx8));
/* Arriving at this stage,
* we have a success condition with delay = 3;
*/
bit_i_delay_index = 3;
/* escape if bit delay is out of range or
* if a fatil occurs
*/
while ((bit_i_delay_index >= 0) && success) {
set_DQ_unit_delay(phy, datx8,
bit_i,
bit_i_delay_index);
BIST_test(phy, datx8, &result);
success = result.test_result;
bit_i_delay_index--;
}
/* if escape with a fail condition
* ==> save this position for bit_i
*/
if (!success) {
/* save the delay position.
* Add 1 because the while loop ended with a --,
* and that we need to hold the last success
* delay
*/
deskew_delay[datx8][bit_i] =
bit_i_delay_index + 2;
if (deskew_delay[datx8][bit_i] > 3)
deskew_delay[datx8][bit_i] = 3;
/* A flag that states we found at least a fail
* at one bit.
*/
fail_found = 1;
pr_debug("Fail found on bit %d, for delay = %d => deskew[%d][%d] = %d\n",
bit_i, bit_i_delay_index + 1,
datx8, bit_i,
deskew_delay[datx8][bit_i]);
} else {
/* if we can find a success condition by
* back-delaying this bit, just set the delay
* to 0 (the best deskew
* possible) and mark the bit.
*/
deskew_delay[datx8][bit_i] = 0;
/* set a flag that will be used later
* in the report.
*/
deskew_non_converge[datx8][bit_i] = 1;
pr_debug("Fail not found on bit %d => deskew[%d][%d] = %d\n",
bit_i, datx8, bit_i,
deskew_delay[datx8][bit_i]);
}
}
pr_debug("**********byte %d tuning complete************\n",
datx8);
/* If we can't find any failure by back delaying DQ lines,
* hold the default values
*/
if (!fail_found) {
for (bit_i = 0; bit_i < 8; bit_i++)
deskew_delay[datx8][bit_i] = 0;
pr_debug("The Deskew algorithm can't converge, there is too much margin in your design. Good job!\n");
}
apply_deskew_results(phy, datx8, deskew_delay,
deskew_non_converge);
/* Restore nominal value for DQS delay */
DQS_phase_delay(phy, datx8, 3);
DQS_unit_delay(phy, datx8, 3);
/* disable byte after byte bits deskew */
clrbits_le32(DXNGCR(phy, datx8), DDRPHYC_DXNGCR_DXEN);
} /* end of byte deskew */
/* re-enable all data bytes */
setbits_le32(&phy->dx0gcr, DDRPHYC_DXNGCR_DXEN);
setbits_le32(&phy->dx1gcr, DDRPHYC_DXNGCR_DXEN);
setbits_le32(&phy->dx2gcr, DDRPHYC_DXNGCR_DXEN);
setbits_le32(&phy->dx3gcr, DDRPHYC_DXNGCR_DXEN);
if (error) {
sprintf(string, "error = %d", error);
return TEST_FAILED;
}
return TEST_PASSED;
} /* end function */
/* Trim DQS timings and set it in the centre of data eye.
