u-boot/drivers/net/fec_mxc.c
Simon Glass 8b85dfc675 dm: Avoid accessing seq directly
At present various drivers etc. access the device's 'seq' member directly.
This makes it harder to change the meaning of that member. Change access
to go through a function instead.

The drivers/i2c/lpc32xx_i2c.c file is left unchanged for now.

Signed-off-by: Simon Glass <sjg@chromium.org>
2020-12-18 20:32:21 -07:00

1604 lines
39 KiB
C

// SPDX-License-Identifier: GPL-2.0+
/*
* (C) Copyright 2009 Ilya Yanok, Emcraft Systems Ltd <yanok@emcraft.com>
* (C) Copyright 2008,2009 Eric Jarrige <eric.jarrige@armadeus.org>
* (C) Copyright 2008 Armadeus Systems nc
* (C) Copyright 2007 Pengutronix, Sascha Hauer <s.hauer@pengutronix.de>
* (C) Copyright 2007 Pengutronix, Juergen Beisert <j.beisert@pengutronix.de>
*/
#include <common.h>
#include <cpu_func.h>
#include <dm.h>
#include <env.h>
#include <log.h>
#include <malloc.h>
#include <memalign.h>
#include <miiphy.h>
#include <net.h>
#include <netdev.h>
#include <asm/cache.h>
#include <linux/delay.h>
#include <power/regulator.h>
#include <asm/io.h>
#include <linux/errno.h>
#include <linux/compiler.h>
#include <asm/arch/clock.h>
#include <asm/arch/imx-regs.h>
#include <asm/mach-imx/sys_proto.h>
#include <asm-generic/gpio.h>
#include "fec_mxc.h"
#include <eth_phy.h>
DECLARE_GLOBAL_DATA_PTR;
/*
* Timeout the transfer after 5 mS. This is usually a bit more, since
* the code in the tightloops this timeout is used in adds some overhead.
*/
#define FEC_XFER_TIMEOUT 5000
/*
* The standard 32-byte DMA alignment does not work on mx6solox, which requires
* 64-byte alignment in the DMA RX FEC buffer.
* Introduce the FEC_DMA_RX_MINALIGN which can cover mx6solox needs and also
* satisfies the alignment on other SoCs (32-bytes)
*/
#define FEC_DMA_RX_MINALIGN 64
#ifndef CONFIG_MII
#error "CONFIG_MII has to be defined!"
#endif
#ifndef CONFIG_FEC_XCV_TYPE
#define CONFIG_FEC_XCV_TYPE MII100
#endif
/*
* The i.MX28 operates with packets in big endian. We need to swap them before
* sending and after receiving.
*/
#ifdef CONFIG_MX28
#define CONFIG_FEC_MXC_SWAP_PACKET
#endif
#define RXDESC_PER_CACHELINE (ARCH_DMA_MINALIGN/sizeof(struct fec_bd))
/* Check various alignment issues at compile time */
#if ((ARCH_DMA_MINALIGN < 16) || (ARCH_DMA_MINALIGN % 16 != 0))
#error "ARCH_DMA_MINALIGN must be multiple of 16!"
#endif
#if ((PKTALIGN < ARCH_DMA_MINALIGN) || \
(PKTALIGN % ARCH_DMA_MINALIGN != 0))
#error "PKTALIGN must be multiple of ARCH_DMA_MINALIGN!"
#endif
#undef DEBUG
#ifdef CONFIG_FEC_MXC_SWAP_PACKET
static void swap_packet(uint32_t *packet, int length)
{
int i;
for (i = 0; i < DIV_ROUND_UP(length, 4); i++)
packet[i] = __swab32(packet[i]);
}
#endif
/* MII-interface related functions */
static int fec_mdio_read(struct ethernet_regs *eth, uint8_t phyaddr,
uint8_t regaddr)
{
uint32_t reg; /* convenient holder for the PHY register */
uint32_t phy; /* convenient holder for the PHY */
uint32_t start;
int val;
/*
* reading from any PHY's register is done by properly
* programming the FEC's MII data register.
*/
writel(FEC_IEVENT_MII, &eth->ievent);
reg = regaddr << FEC_MII_DATA_RA_SHIFT;
phy = phyaddr << FEC_MII_DATA_PA_SHIFT;
writel(FEC_MII_DATA_ST | FEC_MII_DATA_OP_RD | FEC_MII_DATA_TA |
phy | reg, &eth->mii_data);
/* wait for the related interrupt */
start = get_timer(0);
while (!(readl(&eth->ievent) & FEC_IEVENT_MII)) {
if (get_timer(start) > (CONFIG_SYS_HZ / 1000)) {
printf("Read MDIO failed...\n");
return -1;
}
}
/* clear mii interrupt bit */
writel(FEC_IEVENT_MII, &eth->ievent);
/* it's now safe to read the PHY's register */
val = (unsigned short)readl(&eth->mii_data);
debug("%s: phy: %02x reg:%02x val:%#x\n", __func__, phyaddr,
regaddr, val);
return val;
}
#ifndef imx_get_fecclk
u32 __weak imx_get_fecclk(void)
{
return 0;
}
#endif
static int fec_get_clk_rate(void *udev, int idx)
{
struct fec_priv *fec;
struct udevice *dev;
int ret;
if (IS_ENABLED(CONFIG_IMX8) ||
CONFIG_IS_ENABLED(CLK_CCF)) {
dev = udev;
if (!dev) {
ret = uclass_get_device(UCLASS_ETH, idx, &dev);
if (ret < 0) {
debug("Can't get FEC udev: %d\n", ret);
return ret;
}
}
fec = dev_get_priv(dev);
if (fec)
return fec->clk_rate;
return -EINVAL;
} else {
return imx_get_fecclk();
}
}
static void fec_mii_setspeed(struct ethernet_regs *eth)
{
/*
* Set MII_SPEED = (1/(mii_speed * 2)) * System Clock
* and do not drop the Preamble.
*
* The i.MX28 and i.MX6 types have another field in the MSCR (aka
* MII_SPEED) register that defines the MDIO output hold time. Earlier
* versions are RAZ there, so just ignore the difference and write the
* register always.
* The minimal hold time according to IEE802.3 (clause 22) is 10 ns.
* HOLDTIME + 1 is the number of clk cycles the fec is holding the
* output.
* The HOLDTIME bitfield takes values between 0 and 7 (inclusive).
* Given that ceil(clkrate / 5000000) <= 64, the calculation for
* holdtime cannot result in a value greater than 3.
