u-boot/arch/mips/mach-octeon/cvmx-qlm.c
Aaron Williams b8806c4e7a mips: octeon: Add cvmx-qlm.c
Import cvmx-qlm.c from 2013 U-Boot. It will be used by the later
added drivers to support PCIe and networking on the MIPS Octeon II / III
platforms.

Signed-off-by: Aaron Williams <awilliams@marvell.com>
Signed-off-by: Stefan Roese <sr@denx.de>
2021-04-23 21:03:24 +02:00

2350 lines
61 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (C) 2020 Marvell International Ltd.
*
* Helper utilities for qlm.
*/
#include <log.h>
#include <time.h>
#include <asm/global_data.h>
#include <linux/delay.h>
#include <mach/cvmx-regs.h>
#include <mach/octeon-model.h>
#include <mach/cvmx-fuse.h>
#include <mach/octeon-feature.h>
#include <mach/cvmx-qlm.h>
#include <mach/octeon_qlm.h>
#include <mach/cvmx-pcie.h>
#include <mach/cvmx-helper.h>
#include <mach/cvmx-helper-util.h>
#include <mach/cvmx-bgxx-defs.h>
#include <mach/cvmx-ciu-defs.h>
#include <mach/cvmx-gmxx-defs.h>
#include <mach/cvmx-gserx-defs.h>
#include <mach/cvmx-mio-defs.h>
#include <mach/cvmx-pciercx-defs.h>
#include <mach/cvmx-pemx-defs.h>
#include <mach/cvmx-pexp-defs.h>
#include <mach/cvmx-rst-defs.h>
#include <mach/cvmx-sata-defs.h>
#include <mach/cvmx-sli-defs.h>
#include <mach/cvmx-sriomaintx-defs.h>
#include <mach/cvmx-sriox-defs.h>
#include <mach/cvmx-helper.h>
#include <mach/cvmx-helper-jtag.h>
DECLARE_GLOBAL_DATA_PTR;
/*
* Their is a copy of this in bootloader qlm configuration, make sure
* to update both the places till i figure out
*/
#define R_25G_REFCLK100 0x0
#define R_5G_REFCLK100 0x1
#define R_8G_REFCLK100 0x2
#define R_125G_REFCLK15625_KX 0x3
#define R_3125G_REFCLK15625_XAUI 0x4
#define R_103125G_REFCLK15625_KR 0x5
#define R_125G_REFCLK15625_SGMII 0x6
#define R_5G_REFCLK15625_QSGMII 0x7
#define R_625G_REFCLK15625_RXAUI 0x8
#define R_25G_REFCLK125 0x9
#define R_5G_REFCLK125 0xa
#define R_8G_REFCLK125 0xb
static const int REF_100MHZ = 100000000;
static const int REF_125MHZ = 125000000;
static const int REF_156MHZ = 156250000;
static qlm_jtag_uint32_t *__cvmx_qlm_jtag_xor_ref;
/**
* Return the number of QLMs supported by the chip
*
* @return Number of QLMs
*/
int cvmx_qlm_get_num(void)
{
if (OCTEON_IS_MODEL(OCTEON_CN68XX))
return 5;
else if (OCTEON_IS_MODEL(OCTEON_CN66XX))
return 3;
else if (OCTEON_IS_MODEL(OCTEON_CN63XX))
return 3;
else if (OCTEON_IS_MODEL(OCTEON_CN61XX))
return 3;
else if (OCTEON_IS_MODEL(OCTEON_CNF71XX))
return 2;
else if (OCTEON_IS_MODEL(OCTEON_CN78XX))
return 8;
else if (OCTEON_IS_MODEL(OCTEON_CN73XX))
return 7;
else if (OCTEON_IS_MODEL(OCTEON_CNF75XX))
return 9;
return 0;
}
/**
* Return the qlm number based on the interface
*
* @param xiface interface to look up
*
* @return the qlm number based on the xiface
*/
int cvmx_qlm_interface(int xiface)
{
struct cvmx_xiface xi = cvmx_helper_xiface_to_node_interface(xiface);
if (OCTEON_IS_MODEL(OCTEON_CN61XX)) {
return (xi.interface == 0) ? 2 : 0;
} else if (OCTEON_IS_MODEL(OCTEON_CN63XX) || OCTEON_IS_MODEL(OCTEON_CN66XX)) {
return 2 - xi.interface;
} else if (OCTEON_IS_MODEL(OCTEON_CNF71XX)) {
if (xi.interface == 0)
return 0;
debug("Warning: %s: Invalid interface %d\n",
__func__, xi.interface);
} else if (octeon_has_feature(OCTEON_FEATURE_BGX)) {
debug("Warning: not supported\n");
return -1;
}
/* Must be cn68XX */
switch (xi.interface) {
case 1:
return 0;
default:
return xi.interface;
}
return -1;
}
/**
* Return the qlm number based for a port in the interface
*
* @param xiface interface to look up
* @param index index in an interface
*
* @return the qlm number based on the xiface
*/