* Look for a PPPPF region, then look for a FPPP region and finally select
* the mid of the FPPPPPF region
*/
static enum test_result eye_training(struct stm32mp1_ddrctl *ctl,
struct stm32mp1_ddrphy *phy, char *string)
{
/*Stores the DQS trim values (PHASE index, unit index) */
u8 eye_training_val[NUM_BYTES][2];
u8 byte = 0;
struct BIST_result result;
s8 dqs_unit_delay_index = 0;
s8 phase_idx = 0;
s8 dqs_unit_delay_index_pass = 0;
s8 phase_idx_pass = 0;
u8 success = 0;
u8 left_phase_bound_found, right_phase_bound_found;
u8 left_unit_bound_found, right_unit_bound_found;
u8 left_bound_found, right_bound_found;
struct tuning_position left_bound, right_bound;
u8 error = 0;
u8 nb_bytes = get_nb_bytes(ctl);
/*Disable DQS Drift Compensation*/
clrbits_le32(&phy->pgcr, DDRPHYC_PGCR_DFTCMP);
/*Disable all bytes*/
/* Disable automatic power down of DLL and IOs when disabling a byte
* (To avoid having to add programming and delay
* for a DLL re-lock when later re-enabling a disabled Byte Lane)
*/
clrbits_le32(&phy->pgcr, DDRPHYC_PGCR_PDDISDX);
/*Disable all data bytes */
clrbits_le32(&phy->dx0gcr, DDRPHYC_DXNGCR_DXEN);
clrbits_le32(&phy->dx1gcr, DDRPHYC_DXNGCR_DXEN);
clrbits_le32(&phy->dx2gcr, DDRPHYC_DXNGCR_DXEN);
clrbits_le32(&phy->dx3gcr, DDRPHYC_DXNGCR_DXEN);
/* Config the BIST block */
config_BIST(ctl, phy);
for (byte = 0; byte < nb_bytes; byte++) {
if (ctrlc()) {
sprintf(string, "interrupted at byte %d/%d, error=%d",
byte + 1, nb_bytes, error);
return TEST_FAILED;
}
right_bound.phase = 0;
right_bound.unit = 0;
left_bound.phase = 0;
left_bound.unit = 0;
left_phase_bound_found = 0;
right_phase_bound_found = 0;
left_unit_bound_found = 0;
right_unit_bound_found = 0;
left_bound_found = 0;
right_bound_found = 0;
/* Enable Byte (DXNGCR, bit DXEN) */
setbits_le32(DXNGCR(phy, byte), DDRPHYC_DXNGCR_DXEN);
/* Select the byte lane for comparison of read data */
BIST_datx8_sel(phy, byte);
/* Set DQS phase delay to the nominal value. */
phase_idx = _90deg;
phase_idx_pass = phase_idx;
/* Set DQS unit delay to the nominal value. */
dqs_unit_delay_index = 3;
dqs_unit_delay_index_pass = dqs_unit_delay_index;
success = 0;
pr_debug("STEP0: Find Init delay\n");
/* STEP0: Find Init delay: a delay that put the system
* in a "Pass" condition then (TODO) update
* dqs_unit_delay_index_pass & phase_idx_pass
*/
DQS_unit_delay(phy, byte, dqs_unit_delay_index);
DQS_phase_delay(phy, byte, phase_idx);
BIST_test(phy, byte, &result);
success = result.test_result;
/* If we have a fail in the nominal condition */
if (!success) {
/* Look at the left */
while (phase_idx >= 0 && !success) {
phase_idx--;
DQS_phase_delay(phy, byte, phase_idx);
BIST_test(phy, byte, &result);
success = result.test_result;
}
}
if (!success) {
/* if we can't find pass condition,
* then look at the right
*/
phase_idx = _90deg;
while (phase_idx <= MAX_DQS_PHASE_IDX &&
!success) {
phase_idx++;
DQS_phase_delay(phy, byte,
phase_idx);
BIST_test(phy, byte, &result);
success = result.test_result;
}
}
/* save the pass condition */
if (success) {
phase_idx_pass = phase_idx;
} else {
printf("Result: Failed ");
printf("[Cannot DQS timings, ");
printf("there is no PASS region]\n");
error++;
continue;
}
if (ctrlc()) {
sprintf(string, "interrupted at byte %d/%d, error=%d",
byte + 1, nb_bytes, error);
return TEST_FAILED;
}
pr_debug("STEP1: Find LEFT PHASE DQS Bound\n");
/* STEP1: Find LEFT PHASE DQS Bound */
while ((phase_idx >= 0) &&
(phase_idx <= MAX_DQS_PHASE_IDX) &&
!left_phase_bound_found) {
DQS_unit_delay(phy, byte,