*/
u32 pclk;
u32 speed;
u32 hold;
int ret;
ret = fec_get_clk_rate(NULL, 0);
if (ret < 0) {
printf("Can't find FEC0 clk rate: %d\n", ret);
return;
}
pclk = ret;
speed = DIV_ROUND_UP(pclk, 5000000);
hold = DIV_ROUND_UP(pclk, 100000000) - 1;
#ifdef FEC_QUIRK_ENET_MAC
speed--;
#endif
writel(speed << 1 | hold << 8, &eth->mii_speed);
debug("%s: mii_speed %08x\n", __func__, readl(&eth->mii_speed));
}
static int fec_mdio_write(struct ethernet_regs *eth, uint8_t phyaddr,
uint8_t regaddr, uint16_t data)
{
uint32_t reg; /* convenient holder for the PHY register */
uint32_t phy; /* convenient holder for the PHY */
uint32_t start;
reg = regaddr << FEC_MII_DATA_RA_SHIFT;
phy = phyaddr << FEC_MII_DATA_PA_SHIFT;
writel(FEC_MII_DATA_ST | FEC_MII_DATA_OP_WR |
FEC_MII_DATA_TA | phy | reg | data, &eth->mii_data);
/* wait for the MII interrupt */
start = get_timer(0);
while (!(readl(&eth->ievent) & FEC_IEVENT_MII)) {
if (get_timer(start) > (CONFIG_SYS_HZ / 1000)) {
printf("Write MDIO failed...\n");
return -1;
}
}
/* clear MII interrupt bit */
writel(FEC_IEVENT_MII, &eth->ievent);
debug("%s: phy: %02x reg:%02x val:%#x\n", __func__, phyaddr,
regaddr, data);
return 0;
}
static int fec_phy_read(struct mii_dev *bus, int phyaddr, int dev_addr,
int regaddr)
{
return fec_mdio_read(bus->priv, phyaddr, regaddr);
}
static int fec_phy_write(struct mii_dev *bus, int phyaddr, int dev_addr,
int regaddr, u16 data)
{
return fec_mdio_write(bus->priv, phyaddr, regaddr, data);
}
#ifndef CONFIG_PHYLIB
static int miiphy_restart_aneg(struct eth_device *dev)
{
int ret = 0;
#if !defined(CONFIG_FEC_MXC_NO_ANEG)
struct fec_priv *fec = (struct fec_priv *)dev->priv;
struct ethernet_regs *eth = fec->bus->priv;
/*
* Wake up from sleep if necessary
* Reset PHY, then delay 300ns
*/
#ifdef CONFIG_MX27
fec_mdio_write(eth, fec->phy_id, MII_DCOUNTER, 0x00FF);
#endif
fec_mdio_write(eth, fec->phy_id, MII_BMCR, BMCR_RESET);
udelay(1000);
/* Set the auto-negotiation advertisement register bits */
fec_mdio_write(eth, fec->phy_id, MII_ADVERTISE,
LPA_100FULL | LPA_100HALF | LPA_10FULL |
LPA_10HALF | PHY_ANLPAR_PSB_802_3);
fec_mdio_write(eth, fec->phy_id, MII_BMCR,
BMCR_ANENABLE | BMCR_ANRESTART);
if (fec->mii_postcall)
ret = fec->mii_postcall(fec->phy_id);
#endif
return ret;
}
#ifndef CONFIG_FEC_FIXED_SPEED
static int miiphy_wait_aneg(struct eth_device *dev)
{
uint32_t start;
int status;
struct fec_priv *fec = (struct fec_priv *)dev->priv;
struct ethernet_regs *eth = fec->bus->priv;
/* Wait for AN completion */
start = get_timer(0);
do {
if (get_timer(start) > (CONFIG_SYS_HZ * 5)) {
printf("%s: Autonegotiation timeout\n", dev->name);
return -1;
}
status = fec_mdio_read(eth, fec->phy_id, MII_BMSR);
if (status < 0) {
printf("%s: Autonegotiation failed. status: %d\n",
dev->name, status);
return -1;
}
} while (!(status & BMSR_LSTATUS));
return 0;
}
#endif /* CONFIG_FEC_FIXED_SPEED */
#endif
static int fec_rx_task_enable(struct fec_priv *fec)
{
writel(FEC_R_DES_ACTIVE_RDAR, &fec->eth->r_des_active);
return 0;
}
static int fec_rx_task_disable(struct fec_priv *fec)
{
return 0;
}
static int fec_tx_task_enable(struct fec_priv *fec)
{
writel(FEC_X_DES_ACTIVE_TDAR, &fec->eth->x_des_active);
return 0;
}
static int fec_tx_task_disable(struct fec_priv *fec)
{
return 0;
}
/**
* Initialize receive task's buffer descriptors
* @param[in] fec all we know about the device yet
* @param[in] count receive buffer count to be allocated
* @param[in] dsize desired size of each receive buffer
* @return 0 on success
*
* Init all RX descriptors to default values.
*/
static void fec_rbd_init(struct fec_priv *fec, int count, int dsize)
{
uint32_t size;
ulong data;
int i;
/*
* Reload the RX descriptors with default values and wipe
* the RX buffers.
*/
size = roundup(dsize, ARCH_DMA_MINALIGN);
for (i = 0; i < count; i++) {
data = fec->rbd_base[i].data_pointer;
memset((void *)data, 0, dsize);
flush_dcache_range(data, data + size);
fec->rbd_base[i].status = FEC_RBD_EMPTY;
fec->rbd_base[i].data_length = 0;
}
/* Mark the last RBD to close the ring. */
fec->rbd_base[i - 1].status = FEC_RBD_WRAP | FEC_RBD_EMPTY;
fec->rbd_index = 0;
flush_dcache_range((ulong)fec->rbd_base,
(ulong)fec->rbd_base + size);
}
/**
* Initialize transmit task's buffer descriptors
* @param[in] fec all we know about the device yet
*
* Transmit buffers are created externally. We only have to init the BDs here.\n
* Note: There is a race condition in the hardware. When only one BD is in
* use it must be marked with the WRAP bit to use it for every transmitt.
* This bit in combination with the READY bit results into double transmit
* of each data buffer. It seems the state machine checks READY earlier then
* resetting it after the first transfer.
* Using two BDs solves this issue.