int cvmx_qlm_lmac(int xiface, int index)
{
struct cvmx_xiface xi = cvmx_helper_xiface_to_node_interface(xiface);
if (OCTEON_IS_MODEL(OCTEON_CN78XX)) {
cvmx_bgxx_cmr_global_config_t gconfig;
cvmx_gserx_phy_ctl_t phy_ctl;
cvmx_gserx_cfg_t gserx_cfg;
int qlm;
if (xi.interface < 6) {
if (xi.interface < 2) {
gconfig.u64 =
csr_rd_node(xi.node,
CVMX_BGXX_CMR_GLOBAL_CONFIG(xi.interface));
if (gconfig.s.pmux_sds_sel)
qlm = xi.interface + 2; /* QLM 2 or 3 */
else
qlm = xi.interface; /* QLM 0 or 1 */
} else {
qlm = xi.interface + 2; /* QLM 4-7 */
}
/* make sure the QLM is powered up and out of reset */
phy_ctl.u64 = csr_rd_node(xi.node, CVMX_GSERX_PHY_CTL(qlm));
if (phy_ctl.s.phy_pd || phy_ctl.s.phy_reset)
return -1;
gserx_cfg.u64 = csr_rd_node(xi.node, CVMX_GSERX_CFG(qlm));
if (gserx_cfg.s.bgx)
return qlm;
else
return -1;
} else if (xi.interface <= 7) { /* ILK */
int qlm;
for (qlm = 4; qlm < 8; qlm++) {
/* Make sure the QLM is powered and out of reset */
phy_ctl.u64 = csr_rd_node(xi.node, CVMX_GSERX_PHY_CTL(qlm));
if (phy_ctl.s.phy_pd || phy_ctl.s.phy_reset)
continue;
/* Make sure the QLM is in ILK mode */
gserx_cfg.u64 = csr_rd_node(xi.node, CVMX_GSERX_CFG(qlm));
if (gserx_cfg.s.ila)
return qlm;
}
}
return -1;
} else if (OCTEON_IS_MODEL(OCTEON_CN73XX)) {
cvmx_gserx_phy_ctl_t phy_ctl;
cvmx_gserx_cfg_t gserx_cfg;
int qlm;
/* (interface)0->QLM2, 1->QLM3, 2->DLM5/3->DLM6 */
if (xi.interface < 2) {
qlm = xi.interface + 2; /* (0,1)->ret(2,3) */
phy_ctl.u64 = csr_rd(CVMX_GSERX_PHY_CTL(qlm));
if (phy_ctl.s.phy_pd || phy_ctl.s.phy_reset)
return -1;
gserx_cfg.u64 = csr_rd(CVMX_GSERX_CFG(qlm));
if (gserx_cfg.s.bgx)
return qlm;
else
return -1;
} else if (xi.interface == 2) {
cvmx_gserx_cfg_t g1, g2;
g1.u64 = csr_rd(CVMX_GSERX_CFG(5));
g2.u64 = csr_rd(CVMX_GSERX_CFG(6));
/* Check if both QLM5 & QLM6 are BGX2 */
if (g2.s.bgx) {
if (g1.s.bgx) {
cvmx_gserx_phy_ctl_t phy_ctl1;
phy_ctl.u64 = csr_rd(CVMX_GSERX_PHY_CTL(5));
phy_ctl1.u64 = csr_rd(CVMX_GSERX_PHY_CTL(6));
if ((phy_ctl.s.phy_pd || phy_ctl.s.phy_reset) &&
(phy_ctl1.s.phy_pd || phy_ctl1.s.phy_reset))
return -1;
if (index >= 2)
return 6;
return 5;
} else { /* QLM6 is BGX2 */
phy_ctl.u64 = csr_rd(CVMX_GSERX_PHY_CTL(6));
if (phy_ctl.s.phy_pd || phy_ctl.s.phy_reset)
return -1;
return 6;
}
} else if (g1.s.bgx) {
phy_ctl.u64 = csr_rd(CVMX_GSERX_PHY_CTL(5));
if (phy_ctl.s.phy_pd || phy_ctl.s.phy_reset)
return -1;
return 5;
}
}
return -1;
} else if (OCTEON_IS_MODEL(OCTEON_CNF75XX)) {
cvmx_gserx_phy_ctl_t phy_ctl;
cvmx_gserx_cfg_t gserx_cfg;
int qlm;
if (xi.interface == 0) {
cvmx_gserx_cfg_t g1, g2;
g1.u64 = csr_rd(CVMX_GSERX_CFG(4));
g2.u64 = csr_rd(CVMX_GSERX_CFG(5));
/* Check if both QLM4 & QLM5 are BGX0 */
if (g2.s.bgx) {
if (g1.s.bgx) {
cvmx_gserx_phy_ctl_t phy_ctl1;
phy_ctl.u64 = csr_rd(CVMX_GSERX_PHY_CTL(4));
phy_ctl1.u64 = csr_rd(CVMX_GSERX_PHY_CTL(5));
if ((phy_ctl.s.phy_pd || phy_ctl.s.phy_reset) &&
(phy_ctl1.s.phy_pd || phy_ctl1.s.phy_reset))
return -1;
if (index >= 2)
return 5;
return 4;
}
/* QLM5 is BGX0 */
phy_ctl.u64 = csr_rd(CVMX_GSERX_PHY_CTL(5));
if (phy_ctl.s.phy_pd || phy_ctl.s.phy_reset)
return -1;
return 5;
} else if (g1.s.bgx) {
phy_ctl.u64 = csr_rd(CVMX_GSERX_PHY_CTL(4));
if (phy_ctl.s.phy_pd || phy_ctl.s.phy_reset)
return -1;
return 4;
}
} else if (xi.interface < 2) {
qlm = (xi.interface == 1) ? 2 : 3;
gserx_cfg.u64 = csr_rd(CVMX_GSERX_CFG(qlm));
if (gserx_cfg.s.srio)
return qlm;
}
return -1;
}
return -1;
}
/**
* Return if only DLM5/DLM6/DLM5+DLM6 is used by BGX
*
* @param BGX BGX to search for.
*
* @return muxes used 0 = DLM5+DLM6, 1 = DLM5, 2 = DLM6.