dqs_unit_delay_index);
DQS_phase_delay(phy, byte,
phase_idx);
BIST_test(phy, byte, &result);
success = result.test_result;
/*TODO: Manage the case were at the beginning
* there is already a fail
*/
if (!success) {
/* the last pass condition */
left_bound.phase = ++phase_idx;
left_phase_bound_found = 1;
} else if (success) {
phase_idx--;
}
}
if (!left_phase_bound_found) {
left_bound.phase = 0;
phase_idx = 0;
}
/* If not found, lets take 0 */
if (ctrlc()) {
sprintf(string, "interrupted at byte %d/%d, error=%d",
byte + 1, nb_bytes, error);
return TEST_FAILED;
}
pr_debug("STEP2: Find UNIT left bound\n");
/* STEP2: Find UNIT left bound */
while ((dqs_unit_delay_index >= 0) &&
!left_unit_bound_found) {
DQS_unit_delay(phy, byte,
dqs_unit_delay_index);
DQS_phase_delay(phy, byte, phase_idx);
BIST_test(phy, byte, &result);
success = result.test_result;
if (!success) {
left_bound.unit =
++dqs_unit_delay_index;
left_unit_bound_found = 1;
left_bound_found = 1;
} else if (success) {
dqs_unit_delay_index--;
}
}
/* If not found, lets take 0 */
if (!left_unit_bound_found)
left_bound.unit = 0;
if (ctrlc()) {
sprintf(string, "interrupted at byte %d/%d, error=%d",
byte + 1, nb_bytes, error);
return TEST_FAILED;
}
pr_debug("STEP3: Find PHase right bound\n");
/* STEP3: Find PHase right bound, start with "pass"
* condition
*/
/* Set DQS phase delay to the pass value. */
phase_idx = phase_idx_pass;
/* Set DQS unit delay to the pass value. */
dqs_unit_delay_index = dqs_unit_delay_index_pass;
while ((phase_idx <= MAX_DQS_PHASE_IDX) &&
!right_phase_bound_found) {
DQS_unit_delay(phy, byte,
dqs_unit_delay_index);
DQS_phase_delay(phy, byte, phase_idx);
BIST_test(phy, byte, &result);
success = result.test_result;
if (!success) {
/* the last pass condition */
right_bound.phase = --phase_idx;
right_phase_bound_found = 1;
} else if (success) {
phase_idx++;
}
}
/* If not found, lets take the max value */
if (!right_phase_bound_found) {
right_bound.phase = MAX_DQS_PHASE_IDX;
phase_idx = MAX_DQS_PHASE_IDX;
}
if (ctrlc()) {
sprintf(string, "interrupted at byte %d/%d, error=%d",
byte + 1, nb_bytes, error);
return TEST_FAILED;
}
pr_debug("STEP4: Find UNIT right bound\n");
/* STEP4: Find UNIT right bound */
while ((dqs_unit_delay_index <= MAX_DQS_UNIT_IDX) &&
!right_unit_bound_found) {
DQS_unit_delay(phy, byte,
dqs_unit_delay_index);
DQS_phase_delay(phy, byte, phase_idx);
BIST_test(phy, byte, &result);
success = result.test_result;
if (!success) {
right_bound.unit =
--dqs_unit_delay_index;
right_unit_bound_found = 1;
right_bound_found = 1;
} else if (success) {
dqs_unit_delay_index++;
}
}
/* If not found, lets take the max value */
if (!right_unit_bound_found)
right_bound.unit = MAX_DQS_UNIT_IDX;
/* If we found a regular FAil Pass FAil pattern
* FFPPPPPPFF
* OR PPPPPFF Or FFPPPPP
*/
if (left_bound_found || right_bound_found) {
eye_training_val[byte][0] = (right_bound.phase +
left_bound.phase) / 2;
eye_training_val[byte][1] = (right_bound.unit +
left_bound.unit) / 2;
/* If we already lost 1/2PHASE Tuning,
* let's try to recover by ++ on unit
*/
if (((right_bound.phase + left_bound.phase) % 2 == 1) &&
eye_training_val[byte][1] != MAX_DQS_UNIT_IDX)
eye_training_val[byte][1]++;
pr_debug("** found phase : %d - %d & unit %d - %d\n",
right_bound.phase, left_bound.phase,
right_bound.unit, left_bound.unit);
pr_debug("** calculating mid region: phase: %d unit: %d (nominal is 3)\n",
eye_training_val[byte][0],
eye_training_val[byte][1]);
} else {
/* PPPPPPPPPP, we're already good.
* Set nominal values.