*/
static void fec_tbd_init(struct fec_priv *fec)
{
ulong addr = (ulong)fec->tbd_base;
unsigned size = roundup(2 * sizeof(struct fec_bd),
ARCH_DMA_MINALIGN);
memset(fec->tbd_base, 0, size);
fec->tbd_base[0].status = 0;
fec->tbd_base[1].status = FEC_TBD_WRAP;
fec->tbd_index = 0;
flush_dcache_range(addr, addr + size);
}
/**
* Mark the given read buffer descriptor as free
* @param[in] last 1 if this is the last buffer descriptor in the chain, else 0
* @param[in] prbd buffer descriptor to mark free again
*/
static void fec_rbd_clean(int last, struct fec_bd *prbd)
{
unsigned short flags = FEC_RBD_EMPTY;
if (last)
flags |= FEC_RBD_WRAP;
writew(flags, &prbd->status);
writew(0, &prbd->data_length);
}
static int fec_get_hwaddr(int dev_id, unsigned char *mac)
{
imx_get_mac_from_fuse(dev_id, mac);
return !is_valid_ethaddr(mac);
}
#ifdef CONFIG_DM_ETH
static int fecmxc_set_hwaddr(struct udevice *dev)
#else
static int fec_set_hwaddr(struct eth_device *dev)
#endif
{
#ifdef CONFIG_DM_ETH
struct fec_priv *fec = dev_get_priv(dev);
struct eth_pdata *pdata = dev_get_plat(dev);
uchar *mac = pdata->enetaddr;
#else
uchar *mac = dev->enetaddr;
struct fec_priv *fec = (struct fec_priv *)dev->priv;
#endif
writel(0, &fec->eth->iaddr1);
writel(0, &fec->eth->iaddr2);
writel(0, &fec->eth->gaddr1);
writel(0, &fec->eth->gaddr2);
/* Set physical address */
writel((mac[0] << 24) + (mac[1] << 16) + (mac[2] << 8) + mac[3],
&fec->eth->paddr1);
writel((mac[4] << 24) + (mac[5] << 16) + 0x8808, &fec->eth->paddr2);
return 0;
}
/* Do initial configuration of the FEC registers */
static void fec_reg_setup(struct fec_priv *fec)
{
uint32_t rcntrl;
/* Set interrupt mask register */
writel(0x00000000, &fec->eth->imask);
/* Clear FEC-Lite interrupt event register(IEVENT) */
writel(0xffffffff, &fec->eth->ievent);
/* Set FEC-Lite receive control register(R_CNTRL): */
/* Start with frame length = 1518, common for all modes. */
rcntrl = PKTSIZE << FEC_RCNTRL_MAX_FL_SHIFT;
if (fec->xcv_type != SEVENWIRE) /* xMII modes */
rcntrl |= FEC_RCNTRL_FCE | FEC_RCNTRL_MII_MODE;
if (fec->xcv_type == RGMII)
rcntrl |= FEC_RCNTRL_RGMII;
else if (fec->xcv_type == RMII)
rcntrl |= FEC_RCNTRL_RMII;
writel(rcntrl, &fec->eth->r_cntrl);
}
/**
* Start the FEC engine
* @param[in] dev Our device to handle
*/
#ifdef CONFIG_DM_ETH
static int fec_open(struct udevice *dev)
#else
static int fec_open(struct eth_device *edev)
#endif
{
#ifdef CONFIG_DM_ETH
struct fec_priv *fec = dev_get_priv(dev);
#else
struct fec_priv *fec = (struct fec_priv *)edev->priv;
#endif
int speed;
ulong addr, size;
int i;
debug("fec_open: fec_open(dev)\n");
/* full-duplex, heartbeat disabled */
writel(1 << 2, &fec->eth->x_cntrl);
fec->rbd_index = 0;
/* Invalidate all descriptors */
for (i = 0; i < FEC_RBD_NUM - 1; i++)
fec_rbd_clean(0, &fec->rbd_base[i]);
fec_rbd_clean(1, &fec->rbd_base[i]);
/* Flush the descriptors into RAM */
size = roundup(FEC_RBD_NUM * sizeof(struct fec_bd),
ARCH_DMA_MINALIGN);
addr = (ulong)fec->rbd_base;
flush_dcache_range(addr, addr + size);
#ifdef FEC_QUIRK_ENET_MAC
/* Enable ENET HW endian SWAP */
writel(readl(&fec->eth->ecntrl) | FEC_ECNTRL_DBSWAP,
&fec->eth->ecntrl);
/* Enable ENET store and forward mode */
writel(readl(&fec->eth->x_wmrk) | FEC_X_WMRK_STRFWD,
&fec->eth->x_wmrk);
#endif
/* Enable FEC-Lite controller */
writel(readl(&fec->eth->ecntrl) | FEC_ECNTRL_ETHER_EN,
&fec->eth->ecntrl);
#ifdef FEC_ENET_ENABLE_TXC_DELAY
writel(readl(&fec->eth->ecntrl) | FEC_ECNTRL_TXC_DLY,
&fec->eth->ecntrl);
#endif
#ifdef FEC_ENET_ENABLE_RXC_DELAY
writel(readl(&fec->eth->ecntrl) | FEC_ECNTRL_RXC_DLY,
&fec->eth->ecntrl);
#endif
#if defined(CONFIG_MX25) || defined(CONFIG_MX53) || defined(CONFIG_MX6SL)
udelay(100);
/* setup the MII gasket for RMII mode */
/* disable the gasket */
writew(0, &fec->eth->miigsk_enr);
/* wait for the gasket to be disabled */
while (readw(&fec->eth->miigsk_enr) & MIIGSK_ENR_READY)
udelay(2);
/* configure gasket for RMII, 50 MHz, no loopback, and no echo */
writew(MIIGSK_CFGR_IF_MODE_RMII, &fec->eth->miigsk_cfgr);
/* re-enable the gasket */
writew(MIIGSK_ENR_EN, &fec->eth->miigsk_enr);
/* wait until MII gasket is ready */
int max_loops = 10;
while ((readw(&fec->eth->miigsk_enr) & MIIGSK_ENR_READY) == 0) {
if (--max_loops <= 0) {
printf("WAIT for MII Gasket ready timed out\n");
break;
}
}
#endif
#ifdef CONFIG_PHYLIB
{
/* Start up the PHY */
int ret = phy_startup(fec->phydev);
if (ret) {
printf("Could not initialize PHY %s\n",
fec->phydev->dev->name);
return ret;
}
speed = fec->phydev->speed;
}
#elif CONFIG_FEC_FIXED_SPEED
speed = CONFIG_FEC_FIXED_SPEED;
#else
miiphy_wait_aneg(edev);
speed = miiphy_speed(edev->name, fec->phy_id);
miiphy_duplex(edev->name, fec->phy_id);
#endif
#ifdef FEC_QUIRK_ENET_MAC
{
u32 ecr = readl(&fec->eth->ecntrl) & ~FEC_ECNTRL_SPEED;
u32 rcr = readl(&fec->eth->r_cntrl) & ~FEC_RCNTRL_RMII_10T;
if (speed == _1000BASET)
ecr |= FEC_ECNTRL_SPEED;
else if (speed != _100BASET)
rcr |= FEC_RCNTRL_RMII_10T;
writel(ecr, &fec->eth->ecntrl);