*/
int cvmx_qlm_mux_interface(int bgx)
{
int mux = 0;
cvmx_gserx_cfg_t gser1, gser2;
int qlm1, qlm2;
if (OCTEON_IS_MODEL(OCTEON_CN73XX) && bgx != 2)
return -1;
else if (OCTEON_IS_MODEL(OCTEON_CNF75XX) && bgx != 0)
return -1;
if (OCTEON_IS_MODEL(OCTEON_CN73XX)) {
qlm1 = 5;
qlm2 = 6;
} else if (OCTEON_IS_MODEL(OCTEON_CNF75XX)) {
qlm1 = 4;
qlm2 = 5;
} else {
return -1;
}
gser1.u64 = csr_rd(CVMX_GSERX_CFG(qlm1));
gser2.u64 = csr_rd(CVMX_GSERX_CFG(qlm2));
if (gser1.s.bgx && gser2.s.bgx)
mux = 0;
else if (gser1.s.bgx)
mux = 1; // BGX2 is using DLM5 only
else if (gser2.s.bgx)
mux = 2; // BGX2 is using DLM6 only
return mux;
}
/**
* Return number of lanes for a given qlm
*
* @param qlm QLM to examine
*
* @return Number of lanes
*/
int cvmx_qlm_get_lanes(int qlm)
{
if (OCTEON_IS_MODEL(OCTEON_CN61XX) && qlm == 1)
return 2;
else if (OCTEON_IS_MODEL(OCTEON_CNF71XX))
return 2;
else if (OCTEON_IS_MODEL(OCTEON_CN73XX))
return (qlm < 4) ? 4 /*QLM0,1,2,3*/ : 2 /*DLM4,5,6*/;
else if (OCTEON_IS_MODEL(OCTEON_CNF75XX))
return (qlm == 2 || qlm == 3) ? 4 /*QLM2,3*/ : 2 /*DLM0,1,4,5*/;
return 4;
}
/**
* Get the QLM JTAG fields based on Octeon model on the supported chips.
*
* @return qlm_jtag_field_t structure
*/
const __cvmx_qlm_jtag_field_t *cvmx_qlm_jtag_get_field(void)
{
/* Figure out which JTAG chain description we're using */
if (OCTEON_IS_MODEL(OCTEON_CN68XX)) {
return __cvmx_qlm_jtag_field_cn68xx;
} else if (OCTEON_IS_MODEL(OCTEON_CN66XX) || OCTEON_IS_MODEL(OCTEON_CN61XX) ||
OCTEON_IS_MODEL(OCTEON_CNF71XX)) {
return __cvmx_qlm_jtag_field_cn66xx;
} else if (OCTEON_IS_MODEL(OCTEON_CN63XX)) {
return __cvmx_qlm_jtag_field_cn63xx;
}
return NULL;
}
/**
* Get the QLM JTAG length by going through qlm_jtag_field for each
* Octeon model that is supported
*
* @return return the length.
*/
int cvmx_qlm_jtag_get_length(void)
{
const __cvmx_qlm_jtag_field_t *qlm_ptr = cvmx_qlm_jtag_get_field();
int length = 0;
/* Figure out how many bits are in the JTAG chain */
while (qlm_ptr && qlm_ptr->name) {
if (qlm_ptr->stop_bit > length)
length = qlm_ptr->stop_bit + 1;
qlm_ptr++;
}
return length;
}
/**
* Initialize the QLM layer
*/
void cvmx_qlm_init(void)
{
if (OCTEON_IS_OCTEON3())
return;
/* ToDo: No support for non-Octeon 3 yet */
printf("Please add support for unsupported Octeon SoC\n");
}
/**
* Lookup the bit information for a JTAG field name
*
* @param name Name to lookup
*
* @return Field info, or NULL on failure
*/
static const __cvmx_qlm_jtag_field_t *__cvmx_qlm_lookup_field(const char *name)
{
const __cvmx_qlm_jtag_field_t *ptr = cvmx_qlm_jtag_get_field();
while (ptr->name) {
if (strcmp(name, ptr->name) == 0)
return ptr;
ptr++;
}
debug("%s: Illegal field name %s\n", __func__, name);
return NULL;
}
/**
* Get a field in a QLM JTAG chain
*
* @param qlm QLM to get
* @param lane Lane in QLM to get
* @param name String name of field
*
* @return JTAG field value
*/
uint64_t cvmx_qlm_jtag_get(int qlm, int lane, const char *name)
{
const __cvmx_qlm_jtag_field_t *field = __cvmx_qlm_lookup_field(name);
int qlm_jtag_length = cvmx_qlm_jtag_get_length();
int num_lanes = cvmx_qlm_get_lanes(qlm);
if (!field)
return 0;
/* Capture the current settings */
cvmx_helper_qlm_jtag_capture(qlm);
/*
* Shift past lanes we don't care about. CN6XXX/7XXX shifts lane 0 first,
* CN3XXX/5XXX shifts lane 3 first
*/
/* Shift to the start of the field */
cvmx_helper_qlm_jtag_shift_zeros(qlm,
qlm_jtag_length * (num_lanes - 1 - lane));
cvmx_helper_qlm_jtag_shift_zeros(qlm, field->start_bit);
/* Shift out the value and return it */
return cvmx_helper_qlm_jtag_shift(qlm, field->stop_bit - field->start_bit + 1, 0);
}
/**
* Set a field in a QLM JTAG chain
*
* @param qlm QLM to set
* @param lane Lane in QLM to set, or -1 for all lanes
* @param name String name of field
* @param value Value of the field
*/
void cvmx_qlm_jtag_set(int qlm, int lane, const char *name, uint64_t value)
{
int i, l;
u32 shift_values[CVMX_QLM_JTAG_UINT32];
int num_lanes = cvmx_qlm_get_lanes(qlm);
const __cvmx_qlm_jtag_field_t *field = __cvmx_qlm_lookup_field(name);
int qlm_jtag_length = cvmx_qlm_jtag_get_length();
int total_length = qlm_jtag_length * num_lanes;
int bits = 0;
if (!field)
return;
/* Get the current state */
cvmx_helper_qlm_jtag_capture(qlm);
for (i = 0; i < CVMX_QLM_JTAG_UINT32; i++)
shift_values[i] = cvmx_helper_qlm_jtag_shift(qlm, 32, 0);
/* Put new data in our local array */
for (l = 0; l < num_lanes; l++) {
u64 new_value = value;
int bits;
int adj_lanes;
if (l != lane && lane != -1)
continue;
adj_lanes = (num_lanes - 1 - l) * qlm_jtag_length;
for (bits = field->start_bit + adj_lanes; bits <= field->stop_bit + adj_lanes;
bits++) {
if (new_value & 1)
shift_values[bits / 32] |= 1 << (bits & 31);
else
shift_values[bits / 32] &= ~(1 << (bits & 31));
new_value >>= 1;
}
}
/* Shift out data and xor with reference */
while (bits < total_length) {
u32 shift = shift_values[bits / 32] ^ __cvmx_qlm_jtag_xor_ref[qlm][bits / 32];
int width = total_length - bits;
if (width > 32)
width = 32;
cvmx_helper_qlm_jtag_shift(qlm, width, shift);
bits += 32;
}
/* Update the new data */
cvmx_helper_qlm_jtag_update(qlm);
/*
* Always give the QLM 1ms to settle after every update. This may not
* always be needed, but some of the options make significant
* electrical changes
*/
udelay(1000);
}
/**
* Errata G-16094: QLM Gen2 Equalizer Default Setting Change.