*/
eye_training_val[byte][0] = 3;
eye_training_val[byte][1] = 3;
}
DQS_phase_delay(phy, byte, eye_training_val[byte][0]);
DQS_unit_delay(phy, byte, eye_training_val[byte][1]);
printf("Byte %d, DQS unit = %d, phase = %d\n",
byte,
eye_training_val[byte][1],
eye_training_val[byte][0]);
}
if (error) {
sprintf(string, "error = %d", error);
return TEST_FAILED;
}
return TEST_PASSED;
}
static void display_reg_results(struct stm32mp1_ddrphy *phy, u8 byte)
{
u8 i = 0;
printf("Byte %d Dekew result, bit0 delay, bit1 delay...bit8 delay\n ",
byte);
for (i = 0; i < 8; i++)
printf("%d ", DQ_unit_index(phy, byte, i));
printf("\n");
printf("dxndllcr: [%08x] val:%08x\n",
DXNDLLCR(phy, byte),
readl(DXNDLLCR(phy, byte)));
printf("dxnqdstr: [%08x] val:%08x\n",
DXNDQSTR(phy, byte),
readl(DXNDQSTR(phy, byte)));
printf("dxndqtr: [%08x] val:%08x\n",
DXNDQTR(phy, byte),
readl(DXNDQTR(phy, byte)));
}
/* analyse the dgs gating log table, and determine the midpoint.*/
static u8 set_midpoint_read_dqs_gating(struct stm32mp1_ddrphy *phy, u8 byte,
u8 dqs_gating[NUM_BYTES]
[MAX_GSL_IDX + 1]
[MAX_GPS_IDX + 1])
{
/* stores the dqs gate values (gsl index, gps index) */
u8 dqs_gate_values[NUM_BYTES][2];
u8 gsl_idx, gps_idx = 0;
u8 left_bound_idx[2] = {0, 0};
u8 right_bound_idx[2] = {0, 0};
u8 left_bound_found = 0;
u8 right_bound_found = 0;
u8 intermittent = 0;
u8 value;
for (gsl_idx = 0; gsl_idx <= MAX_GSL_IDX; gsl_idx++) {
for (gps_idx = 0; gps_idx <= MAX_GPS_IDX; gps_idx++) {
value = dqs_gating[byte][gsl_idx][gps_idx];
if (value == 1 && left_bound_found == 0) {
left_bound_idx[0] = gsl_idx;
left_bound_idx[1] = gps_idx;
left_bound_found = 1;
} else if (value == 0 &&
left_bound_found == 1 &&
!right_bound_found) {
if (gps_idx == 0) {
right_bound_idx[0] = gsl_idx - 1;
right_bound_idx[1] = MAX_GPS_IDX;
} else {
right_bound_idx[0] = gsl_idx;
right_bound_idx[1] = gps_idx - 1;
}
right_bound_found = 1;
} else if (value == 1 &&
right_bound_found == 1) {
intermittent = 1;
}
}
}
/* if only ppppppp is found, there is no mid region. */
if (left_bound_idx[0] == 0 && left_bound_idx[1] == 0 &&
right_bound_idx[0] == 0 && right_bound_idx[1] == 0)
intermittent = 1;
/*if we found a regular fail pass fail pattern ffppppppff
* or pppppff or ffppppp
*/
if (!intermittent) {
/*if we found a regular fail pass fail pattern ffppppppff
* or pppppff or ffppppp
*/
if (left_bound_found || right_bound_found) {
pr_debug("idx0(%d): %d %d idx1(%d) : %d %d\n",
left_bound_found,
right_bound_idx[0], left_bound_idx[0],
right_bound_found,
right_bound_idx[1], left_bound_idx[1]);
dqs_gate_values[byte][0] =
(right_bound_idx[0] + left_bound_idx[0]) / 2;
dqs_gate_values[byte][1] =
(right_bound_idx[1] + left_bound_idx[1]) / 2;
/* if we already lost 1/2gsl tuning,
* let's try to recover by ++ on gps
*/
if (((right_bound_idx[0] +
left_bound_idx[0]) % 2 == 1) &&
dqs_gate_values[byte][1] != MAX_GPS_IDX)
dqs_gate_values[byte][1]++;
/* if we already lost 1/2gsl tuning and gps is on max*/
else if (((right_bound_idx[0] +
left_bound_idx[0]) % 2 == 1) &&
dqs_gate_values[byte][1] == MAX_GPS_IDX) {
dqs_gate_values[byte][1] = 0;