writel(rcr, &fec->eth->r_cntrl);
}
#endif
debug("%s:Speed=%i\n", __func__, speed);
/* Enable SmartDMA receive task */
fec_rx_task_enable(fec);
udelay(100000);
return 0;
}
#ifdef CONFIG_DM_ETH
static int fecmxc_init(struct udevice *dev)
#else
static int fec_init(struct eth_device *dev, struct bd_info *bd)
#endif
{
#ifdef CONFIG_DM_ETH
struct fec_priv *fec = dev_get_priv(dev);
#else
struct fec_priv *fec = (struct fec_priv *)dev->priv;
#endif
u8 *mib_ptr = (uint8_t *)&fec->eth->rmon_t_drop;
u8 *i;
ulong addr;
/* Initialize MAC address */
#ifdef CONFIG_DM_ETH
fecmxc_set_hwaddr(dev);
#else
fec_set_hwaddr(dev);
#endif
/* Setup transmit descriptors, there are two in total. */
fec_tbd_init(fec);
/* Setup receive descriptors. */
fec_rbd_init(fec, FEC_RBD_NUM, FEC_MAX_PKT_SIZE);
fec_reg_setup(fec);
if (fec->xcv_type != SEVENWIRE)
fec_mii_setspeed(fec->bus->priv);
/* Set Opcode/Pause Duration Register */
writel(0x00010020, &fec->eth->op_pause); /* FIXME 0xffff0020; */
writel(0x2, &fec->eth->x_wmrk);
/* Set multicast address filter */
writel(0x00000000, &fec->eth->gaddr1);
writel(0x00000000, &fec->eth->gaddr2);
/* Do not access reserved register */
if (!is_mx6ul() && !is_mx6ull() && !is_imx8() && !is_imx8m()) {
/* clear MIB RAM */
for (i = mib_ptr; i <= mib_ptr + 0xfc; i += 4)
writel(0, i);
/* FIFO receive start register */
writel(0x520, &fec->eth->r_fstart);
}
/* size and address of each buffer */
writel(FEC_MAX_PKT_SIZE, &fec->eth->emrbr);
addr = (ulong)fec->tbd_base;
writel((uint32_t)addr, &fec->eth->etdsr);
addr = (ulong)fec->rbd_base;
writel((uint32_t)addr, &fec->eth->erdsr);
#ifndef CONFIG_PHYLIB
if (fec->xcv_type != SEVENWIRE)
miiphy_restart_aneg(dev);
#endif
fec_open(dev);
return 0;
}
/**
* Halt the FEC engine
* @param[in] dev Our device to handle
*/
#ifdef CONFIG_DM_ETH
static void fecmxc_halt(struct udevice *dev)
#else
static void fec_halt(struct eth_device *dev)
#endif
{
#ifdef CONFIG_DM_ETH
struct fec_priv *fec = dev_get_priv(dev);
#else
struct fec_priv *fec = (struct fec_priv *)dev->priv;
#endif
int counter = 0xffff;
/* issue graceful stop command to the FEC transmitter if necessary */
writel(FEC_TCNTRL_GTS | readl(&fec->eth->x_cntrl),
&fec->eth->x_cntrl);
debug("eth_halt: wait for stop regs\n");
/* wait for graceful stop to register */
while ((counter--) && (!(readl(&fec->eth->ievent) & FEC_IEVENT_GRA)))
udelay(1);
/* Disable SmartDMA tasks */
fec_tx_task_disable(fec);
fec_rx_task_disable(fec);
/*
* Disable the Ethernet Controller
* Note: this will also reset the BD index counter!
*/
writel(readl(&fec->eth->ecntrl) & ~FEC_ECNTRL_ETHER_EN,
&fec->eth->ecntrl);
fec->rbd_index = 0;
fec->tbd_index = 0;
debug("eth_halt: done\n");
}
/**
* Transmit one frame
* @param[in] dev Our ethernet device to handle
* @param[in] packet Pointer to the data to be transmitted
* @param[in] length Data count in bytes
* @return 0 on success
*/
#ifdef CONFIG_DM_ETH
static int fecmxc_send(struct udevice *dev, void *packet, int length)
#else
static int fec_send(struct eth_device *dev, void *packet, int length)
#endif
{
unsigned int status;
u32 size;
ulong addr, end;
int timeout = FEC_XFER_TIMEOUT;
int ret = 0;
/*
* This routine transmits one frame. This routine only accepts
* 6-byte Ethernet addresses.
*/
#ifdef CONFIG_DM_ETH
struct fec_priv *fec = dev_get_priv(dev);
#else
struct fec_priv *fec = (struct fec_priv *)dev->priv;
#endif
/*
* Check for valid length of data.
*/
if ((length > 1500) || (length <= 0)) {
printf("Payload (%d) too large\n", length);
return -1;
}
/*
* Setup the transmit buffer. We are always using the first buffer for
* transmission, the second will be empty and only used to stop the DMA
* engine. We also flush the packet to RAM here to avoid cache trouble.
*/
#ifdef CONFIG_FEC_MXC_SWAP_PACKET
swap_packet((uint32_t *)packet, length);
#endif
addr = (ulong)packet;
end = roundup(addr + length, ARCH_DMA_MINALIGN);
addr &= ~(ARCH_DMA_MINALIGN - 1);
flush_dcache_range(addr, end);
writew(length, &fec->tbd_base[fec->tbd_index].data_length);
writel((uint32_t)addr, &fec->tbd_base[fec->tbd_index].data_pointer);
/*
* update BD's status now
* This block:
* - is always the last in a chain (means no chain)
* - should transmitt the CRC
* - might be the last BD in the list, so the address counter should
* wrap (-> keep the WRAP flag)
*/
status = readw(&fec->tbd_base[fec->tbd_index].status) & FEC_TBD_WRAP;
status |= FEC_TBD_LAST | FEC_TBD_TC | FEC_TBD_READY;
writew(status, &fec->tbd_base[fec->tbd_index].status);
/*
* Flush data cache. This code flushes both TX descriptors to RAM.
* After this code, the descriptors will be safely in RAM and we
* can start DMA.
*/
size = roundup(2 * sizeof(struct fec_bd), ARCH_DMA_MINALIGN);
addr = (ulong)fec->tbd_base;
flush_dcache_range(addr, addr + size);
/*
* Below we read the DMA descriptor's last four bytes back from the
* DRAM. This is important in order to make sure that all WRITE
* operations on the bus that were triggered by previous cache FLUSH
* have completed.