* CN68XX pass 1.x and CN66XX pass 1.x QLM tweak. This function tweaks the
* JTAG setting for a QLMs to run better at 5 and 6.25Ghz.
*/
void __cvmx_qlm_speed_tweak(void)
{
cvmx_mio_qlmx_cfg_t qlm_cfg;
int num_qlms = cvmx_qlm_get_num();
int qlm;
/* Workaround for Errata (G-16467) */
if (OCTEON_IS_MODEL(OCTEON_CN68XX_PASS2_X)) {
for (qlm = 0; qlm < num_qlms; qlm++) {
int ir50dac;
/*
* This workaround only applies to QLMs running at
* 6.25Ghz
*/
if (cvmx_qlm_get_gbaud_mhz(qlm) == 6250) {
#ifdef CVMX_QLM_DUMP_STATE
debug("%s:%d: QLM%d: Applying workaround for Errata G-16467\n",
__func__, __LINE__, qlm);
cvmx_qlm_display_registers(qlm);
debug("\n");
#endif
cvmx_qlm_jtag_set(qlm, -1, "cfg_cdr_trunc", 0);
/* Hold the QLM in reset */
cvmx_qlm_jtag_set(qlm, -1, "cfg_rst_n_set", 0);
cvmx_qlm_jtag_set(qlm, -1, "cfg_rst_n_clr", 1);
/* Forcfe TX to be idle */
cvmx_qlm_jtag_set(qlm, -1, "cfg_tx_idle_clr", 0);
cvmx_qlm_jtag_set(qlm, -1, "cfg_tx_idle_set", 1);
if (OCTEON_IS_MODEL(OCTEON_CN68XX_PASS2_0)) {
ir50dac = cvmx_qlm_jtag_get(qlm, 0, "ir50dac");
while (++ir50dac <= 31)
cvmx_qlm_jtag_set(qlm, -1, "ir50dac", ir50dac);
}
cvmx_qlm_jtag_set(qlm, -1, "div4_byp", 0);
cvmx_qlm_jtag_set(qlm, -1, "clkf_byp", 16);
cvmx_qlm_jtag_set(qlm, -1, "serdes_pll_byp", 1);
cvmx_qlm_jtag_set(qlm, -1, "spdsel_byp", 1);
#ifdef CVMX_QLM_DUMP_STATE
debug("%s:%d: QLM%d: Done applying workaround for Errata G-16467\n",
__func__, __LINE__, qlm);
cvmx_qlm_display_registers(qlm);
debug("\n\n");
#endif
/*
* The QLM will be taken out of reset later
* when ILK/XAUI are initialized.
*/
}
}
} else if (OCTEON_IS_MODEL(OCTEON_CN68XX_PASS1_X) ||
OCTEON_IS_MODEL(OCTEON_CN66XX_PASS1_X)) {
/* Loop through the QLMs */
for (qlm = 0; qlm < num_qlms; qlm++) {
/* Read the QLM speed */
qlm_cfg.u64 = csr_rd(CVMX_MIO_QLMX_CFG(qlm));
/* If the QLM is at 6.25Ghz or 5Ghz then program JTAG */
if (qlm_cfg.s.qlm_spd == 5 || qlm_cfg.s.qlm_spd == 12 ||
qlm_cfg.s.qlm_spd == 0 || qlm_cfg.s.qlm_spd == 6 ||
qlm_cfg.s.qlm_spd == 11) {
cvmx_qlm_jtag_set(qlm, -1, "rx_cap_gen2", 0x1);
cvmx_qlm_jtag_set(qlm, -1, "rx_eq_gen2", 0x8);
}
}
}
}
/**
* Errata G-16174: QLM Gen2 PCIe IDLE DAC change.
* CN68XX pass 1.x, CN66XX pass 1.x and CN63XX pass 1.0-2.2 QLM tweak.
* This function tweaks the JTAG setting for a QLMs for PCIe to run better.
*/
void __cvmx_qlm_pcie_idle_dac_tweak(void)
{
int num_qlms = 0;
int qlm;
if (OCTEON_IS_MODEL(OCTEON_CN68XX_PASS1_X))
num_qlms = 5;
else if (OCTEON_IS_MODEL(OCTEON_CN66XX_PASS1_X))
num_qlms = 3;
else if (OCTEON_IS_MODEL(OCTEON_CN63XX))
num_qlms = 3;
else
return;
/* Loop through the QLMs */
for (qlm = 0; qlm < num_qlms; qlm++)
cvmx_qlm_jtag_set(qlm, -1, "idle_dac", 0x2);
}
void __cvmx_qlm_pcie_cfg_rxd_set_tweak(int qlm, int lane)
{
if (OCTEON_IS_MODEL(OCTEON_CN6XXX) || OCTEON_IS_MODEL(OCTEON_CNF71XX))
cvmx_qlm_jtag_set(qlm, lane, "cfg_rxd_set", 0x1);
}
/**
* Get the speed (Gbaud) of the QLM in Mhz for a given node.