dqs_gate_values[byte][0]++;
}
/* if we have gsl left and write limit too close
* (difference=1)
*/
if (((right_bound_idx[0] - left_bound_idx[0]) == 1)) {
dqs_gate_values[byte][1] = (left_bound_idx[1] +
right_bound_idx[1] +
4) / 2;
if (dqs_gate_values[byte][1] >= 4) {
dqs_gate_values[byte][0] =
right_bound_idx[0];
dqs_gate_values[byte][1] -= 4;
} else {
dqs_gate_values[byte][0] =
left_bound_idx[0];
}
}
pr_debug("*******calculating mid region: system latency: %d phase: %d********\n",
dqs_gate_values[byte][0],
dqs_gate_values[byte][1]);
pr_debug("*******the nominal values were system latency: 0 phase: 2*******\n");
}
} else {
/* if intermitant, restore defaut values */
pr_debug("dqs gating:no regular fail/pass/fail found. defaults values restored.\n");
dqs_gate_values[byte][0] = 0;
dqs_gate_values[byte][1] = 2;
}
set_r0dgsl_delay(phy, byte, dqs_gate_values[byte][0]);
set_r0dgps_delay(phy, byte, dqs_gate_values[byte][1]);
printf("Byte %d, R0DGSL = %d, R0DGPS = %d\n",
byte, dqs_gate_values[byte][0], dqs_gate_values[byte][1]);
/* return 0 if intermittent or if both left_bound
* and right_bound are not found
*/
return !(intermittent || (left_bound_found && right_bound_found));
}
static enum test_result read_dqs_gating(struct stm32mp1_ddrctl *ctl,
struct stm32mp1_ddrphy *phy,
char *string)
{
/* stores the log of pass/fail */
u8 dqs_gating[NUM_BYTES][MAX_GSL_IDX + 1][MAX_GPS_IDX + 1];
u8 byte, gsl_idx, gps_idx = 0;
struct BIST_result result;
u8 success = 0;
u8 nb_bytes = get_nb_bytes(ctl);
memset(dqs_gating, 0x0, sizeof(dqs_gating));
/*disable dqs drift compensation*/
clrbits_le32(&phy->pgcr, DDRPHYC_PGCR_DFTCMP);
/*disable all bytes*/
/* disable automatic power down of dll and ios when disabling a byte
* (to avoid having to add programming and delay
* for a dll re-lock when later re-enabling a disabled byte lane)
*/
clrbits_le32(&phy->pgcr, DDRPHYC_PGCR_PDDISDX);
/* disable all data bytes */
clrbits_le32(&phy->dx0gcr, DDRPHYC_DXNGCR_DXEN);
clrbits_le32(&phy->dx1gcr, DDRPHYC_DXNGCR_DXEN);
clrbits_le32(&phy->dx2gcr, DDRPHYC_DXNGCR_DXEN);
clrbits_le32(&phy->dx3gcr, DDRPHYC_DXNGCR_DXEN);
/* config the bist block */
config_BIST(ctl, phy);
for (byte = 0; byte < nb_bytes; byte++) {
if (ctrlc()) {
sprintf(string, "interrupted at byte %d/%d",
byte + 1, nb_bytes);
return TEST_FAILED;
}
/* enable byte x (dxngcr, bit dxen) */
setbits_le32(DXNGCR(phy, byte), DDRPHYC_DXNGCR_DXEN);
/* select the byte lane for comparison of read data */
BIST_datx8_sel(phy, byte);
for (gsl_idx = 0; gsl_idx <= MAX_GSL_IDX; gsl_idx++) {
for (gps_idx = 0; gps_idx <= MAX_GPS_IDX; gps_idx++) {
if (ctrlc()) {
sprintf(string,
"interrupted at byte %d/%d",
byte + 1, nb_bytes);
return TEST_FAILED;
}
/* write cfg to dxndqstr */
set_r0dgsl_delay(phy, byte, gsl_idx);
set_r0dgps_delay(phy, byte, gps_idx);
BIST_test(phy, byte, &result);
success = result.test_result;
if (success)
dqs_gating[byte][gsl_idx][gps_idx] = 1;
itm_soft_reset(phy);
}
}
set_midpoint_read_dqs_gating(phy, byte, dqs_gating);
/* dummy reads */
readl(0xc0000000);
readl(0xc0000000);
}