*
* Otherwise, on MX28, it is possible to observe a corruption of the
* DMA descriptors. Please refer to schematic "Figure 1-2" in MX28RM
* for the bus structure of MX28. The scenario is as follows:
*
* 1) ARM core triggers a series of WRITEs on the AHB_ARB2 bus going
* to DRAM due to flush_dcache_range()
* 2) ARM core writes the FEC registers via AHB_ARB2
* 3) FEC DMA starts reading/writing from/to DRAM via AHB_ARB3
*
* Note that 2) does sometimes finish before 1) due to reordering of
* WRITE accesses on the AHB bus, therefore triggering 3) before the
* DMA descriptor is fully written into DRAM. This results in occasional
* corruption of the DMA descriptor.
*/
readl(addr + size - 4);
/* Enable SmartDMA transmit task */
fec_tx_task_enable(fec);
/*
* Wait until frame is sent. On each turn of the wait cycle, we must
* invalidate data cache to see what's really in RAM. Also, we need
* barrier here.
*/
while (--timeout) {
if (!(readl(&fec->eth->x_des_active) & FEC_X_DES_ACTIVE_TDAR))
break;
}
if (!timeout) {
ret = -EINVAL;
goto out;
}
/*
* The TDAR bit is cleared when the descriptors are all out from TX
* but on mx6solox we noticed that the READY bit is still not cleared
* right after TDAR.
* These are two distinct signals, and in IC simulation, we found that
* TDAR always gets cleared prior than the READY bit of last BD becomes
* cleared.
* In mx6solox, we use a later version of FEC IP. It looks like that
* this intrinsic behaviour of TDAR bit has changed in this newer FEC
* version.
*
* Fix this by polling the READY bit of BD after the TDAR polling,
* which covers the mx6solox case and does not harm the other SoCs.
*/
timeout = FEC_XFER_TIMEOUT;
while (--timeout) {
invalidate_dcache_range(addr, addr + size);
if (!(readw(&fec->tbd_base[fec->tbd_index].status) &
FEC_TBD_READY))
break;
}
if (!timeout)
ret = -EINVAL;
out:
debug("fec_send: status 0x%x index %d ret %i\n",
readw(&fec->tbd_base[fec->tbd_index].status),
fec->tbd_index, ret);
/* for next transmission use the other buffer */
if (fec->tbd_index)
fec->tbd_index = 0;
else
fec->tbd_index = 1;
return ret;
}
/**
* Pull one frame from the card
* @param[in] dev Our ethernet device to handle
* @return Length of packet read
*/
#ifdef CONFIG_DM_ETH
static int fecmxc_recv(struct udevice *dev, int flags, uchar **packetp)
#else
static int fec_recv(struct eth_device *dev)
#endif
{
#ifdef CONFIG_DM_ETH
struct fec_priv *fec = dev_get_priv(dev);
#else
struct fec_priv *fec = (struct fec_priv *)dev->priv;
#endif
struct fec_bd *rbd = &fec->rbd_base[fec->rbd_index];
unsigned long ievent;
int frame_length, len = 0;
uint16_t bd_status;
ulong addr, size, end;
int i;
#ifdef CONFIG_DM_ETH
*packetp = memalign(ARCH_DMA_MINALIGN, FEC_MAX_PKT_SIZE);
if (*packetp == 0) {
printf("%s: error allocating packetp\n", __func__);
return -ENOMEM;
}
#else
ALLOC_CACHE_ALIGN_BUFFER(uchar, buff, FEC_MAX_PKT_SIZE);
#endif
/* Check if any critical events have happened */
ievent = readl(&fec->eth->ievent);
writel(ievent, &fec->eth->ievent);
debug("fec_recv: ievent 0x%lx\n", ievent);
if (ievent & FEC_IEVENT_BABR) {
#ifdef CONFIG_DM_ETH
fecmxc_halt(dev);
fecmxc_init(dev);
#else
fec_halt(dev);
fec_init(dev, fec->bd);
#endif
printf("some error: 0x%08lx\n", ievent);
return 0;
}
if (ievent & FEC_IEVENT_HBERR) {
/* Heartbeat error */
writel(0x00000001 | readl(&fec->eth->x_cntrl),
&fec->eth->x_cntrl);
}
if (ievent & FEC_IEVENT_GRA) {
/* Graceful stop complete */
if (readl(&fec->eth->x_cntrl) & 0x00000001) {
#ifdef CONFIG_DM_ETH
fecmxc_halt(dev);
#else
fec_halt(dev);
#endif
writel(~0x00000001 & readl(&fec->eth->x_cntrl),
&fec->eth->x_cntrl);
#ifdef CONFIG_DM_ETH
fecmxc_init(dev);
#else
fec_init(dev, fec->bd);
#endif
}
}
/*
* Read the buffer status. Before the status can be read, the data cache
* must be invalidated, because the data in RAM might have been changed
* by DMA. The descriptors are properly aligned to cachelines so there's
* no need to worry they'd overlap.
*
* WARNING: By invalidating the descriptor here, we also invalidate
* the descriptors surrounding this one. Therefore we can NOT change the
* contents of this descriptor nor the surrounding ones. The problem is
* that in order to mark the descriptor as processed, we need to change
* the descriptor. The solution is to mark the whole cache line when all
* descriptors in the cache line are processed.
*/
addr = (ulong)rbd;
addr &= ~(ARCH_DMA_MINALIGN - 1);
size = roundup(sizeof(struct fec_bd), ARCH_DMA_MINALIGN);
invalidate_dcache_range(addr, addr + size);
bd_status = readw(&rbd->status);
debug("fec_recv: status 0x%x\n", bd_status);
if (!(bd_status & FEC_RBD_EMPTY)) {
if ((bd_status & FEC_RBD_LAST) && !(bd_status & FEC_RBD_ERR) &&
((readw(&rbd->data_length) - 4) > 14)) {
/* Get buffer address and size */
addr = readl(&rbd->data_pointer);
frame_length = readw(&rbd->data_length) - 4;
/* Invalidate data cache over the buffer */
end = roundup(addr + frame_length, ARCH_DMA_MINALIGN);
addr &= ~(ARCH_DMA_MINALIGN - 1);
invalidate_dcache_range(addr, end);
/* Fill the buffer and pass it to upper layers */
#ifdef CONFIG_FEC_MXC_SWAP_PACKET
swap_packet((uint32_t *)addr, frame_length);
#endif
#ifdef CONFIG_DM_ETH
memcpy(*packetp, (char *)addr, frame_length);
#else
memcpy(buff, (char *)addr, frame_length);
net_process_received_packet(buff, frame_length);
#endif
len = frame_length;
} else {
if (bd_status & FEC_RBD_ERR)
debug("error frame: 0x%08lx 0x%08x\n",
addr, bd_status);
}
/*
* Free the current buffer, restart the engine and move forward
* to the next buffer. Here we check if the whole cacheline of
* descriptors was already processed and if so, we mark it free
* as whole.