*
* @param node node of the QLM
* @param qlm QLM to examine
*
* @return Speed in Mhz
*/
int cvmx_qlm_get_gbaud_mhz_node(int node, int qlm)
{
cvmx_gserx_lane_mode_t lane_mode;
cvmx_gserx_cfg_t cfg;
if (!octeon_has_feature(OCTEON_FEATURE_MULTINODE))
return 0;
if (qlm >= 8)
return -1; /* FIXME for OCI */
/* Check if QLM is configured */
cfg.u64 = csr_rd_node(node, CVMX_GSERX_CFG(qlm));
if (cfg.u64 == 0)
return -1;
if (cfg.s.pcie) {
int pem = 0;
cvmx_pemx_cfg_t pemx_cfg;
switch (qlm) {
case 0: /* Either PEM0 x4 of PEM0 x8 */
pem = 0;
break;
case 1: /* Either PEM0 x4 of PEM1 x4 */
pemx_cfg.u64 = csr_rd_node(node, CVMX_PEMX_CFG(0));
if (pemx_cfg.cn78xx.lanes8)
pem = 0;
else
pem = 1;
break;
case 2: /* Either PEM2 x4 of PEM2 x8 */
pem = 2;
break;
case 3: /* Either PEM2 x8 of PEM3 x4 or x8 */
/* Can be last 4 lanes of PEM2 */
pemx_cfg.u64 = csr_rd_node(node, CVMX_PEMX_CFG(2));
if (pemx_cfg.cn78xx.lanes8) {
pem = 2;
} else {
pemx_cfg.u64 = csr_rd_node(node, CVMX_PEMX_CFG(3));
if (pemx_cfg.cn78xx.lanes8)
pem = 3;
else
pem = 2;
}
break;
case 4: /* Either PEM3 x8 of PEM3 x4 */
pem = 3;
break;
default:
debug("QLM%d: Should be in PCIe mode\n", qlm);
break;
}
pemx_cfg.u64 = csr_rd_node(node, CVMX_PEMX_CFG(pem));
switch (pemx_cfg.s.md) {
case 0: /* Gen1 */
return 2500;
case 1: /* Gen2 */
return 5000;
case 2: /* Gen3 */
return 8000;
default:
return 0;
}
} else {
lane_mode.u64 = csr_rd_node(node, CVMX_GSERX_LANE_MODE(qlm));
switch (lane_mode.s.lmode) {
case R_25G_REFCLK100:
return 2500;
case R_5G_REFCLK100:
return 5000;
case R_8G_REFCLK100:
return 8000;
case R_125G_REFCLK15625_KX:
return 1250;
case R_3125G_REFCLK15625_XAUI:
return 3125;
case R_103125G_REFCLK15625_KR:
return 10312;
case R_125G_REFCLK15625_SGMII:
return 1250;
case R_5G_REFCLK15625_QSGMII:
return 5000;
case R_625G_REFCLK15625_RXAUI:
return 6250;
case R_25G_REFCLK125:
return 2500;
case R_5G_REFCLK125:
return 5000;
case R_8G_REFCLK125:
return 8000;
default:
return 0;
}
}
}
/**
* Get the speed (Gbaud) of the QLM in Mhz.
*
* @param qlm QLM to examine
*
* @return Speed in Mhz
*/
int cvmx_qlm_get_gbaud_mhz(int qlm)
{
if (OCTEON_IS_MODEL(OCTEON_CN63XX)) {
if (qlm == 2) {
cvmx_gmxx_inf_mode_t inf_mode;
inf_mode.u64 = csr_rd(CVMX_GMXX_INF_MODE(0));
switch (inf_mode.s.speed) {
case 0:
return 5000; /* 5 Gbaud */
case 1:
return 2500; /* 2.5 Gbaud */
case 2:
return 2500; /* 2.5 Gbaud */
case 3:
return 1250; /* 1.25 Gbaud */
case 4:
return 1250; /* 1.25 Gbaud */
case 5:
return 6250; /* 6.25 Gbaud */
case 6:
return 5000; /* 5 Gbaud */
case 7:
return 2500; /* 2.5 Gbaud */
case 8:
return 3125; /* 3.125 Gbaud */
case 9:
return 2500; /* 2.5 Gbaud */
case 10:
return 1250; /* 1.25 Gbaud */
case 11:
return 5000; /* 5 Gbaud */
case 12:
return 6250; /* 6.25 Gbaud */
case 13:
return 3750; /* 3.75 Gbaud */
case 14:
return 3125; /* 3.125 Gbaud */
default:
return 0; /* Disabled */
}
} else {
cvmx_sriox_status_reg_t status_reg;
status_reg.u64 = csr_rd(CVMX_SRIOX_STATUS_REG(qlm));
if (status_reg.s.srio) {
cvmx_sriomaintx_port_0_ctl2_t sriomaintx_port_0_ctl2;
sriomaintx_port_0_ctl2.u32 =
csr_rd(CVMX_SRIOMAINTX_PORT_0_CTL2(qlm));
switch (sriomaintx_port_0_ctl2.s.sel_baud) {
case 1:
return 1250; /* 1.25 Gbaud */
case 2:
return 2500; /* 2.5 Gbaud */
case 3:
return 3125; /* 3.125 Gbaud */
case 4:
return 5000; /* 5 Gbaud */
case 5:
return 6250; /* 6.250 Gbaud */
default:
return 0; /* Disabled */
}
} else {
cvmx_pciercx_cfg032_t pciercx_cfg032;
pciercx_cfg032.u32 = csr_rd(CVMX_PCIERCX_CFG032(qlm));
switch (pciercx_cfg032.s.ls) {
case 1:
return 2500;
case 2:
return 5000;
case 4:
return 8000;
default: {