/* re-enable drift compensation */
/* setbits_le32(&phy->pgcr, DDRPHYC_PGCR_DFTCMP); */
return TEST_PASSED;
}
/****************************************************************
* TEST
****************************************************************
*/
static enum test_result do_read_dqs_gating(struct stm32mp1_ddrctl *ctl,
struct stm32mp1_ddrphy *phy,
char *string, int argc,
char *argv[])
{
u32 rfshctl3 = readl(&ctl->rfshctl3);
u32 pwrctl = readl(&ctl->pwrctl);
u32 derateen = readl(&ctl->derateen);
enum test_result res;
writel(0x0, &ctl->derateen);
stm32mp1_refresh_disable(ctl);
res = read_dqs_gating(ctl, phy, string);
stm32mp1_refresh_restore(ctl, rfshctl3, pwrctl);
writel(derateen, &ctl->derateen);
return res;
}
static enum test_result do_bit_deskew(struct stm32mp1_ddrctl *ctl,
struct stm32mp1_ddrphy *phy,
char *string, int argc, char *argv[])
{
u32 rfshctl3 = readl(&ctl->rfshctl3);
u32 pwrctl = readl(&ctl->pwrctl);
u32 derateen = readl(&ctl->derateen);
enum test_result res;
writel(0x0, &ctl->derateen);
stm32mp1_refresh_disable(ctl);
res = bit_deskew(ctl, phy, string);
stm32mp1_refresh_restore(ctl, rfshctl3, pwrctl);
writel(derateen, &ctl->derateen);
return res;
}
static enum test_result do_eye_training(struct stm32mp1_ddrctl *ctl,
struct stm32mp1_ddrphy *phy,
char *string, int argc, char *argv[])
{
u32 rfshctl3 = readl(&ctl->rfshctl3);
u32 pwrctl = readl(&ctl->pwrctl);
u32 derateen = readl(&ctl->derateen);
enum test_result res;
writel(0x0, &ctl->derateen);
stm32mp1_refresh_disable(ctl);
res = eye_training(ctl, phy, string);
stm32mp1_refresh_restore(ctl, rfshctl3, pwrctl);
writel(derateen, &ctl->derateen);
return res;
}
static enum test_result do_display(struct stm32mp1_ddrctl *ctl,
struct stm32mp1_ddrphy *phy,
char *string, int argc, char *argv[])
{
int byte;
u8 nb_bytes = get_nb_bytes(ctl);
for (byte = 0; byte < nb_bytes; byte++)
display_reg_results(phy, byte);
return TEST_PASSED;
}
static enum test_result do_bist_config(struct stm32mp1_ddrctl *ctl,
struct stm32mp1_ddrphy *phy,
char *string, int argc, char *argv[])
{
unsigned long value;
if (argc > 0) {
if (strict_strtoul(argv[0], 0, &value) < 0) {
sprintf(string, "invalid nbErr %s", argv[0]);
return TEST_FAILED;
}
BIST_error_max = value;
}
if (argc > 1) {
if (strict_strtoul(argv[1], 0, &value) < 0) {
sprintf(string, "invalid Seed %s", argv[1]);
return TEST_FAILED;
}
BIST_seed = value;
}
printf("Bist.nbErr = %d\n", BIST_error_max);
if (BIST_seed)
printf("Bist.Seed = 0x%x\n", BIST_seed);
else
printf("Bist.Seed = random\n");
return TEST_PASSED;
}
/****************************************************************
* TEST Description
****************************************************************
*/
const struct test_desc tuning[] = {
{do_read_dqs_gating, "Read DQS gating",
"software read DQS Gating", "", 0 },
{do_bit_deskew, "Bit de-skew", "", "", 0 },
{do_eye_training, "Eye Training", "or DQS training", "", 0 },
{do_display, "Display registers", "", "", 0 },
{do_bist_config, "Bist config", "[nbErr] [seed]",
"configure Bist test", 2},
};
const int tuning_nb = ARRAY_SIZE(tuning);