*/
size = RXDESC_PER_CACHELINE - 1;
if ((fec->rbd_index & size) == size) {
i = fec->rbd_index - size;
addr = (ulong)&fec->rbd_base[i];
for (; i <= fec->rbd_index ; i++) {
fec_rbd_clean(i == (FEC_RBD_NUM - 1),
&fec->rbd_base[i]);
}
flush_dcache_range(addr,
addr + ARCH_DMA_MINALIGN);
}
fec_rx_task_enable(fec);
fec->rbd_index = (fec->rbd_index + 1) % FEC_RBD_NUM;
}
debug("fec_recv: stop\n");
return len;
}
static void fec_set_dev_name(char *dest, int dev_id)
{
sprintf(dest, (dev_id == -1) ? "FEC" : "FEC%i", dev_id);
}
static int fec_alloc_descs(struct fec_priv *fec)
{
unsigned int size;
int i;
uint8_t *data;
ulong addr;
/* Allocate TX descriptors. */
size = roundup(2 * sizeof(struct fec_bd), ARCH_DMA_MINALIGN);
fec->tbd_base = memalign(ARCH_DMA_MINALIGN, size);
if (!fec->tbd_base)
goto err_tx;
/* Allocate RX descriptors. */
size = roundup(FEC_RBD_NUM * sizeof(struct fec_bd), ARCH_DMA_MINALIGN);
fec->rbd_base = memalign(ARCH_DMA_MINALIGN, size);
if (!fec->rbd_base)
goto err_rx;
memset(fec->rbd_base, 0, size);
/* Allocate RX buffers. */
/* Maximum RX buffer size. */
size = roundup(FEC_MAX_PKT_SIZE, FEC_DMA_RX_MINALIGN);
for (i = 0; i < FEC_RBD_NUM; i++) {
data = memalign(FEC_DMA_RX_MINALIGN, size);
if (!data) {
printf("%s: error allocating rxbuf %d\n", __func__, i);
goto err_ring;
}
memset(data, 0, size);
addr = (ulong)data;
fec->rbd_base[i].data_pointer = (uint32_t)addr;
fec->rbd_base[i].status = FEC_RBD_EMPTY;
fec->rbd_base[i].data_length = 0;
/* Flush the buffer to memory. */
flush_dcache_range(addr, addr + size);
}
/* Mark the last RBD to close the ring. */
fec->rbd_base[i - 1].status = FEC_RBD_WRAP | FEC_RBD_EMPTY;
fec->rbd_index = 0;
fec->tbd_index = 0;
return 0;
err_ring:
for (; i >= 0; i--) {
addr = fec->rbd_base[i].data_pointer;
free((void *)addr);
}
free(fec->rbd_base);
err_rx:
free(fec->tbd_base);
err_tx:
return -ENOMEM;
}
static void fec_free_descs(struct fec_priv *fec)
{
int i;
ulong addr;
for (i = 0; i < FEC_RBD_NUM; i++) {
addr = fec->rbd_base[i].data_pointer;
free((void *)addr);
}
free(fec->rbd_base);
free(fec->tbd_base);
}
struct mii_dev *fec_get_miibus(ulong base_addr, int dev_id)
{
struct ethernet_regs *eth = (struct ethernet_regs *)base_addr;
struct mii_dev *bus;
int ret;
bus = mdio_alloc();
if (!bus) {
printf("mdio_alloc failed\n");
return NULL;
}
bus->read = fec_phy_read;
bus->write = fec_phy_write;
bus->priv = eth;
fec_set_dev_name(bus->name, dev_id);
ret = mdio_register(bus);
if (ret) {
printf("mdio_register failed\n");
free(bus);
return NULL;
}
fec_mii_setspeed(eth);
return bus;
}
#ifndef CONFIG_DM_ETH
#ifdef CONFIG_PHYLIB
int fec_probe(struct bd_info *bd, int dev_id, uint32_t base_addr,
struct mii_dev *bus, struct phy_device *phydev)
#else
static int fec_probe(struct bd_info *bd, int dev_id, uint32_t base_addr,
struct mii_dev *bus, int phy_id)
#endif
{
struct eth_device *edev;
struct fec_priv *fec;
unsigned char ethaddr[6];
char mac[16];
uint32_t start;
int ret = 0;
/* create and fill edev struct */
edev = (struct eth_device *)malloc(sizeof(struct eth_device));
if (!edev) {
puts("fec_mxc: not enough malloc memory for eth_device\n");
ret = -ENOMEM;
goto err1;
}
fec = (struct fec_priv *)malloc(sizeof(struct fec_priv));
if (!fec) {
puts("fec_mxc: not enough malloc memory for fec_priv\n");
ret = -ENOMEM;
goto err2;
}
memset(edev, 0, sizeof(*edev));
memset(fec, 0, sizeof(*fec));
ret = fec_alloc_descs(fec);
if (ret)
goto err3;
edev->priv = fec;
edev->init = fec_init;
edev->send = fec_send;
edev->recv = fec_recv;
edev->halt = fec_halt;
edev->write_hwaddr = fec_set_hwaddr;
fec->eth = (struct ethernet_regs *)(ulong)base_addr;
fec->bd = bd;
fec->xcv_type = CONFIG_FEC_XCV_TYPE;
/* Reset chip. */
writel(readl(&fec->eth->ecntrl) | FEC_ECNTRL_RESET, &fec->eth->ecntrl);
start = get_timer(0);
while (readl(&fec->eth->ecntrl) & FEC_ECNTRL_RESET) {
if (get_timer(start) > (CONFIG_SYS_HZ * 5)) {
printf("FEC MXC: Timeout resetting chip\n");
goto err4;
}
udelay(10);
}
fec_reg_setup(fec);
fec_set_dev_name(edev->name, dev_id);
fec->dev_id = (dev_id == -1) ? 0 : dev_id;
fec->bus = bus;
fec_mii_setspeed(bus->priv);
#ifdef CONFIG_PHYLIB
fec->phydev = phydev;
phy_connect_dev(phydev, edev);
/* Configure phy */
phy_config(phydev);
#else
fec->phy_id = phy_id;
#endif
eth_register(edev);
/* only support one eth device, the index number pointed by dev_id */
edev->index = fec->dev_id;
if (fec_get_hwaddr(fec->dev_id, ethaddr) == 0) {
debug("got MAC%d address from fuse: %pM\n", fec->dev_id, ethaddr);
memcpy(edev->enetaddr, ethaddr, 6);
if (fec->dev_id)
sprintf(mac, "eth%daddr", fec->dev_id);
else
strcpy(mac, "ethaddr");
if (!env_get(mac))
eth_env_set_enetaddr(mac, ethaddr);
}
return ret;
err4:
fec_free_descs(fec);
err3:
free(fec);
err2:
free(edev);
err1:
return ret;
}
int fecmxc_initialize_multi(struct bd_info *bd, int dev_id, int phy_id,
uint32_t addr)
{
uint32_t base_mii;
struct mii_dev *bus = NULL;
#ifdef CONFIG_PHYLIB
struct phy_device *phydev = NULL;
#endif
int ret;
if (CONFIG_IS_ENABLED(IMX_MODULE_FUSE)) {
if (enet_fused((ulong)addr)) {
printf("SoC fuse indicates Ethernet@0x%x is unavailable.\n", addr);
return -ENODEV;
}
}
#ifdef CONFIG_FEC_MXC_MDIO_BASE
/*
* The i.MX28 has two ethernet interfaces, but they are not equal.