cvmx_mio_rst_boot_t mio_rst_boot;
mio_rst_boot.u64 = csr_rd(CVMX_MIO_RST_BOOT);
if (qlm == 0 && mio_rst_boot.s.qlm0_spd == 0xf)
return 0;
if (qlm == 1 && mio_rst_boot.s.qlm1_spd == 0xf)
return 0;
/* Best guess I can make */
return 5000;
}
}
}
}
} else if (OCTEON_IS_OCTEON2()) {
cvmx_mio_qlmx_cfg_t qlm_cfg;
qlm_cfg.u64 = csr_rd(CVMX_MIO_QLMX_CFG(qlm));
switch (qlm_cfg.s.qlm_spd) {
case 0:
return 5000; /* 5 Gbaud */
case 1:
return 2500; /* 2.5 Gbaud */
case 2:
return 2500; /* 2.5 Gbaud */
case 3:
return 1250; /* 1.25 Gbaud */
case 4:
return 1250; /* 1.25 Gbaud */
case 5:
return 6250; /* 6.25 Gbaud */
case 6:
return 5000; /* 5 Gbaud */
case 7:
return 2500; /* 2.5 Gbaud */
case 8:
return 3125; /* 3.125 Gbaud */
case 9:
return 2500; /* 2.5 Gbaud */
case 10:
return 1250; /* 1.25 Gbaud */
case 11:
return 5000; /* 5 Gbaud */
case 12:
return 6250; /* 6.25 Gbaud */
case 13:
return 3750; /* 3.75 Gbaud */
case 14:
return 3125; /* 3.125 Gbaud */
default:
return 0; /* Disabled */
}
} else if (OCTEON_IS_MODEL(OCTEON_CN70XX)) {
cvmx_gserx_dlmx_mpll_multiplier_t mpll_multiplier;
u64 meas_refclock;
u64 freq;
/* Measure the reference clock */
meas_refclock = cvmx_qlm_measure_clock(qlm);
/* Multiply to get the final frequency */
mpll_multiplier.u64 = csr_rd(CVMX_GSERX_DLMX_MPLL_MULTIPLIER(qlm, 0));
freq = meas_refclock * mpll_multiplier.s.mpll_multiplier;
freq = (freq + 500000) / 1000000;
return freq;
} else if (OCTEON_IS_MODEL(OCTEON_CN78XX)) {
return cvmx_qlm_get_gbaud_mhz_node(cvmx_get_node_num(), qlm);
} else if (OCTEON_IS_MODEL(OCTEON_CN73XX) || OCTEON_IS_MODEL(OCTEON_CNF75XX)) {
cvmx_gserx_lane_mode_t lane_mode;
lane_mode.u64 = csr_rd(CVMX_GSERX_LANE_MODE(qlm));
switch (lane_mode.s.lmode) {
case R_25G_REFCLK100:
return 2500;
case R_5G_REFCLK100:
return 5000;
case R_8G_REFCLK100:
return 8000;
case R_125G_REFCLK15625_KX:
return 1250;
case R_3125G_REFCLK15625_XAUI:
return 3125;
case R_103125G_REFCLK15625_KR:
return 10312;
case R_125G_REFCLK15625_SGMII:
return 1250;
case R_5G_REFCLK15625_QSGMII:
return 5000;
case R_625G_REFCLK15625_RXAUI:
return 6250;
case R_25G_REFCLK125:
return 2500;
case R_5G_REFCLK125:
return 5000;
case R_8G_REFCLK125:
return 8000;
default:
return 0;
}
}
return 0;
}
static enum cvmx_qlm_mode __cvmx_qlm_get_mode_cn70xx(int qlm)
{
switch (qlm) {
case 0: /* DLM0/DLM1 - SGMII/QSGMII/RXAUI */
{
union cvmx_gmxx_inf_mode inf_mode0, inf_mode1;
inf_mode0.u64 = csr_rd(CVMX_GMXX_INF_MODE(0));
inf_mode1.u64 = csr_rd(CVMX_GMXX_INF_MODE(1));
/* SGMII0 SGMII1 */
switch (inf_mode0.s.mode) {
case CVMX_GMX_INF_MODE_SGMII:
switch (inf_mode1.s.mode) {
case CVMX_GMX_INF_MODE_SGMII:
return CVMX_QLM_MODE_SGMII_SGMII;
case CVMX_GMX_INF_MODE_QSGMII:
return CVMX_QLM_MODE_SGMII_QSGMII;
default:
return CVMX_QLM_MODE_SGMII_DISABLED;
}
case CVMX_GMX_INF_MODE_QSGMII:
switch (inf_mode1.s.mode) {
case CVMX_GMX_INF_MODE_SGMII:
return CVMX_QLM_MODE_QSGMII_SGMII;
case CVMX_GMX_INF_MODE_QSGMII:
return CVMX_QLM_MODE_QSGMII_QSGMII;
default:
return CVMX_QLM_MODE_QSGMII_DISABLED;
}
case CVMX_GMX_INF_MODE_RXAUI:
return CVMX_QLM_MODE_RXAUI_1X2;
default:
switch (inf_mode1.s.mode) {
case CVMX_GMX_INF_MODE_SGMII:
return CVMX_QLM_MODE_DISABLED_SGMII;
case CVMX_GMX_INF_MODE_QSGMII:
return CVMX_QLM_MODE_DISABLED_QSGMII;
default:
return CVMX_QLM_MODE_DISABLED;
}
}
}
case 1: /* Sata / pem0 */
{
union cvmx_gserx_sata_cfg sata_cfg;
union cvmx_pemx_cfg pem0_cfg;
sata_cfg.u64 = csr_rd(CVMX_GSERX_SATA_CFG(0));
pem0_cfg.u64 = csr_rd(CVMX_PEMX_CFG(0));
switch (pem0_cfg.cn70xx.md) {
case CVMX_PEM_MD_GEN2_2LANE:
case CVMX_PEM_MD_GEN1_2LANE:
return CVMX_QLM_MODE_PCIE_1X2;
case CVMX_PEM_MD_GEN2_1LANE:
case CVMX_PEM_MD_GEN1_1LANE:
if (sata_cfg.s.sata_en)
/* Both PEM0 and PEM1 */
return CVMX_QLM_MODE_PCIE_2X1;
/* Only PEM0 */
return CVMX_QLM_MODE_PCIE_1X1;
case CVMX_PEM_MD_GEN2_4LANE:
case CVMX_PEM_MD_GEN1_4LANE:
return CVMX_QLM_MODE_PCIE;
default:
return CVMX_QLM_MODE_DISABLED;
}
}
case 2: {
union cvmx_gserx_sata_cfg sata_cfg;
union cvmx_pemx_cfg pem0_cfg, pem1_cfg, pem2_cfg;
sata_cfg.u64 = csr_rd(CVMX_GSERX_SATA_CFG(0));
pem0_cfg.u64 = csr_rd(CVMX_PEMX_CFG(0));
pem1_cfg.u64 = csr_rd(CVMX_PEMX_CFG(1));
pem2_cfg.u64 = csr_rd(CVMX_PEMX_CFG(2));
if (sata_cfg.s.sata_en)
return CVMX_QLM_MODE_SATA_2X1;
if (pem0_cfg.cn70xx.md == CVMX_PEM_MD_GEN2_4LANE ||
pem0_cfg.cn70xx.md == CVMX_PEM_MD_GEN1_4LANE)
return CVMX_QLM_MODE_PCIE;
if (pem1_cfg.cn70xx.md == CVMX_PEM_MD_GEN2_2LANE ||
pem1_cfg.cn70xx.md == CVMX_PEM_MD_GEN1_2LANE) {
return CVMX_QLM_MODE_PCIE_1X2;
}
if (pem1_cfg.cn70xx.md == CVMX_PEM_MD_GEN2_1LANE ||
pem1_cfg.cn70xx.md == CVMX_PEM_MD_GEN1_1LANE) {
if (pem2_cfg.cn70xx.md == CVMX_PEM_MD_GEN2_1LANE ||
pem2_cfg.cn70xx.md == CVMX_PEM_MD_GEN1_1LANE) {
return CVMX_QLM_MODE_PCIE_2X1;
} else {
return CVMX_QLM_MODE_PCIE_1X1;
}
}
if (pem2_cfg.cn70xx.md == CVMX_PEM_MD_GEN2_1LANE ||
pem2_cfg.cn70xx.md == CVMX_PEM_MD_GEN1_1LANE)
return CVMX_QLM_MODE_PCIE_2X1;
return CVMX_QLM_MODE_DISABLED;
}
default:
return CVMX_QLM_MODE_DISABLED;
}
return CVMX_QLM_MODE_DISABLED;
}
/*
* Get the DLM mode for the interface based on the interface type.
*
* @param interface_type 0 - SGMII/QSGMII/RXAUI interface
* 1 - PCIe
* 2 - SATA
* @param interface interface to use
* @return the qlm mode the interface is
*/
enum cvmx_qlm_mode cvmx_qlm_get_dlm_mode(int interface_type, int interface)
{
switch (interface_type) {
case 0: /* SGMII/QSGMII/RXAUI */
{
enum cvmx_qlm_mode qlm_mode = __cvmx_qlm_get_mode_cn70xx(0);
switch (interface) {
case 0:
switch (qlm_mode) {
case CVMX_QLM_MODE_SGMII_SGMII:
case CVMX_QLM_MODE_SGMII_DISABLED:
case CVMX_QLM_MODE_SGMII_QSGMII:
return CVMX_QLM_MODE_SGMII;
case CVMX_QLM_MODE_QSGMII_QSGMII:
case CVMX_QLM_MODE_QSGMII_DISABLED:
case CVMX_QLM_MODE_QSGMII_SGMII:
return CVMX_QLM_MODE_QSGMII;
case CVMX_QLM_MODE_RXAUI_1X2:
return CVMX_QLM_MODE_RXAUI;
default:
return CVMX_QLM_MODE_DISABLED;
}
case 1:
switch (qlm_mode) {
case CVMX_QLM_MODE_SGMII_SGMII:
case CVMX_QLM_MODE_DISABLED_SGMII:
case CVMX_QLM_MODE_QSGMII_SGMII:
return CVMX_QLM_MODE_SGMII;
case CVMX_QLM_MODE_QSGMII_QSGMII:
case CVMX_QLM_MODE_DISABLED_QSGMII:
case CVMX_QLM_MODE_SGMII_QSGMII:
return CVMX_QLM_MODE_QSGMII;
default:
return CVMX_QLM_MODE_DISABLED;
}
default:
return qlm_mode;
}
}
case 1: /* PCIe */
{
enum cvmx_qlm_mode qlm_mode1 = __cvmx_qlm_get_mode_cn70xx(1);
enum cvmx_qlm_mode qlm_mode2 = __cvmx_qlm_get_mode_cn70xx(2);
switch (interface) {
case 0: /* PCIe0 can be DLM1 with 1, 2 or 4 lanes */
return qlm_mode1;
case 1:
/*
* PCIe1 can be in DLM1 1 lane(1), DLM2 1 lane(0)
* or 2 lanes(0-1)
*/
if (qlm_mode1 == CVMX_QLM_MODE_PCIE_2X1)
return CVMX_QLM_MODE_PCIE_2X1;
else if (qlm_mode2 == CVMX_QLM_MODE_PCIE_1X2 ||
qlm_mode2 == CVMX_QLM_MODE_PCIE_2X1)
return qlm_mode2;
else
return CVMX_QLM_MODE_DISABLED;
case 2: /* PCIe2 can be DLM2 1 lanes(1) */
if (qlm_mode2 == CVMX_QLM_MODE_PCIE_2X1)
return qlm_mode2;
else
return CVMX_QLM_MODE_DISABLED;
default:
return CVMX_QLM_MODE_DISABLED;
}
}
case 2: /* SATA */
{
enum cvmx_qlm_mode qlm_mode = __cvmx_qlm_get_mode_cn70xx(2);
if (qlm_mode == CVMX_QLM_MODE_SATA_2X1)
return CVMX_QLM_MODE_SATA_2X1;
else
return CVMX_QLM_MODE_DISABLED;
}
default:
return CVMX_QLM_MODE_DISABLED;
}
}
static enum cvmx_qlm_mode __cvmx_qlm_get_mode_cn6xxx(int qlm)
{