* Only the first one can access the MDIO bus.
*/
base_mii = CONFIG_FEC_MXC_MDIO_BASE;
#else
base_mii = addr;
#endif
debug("eth_init: fec_probe(bd, %i, %i) @ %08x\n", dev_id, phy_id, addr);
bus = fec_get_miibus(base_mii, dev_id);
if (!bus)
return -ENOMEM;
#ifdef CONFIG_PHYLIB
phydev = phy_find_by_mask(bus, 1 << phy_id, PHY_INTERFACE_MODE_RGMII);
if (!phydev) {
mdio_unregister(bus);
free(bus);
return -ENOMEM;
}
ret = fec_probe(bd, dev_id, addr, bus, phydev);
#else
ret = fec_probe(bd, dev_id, addr, bus, phy_id);
#endif
if (ret) {
#ifdef CONFIG_PHYLIB
free(phydev);
#endif
mdio_unregister(bus);
free(bus);
}
return ret;
}
#ifdef CONFIG_FEC_MXC_PHYADDR
int fecmxc_initialize(struct bd_info *bd)
{
return fecmxc_initialize_multi(bd, -1, CONFIG_FEC_MXC_PHYADDR,
IMX_FEC_BASE);
}
#endif
#ifndef CONFIG_PHYLIB
int fecmxc_register_mii_postcall(struct eth_device *dev, int (*cb)(int))
{
struct fec_priv *fec = (struct fec_priv *)dev->priv;
fec->mii_postcall = cb;
return 0;
}
#endif
#else
static int fecmxc_read_rom_hwaddr(struct udevice *dev)
{
struct fec_priv *priv = dev_get_priv(dev);
struct eth_pdata *pdata = dev_get_plat(dev);
return fec_get_hwaddr(priv->dev_id, pdata->enetaddr);
}
static int fecmxc_free_pkt(struct udevice *dev, uchar *packet, int length)
{
if (packet)
free(packet);
return 0;
}
static const struct eth_ops fecmxc_ops = {
.start = fecmxc_init,
.send = fecmxc_send,
.recv = fecmxc_recv,
.free_pkt = fecmxc_free_pkt,
.stop = fecmxc_halt,
.write_hwaddr = fecmxc_set_hwaddr,
.read_rom_hwaddr = fecmxc_read_rom_hwaddr,
};
static int device_get_phy_addr(struct fec_priv *priv, struct udevice *dev)
{
struct ofnode_phandle_args phandle_args;
int reg;
if (dev_read_phandle_with_args(dev, "phy-handle", NULL, 0, 0,
&phandle_args)) {
debug("Failed to find phy-handle");
return -ENODEV;
}
priv->phy_of_node = phandle_args.node;
reg = ofnode_read_u32_default(phandle_args.node, "reg", 0);
return reg;
}
static int fec_phy_init(struct fec_priv *priv, struct udevice *dev)
{
struct phy_device *phydev;
int addr;
addr = device_get_phy_addr(priv, dev);
#ifdef CONFIG_FEC_MXC_PHYADDR
addr = CONFIG_FEC_MXC_PHYADDR;
#endif
phydev = phy_connect(priv->bus, addr, dev, priv->interface);
if (!phydev)
return -ENODEV;
priv->phydev = phydev;
priv->phydev->node = priv->phy_of_node;
phy_config(phydev);
return 0;
}
#if CONFIG_IS_ENABLED(DM_GPIO)
/* FEC GPIO reset */
static void fec_gpio_reset(struct fec_priv *priv)
{
debug("fec_gpio_reset: fec_gpio_reset(dev)\n");
if (dm_gpio_is_valid(&priv->phy_reset_gpio)) {
dm_gpio_set_value(&priv->phy_reset_gpio, 1);
mdelay(priv->reset_delay);
dm_gpio_set_value(&priv->phy_reset_gpio, 0);
if (priv->reset_post_delay)
mdelay(priv->reset_post_delay);
}
}
#endif
static int fecmxc_probe(struct udevice *dev)
{
struct eth_pdata *pdata = dev_get_plat(dev);
struct fec_priv *priv = dev_get_priv(dev);
struct mii_dev *bus = NULL;
uint32_t start;
int ret;
if (CONFIG_IS_ENABLED(IMX_MODULE_FUSE)) {
if (enet_fused((ulong)priv->eth)) {
printf("SoC fuse indicates Ethernet@0x%lx is unavailable.\n", (ulong)priv->eth);
return -ENODEV;
}
}
if (IS_ENABLED(CONFIG_IMX8)) {
ret = clk_get_by_name(dev, "ipg", &priv->ipg_clk);
if (ret < 0) {
debug("Can't get FEC ipg clk: %d\n", ret);
return ret;
}
ret = clk_enable(&priv->ipg_clk);
if (ret < 0) {
debug("Can't enable FEC ipg clk: %d\n", ret);
return ret;
}
priv->clk_rate = clk_get_rate(&priv->ipg_clk);
} else if (CONFIG_IS_ENABLED(CLK_CCF)) {
ret = clk_get_by_name(dev, "ipg", &priv->ipg_clk);
if (ret < 0) {
debug("Can't get FEC ipg clk: %d\n", ret);
return ret;
}
ret = clk_enable(&priv->ipg_clk);
if(ret)
return ret;
ret = clk_get_by_name(dev, "ahb", &priv->ahb_clk);
if (ret < 0) {
debug("Can't get FEC ahb clk: %d\n", ret);
return ret;
}
ret = clk_enable(&priv->ahb_clk);
if (ret)
return ret;
ret = clk_get_by_name(dev, "enet_out", &priv->clk_enet_out);
if (!ret) {
ret = clk_enable(&priv->clk_enet_out);
if (ret)
return ret;
}
ret = clk_get_by_name(dev, "enet_clk_ref", &priv->clk_ref);
if (!ret) {
ret = clk_enable(&priv->clk_ref);
if (ret)
return ret;
}
ret = clk_get_by_name(dev, "ptp", &priv->clk_ptp);
if (!ret) {
ret = clk_enable(&priv->clk_ptp);
if (ret)
return ret;
}
priv->clk_rate = clk_get_rate(&priv->ipg_clk);
}
ret = fec_alloc_descs(priv);
if (ret)
return ret;
#ifdef CONFIG_DM_REGULATOR
if (priv->phy_supply) {
ret = regulator_set_enable(priv->phy_supply, true);
if (ret) {
printf("%s: Error enabling phy supply\n", dev->name);
return ret;
}
}
#endif
#if CONFIG_IS_ENABLED(DM_GPIO)
fec_gpio_reset(priv);
#endif
/* Reset chip. */
writel(readl(&priv->eth->ecntrl) | FEC_ECNTRL_RESET,
&priv->eth->ecntrl);
start = get_timer(0);
while (readl(&priv->eth->ecntrl) & FEC_ECNTRL_RESET) {
if (get_timer(start) > (CONFIG_SYS_HZ * 5)) {
printf("FEC MXC: Timeout reseting chip\n");
goto err_timeout;
}
udelay(10);
}
fec_reg_setup(priv);
priv->dev_id = dev_seq(dev);
#ifdef CONFIG_DM_ETH_PHY
bus = eth_phy_get_mdio_bus(dev);
#endif
if (!bus) {
#ifdef CONFIG_FEC_MXC_MDIO_BASE
bus = fec_get_miibus((ulong)CONFIG_FEC_MXC_MDIO_BASE,
dev_seq(dev));
#else
bus = fec_get_miibus((ulong)priv->eth, dev_seq(dev));
#endif
}
if (!bus) {
ret = -ENOMEM;
goto err_mii;
}
#ifdef CONFIG_DM_ETH_PHY
eth_phy_set_mdio_bus(dev, bus);
#endif
priv->bus = bus;
priv->interface = pdata->phy_interface;
switch (priv->interface) {
case PHY_INTERFACE_MODE_MII:
priv->xcv_type = MII100;
break;
case PHY_INTERFACE_MODE_RMII:
priv->xcv_type = RMII;
break;
case PHY_INTERFACE_MODE_RGMII:
case PHY_INTERFACE_MODE_RGMII_ID:
case PHY_INTERFACE_MODE_RGMII_RXID:
case PHY_INTERFACE_MODE_RGMII_TXID:
priv->xcv_type = RGMII;
break;
default:
priv->xcv_type = CONFIG_FEC_XCV_TYPE;
printf("Unsupported interface type %d defaulting to %d\n",
priv->interface, priv->xcv_type);
break;
}
ret = fec_phy_init(priv, dev);
if (ret)
goto err_phy;
return 0;
err_phy:
mdio_unregister(bus);
free(bus);
err_mii:
err_timeout:
fec_free_descs(priv);
return ret;
}
static int fecmxc_remove(struct udevice *dev)
{
struct fec_priv *priv = dev_get_priv(dev);
free(priv->phydev);
fec_free_descs(priv);
mdio_unregister(priv->bus);
mdio_free(priv->bus);
#ifdef CONFIG_DM_REGULATOR
if (priv->phy_supply)
regulator_set_enable(priv->phy_supply, false);
#endif
return 0;
}
static int fecmxc_of_to_plat(struct udevice *dev)
{
int ret = 0;
struct eth_pdata *pdata = dev_get_plat(dev);
struct fec_priv *priv = dev_get_priv(dev);
const char *phy_mode;
pdata->iobase = dev_read_addr(dev);
priv->eth = (struct ethernet_regs *)pdata->iobase;
pdata->phy_interface = -1;
phy_mode = fdt_getprop(gd->fdt_blob, dev_of_offset(dev), "phy-mode",
NULL);
if (phy_mode)
pdata->phy_interface = phy_get_interface_by_name(phy_mode);
if (pdata->phy_interface == -1) {
debug("%s: Invalid PHY interface '%s'\n", __func__, phy_mode);
return -EINVAL;
}
#ifdef CONFIG_DM_REGULATOR
device_get_supply_regulator(dev, "phy-supply", &priv->phy_supply);
#endif
#if CONFIG_IS_ENABLED(DM_GPIO)
ret = gpio_request_by_name(dev, "phy-reset-gpios", 0,
&priv->phy_reset_gpio, GPIOD_IS_OUT);
if (ret < 0)
return 0; /* property is optional, don't return error! */
priv->reset_delay = dev_read_u32_default(dev, "phy-reset-duration", 1);
if (priv->reset_delay > 1000) {
printf("FEC MXC: phy reset duration should be <= 1000ms\n");
/* property value wrong, use default value */
priv->reset_delay = 1;
}
priv->reset_post_delay = dev_read_u32_default(dev,
"phy-reset-post-delay",
0);
if (priv->reset_post_delay > 1000) {
printf("FEC MXC: phy reset post delay should be <= 1000ms\n");
/* property value wrong, use default value */
priv->reset_post_delay = 0;
}
#endif
return 0;
}
static const struct udevice_id fecmxc_ids[] = {
{ .compatible = "fsl,imx28-fec" },
{ .compatible = "fsl,imx6q-fec" },
{ .compatible = "fsl,imx6sl-fec" },
{ .compatible = "fsl,imx6sx-fec" },
{ .compatible = "fsl,imx6ul-fec" },
{ .compatible = "fsl,imx53-fec" },
{ .compatible = "fsl,imx7d-fec" },
{ .compatible = "fsl,mvf600-fec" },
{ }
};
U_BOOT_DRIVER(fecmxc_gem) = {
.name = "fecmxc",
.id = UCLASS_ETH,
.of_match = fecmxc_ids,
.of_to_plat = fecmxc_of_to_plat,
.probe = fecmxc_probe,
.remove = fecmxc_remove,
.ops = &fecmxc_ops,
.priv_auto = sizeof(struct fec_priv),
.plat_auto = sizeof(struct eth_pdata),
};
#endif