cvmx_mio_qlmx_cfg_t qlmx_cfg;
if (OCTEON_IS_MODEL(OCTEON_CN68XX)) {
qlmx_cfg.u64 = csr_rd(CVMX_MIO_QLMX_CFG(qlm));
/* QLM is disabled when QLM SPD is 15. */
if (qlmx_cfg.s.qlm_spd == 15)
return CVMX_QLM_MODE_DISABLED;
switch (qlmx_cfg.s.qlm_cfg) {
case 0: /* PCIE */
return CVMX_QLM_MODE_PCIE;
case 1: /* ILK */
return CVMX_QLM_MODE_ILK;
case 2: /* SGMII */
return CVMX_QLM_MODE_SGMII;
case 3: /* XAUI */
return CVMX_QLM_MODE_XAUI;
case 7: /* RXAUI */
return CVMX_QLM_MODE_RXAUI;
default:
return CVMX_QLM_MODE_DISABLED;
}
} else if (OCTEON_IS_MODEL(OCTEON_CN66XX)) {
qlmx_cfg.u64 = csr_rd(CVMX_MIO_QLMX_CFG(qlm));
/* QLM is disabled when QLM SPD is 15. */
if (qlmx_cfg.s.qlm_spd == 15)
return CVMX_QLM_MODE_DISABLED;
switch (qlmx_cfg.s.qlm_cfg) {
case 0x9: /* SGMII */
return CVMX_QLM_MODE_SGMII;
case 0xb: /* XAUI */
return CVMX_QLM_MODE_XAUI;
case 0x0: /* PCIE gen2 */
case 0x8: /* PCIE gen2 (alias) */
case 0x2: /* PCIE gen1 */
case 0xa: /* PCIE gen1 (alias) */
return CVMX_QLM_MODE_PCIE;
case 0x1: /* SRIO 1x4 short */
case 0x3: /* SRIO 1x4 long */
return CVMX_QLM_MODE_SRIO_1X4;
case 0x4: /* SRIO 2x2 short */
case 0x6: /* SRIO 2x2 long */
return CVMX_QLM_MODE_SRIO_2X2;
case 0x5: /* SRIO 4x1 short */
case 0x7: /* SRIO 4x1 long */
if (!OCTEON_IS_MODEL(OCTEON_CN66XX_PASS1_0))
return CVMX_QLM_MODE_SRIO_4X1;
fallthrough;
default:
return CVMX_QLM_MODE_DISABLED;
}
} else if (OCTEON_IS_MODEL(OCTEON_CN63XX)) {
cvmx_sriox_status_reg_t status_reg;
/* For now skip qlm2 */
if (qlm == 2) {
cvmx_gmxx_inf_mode_t inf_mode;
inf_mode.u64 = csr_rd(CVMX_GMXX_INF_MODE(0));
if (inf_mode.s.speed == 15)
return CVMX_QLM_MODE_DISABLED;
else if (inf_mode.s.mode == 0)
return CVMX_QLM_MODE_SGMII;
else
return CVMX_QLM_MODE_XAUI;
}
status_reg.u64 = csr_rd(CVMX_SRIOX_STATUS_REG(qlm));
if (status_reg.s.srio)
return CVMX_QLM_MODE_SRIO_1X4;
else
return CVMX_QLM_MODE_PCIE;
} else if (OCTEON_IS_MODEL(OCTEON_CN61XX)) {
qlmx_cfg.u64 = csr_rd(CVMX_MIO_QLMX_CFG(qlm));
/* QLM is disabled when QLM SPD is 15. */
if (qlmx_cfg.s.qlm_spd == 15)
return CVMX_QLM_MODE_DISABLED;
switch (qlm) {
case 0:
switch (qlmx_cfg.s.qlm_cfg) {
case 0: /* PCIe 1x4 gen2 / gen1 */
return CVMX_QLM_MODE_PCIE;
case 2: /* SGMII */
return CVMX_QLM_MODE_SGMII;
case 3: /* XAUI */
return CVMX_QLM_MODE_XAUI;
default:
return CVMX_QLM_MODE_DISABLED;
}
break;
case 1:
switch (qlmx_cfg.s.qlm_cfg) {
case 0: /* PCIe 1x2 gen2 / gen1 */
return CVMX_QLM_MODE_PCIE_1X2;
case 1: /* PCIe 2x1 gen2 / gen1 */
return CVMX_QLM_MODE_PCIE_2X1;
default:
return CVMX_QLM_MODE_DISABLED;
}
break;
case 2:
switch (qlmx_cfg.s.qlm_cfg) {
case 2: /* SGMII */
return CVMX_QLM_MODE_SGMII;
case 3: /* XAUI */
return CVMX_QLM_MODE_XAUI;
default:
return CVMX_QLM_MODE_DISABLED;
}
break;
}
} else if (OCTEON_IS_MODEL(OCTEON_CNF71XX)) {
qlmx_cfg.u64 = csr_rd(CVMX_MIO_QLMX_CFG(qlm));
/* QLM is disabled when QLM SPD is 15. */
if (qlmx_cfg.s.qlm_spd == 15)
return CVMX_QLM_MODE_DISABLED;
switch (qlm) {
case 0:
if (qlmx_cfg.s.qlm_cfg == 2) /* SGMII */
return CVMX_QLM_MODE_SGMII;
break;
case 1:
switch (qlmx_cfg.s.qlm_cfg) {
case 0: /* PCIe 1x2 gen2 / gen1 */
return CVMX_QLM_MODE_PCIE_1X2;
case 1: /* PCIe 2x1 gen2 / gen1 */
return CVMX_QLM_MODE_PCIE_2X1;
default:
return CVMX_QLM_MODE_DISABLED;
}
break;
}
}
return CVMX_QLM_MODE_DISABLED;
}
/**
* @INTERNAL
* Decrement the MPLL Multiplier for the DLM as per Errata G-20669
*
* @param qlm DLM to configure
* @param baud_mhz Speed of the DLM configured at
* @param old_multiplier MPLL_MULTIPLIER value to decrement
*/
void __cvmx_qlm_set_mult(int qlm, int baud_mhz, int old_multiplier)
{
cvmx_gserx_dlmx_mpll_multiplier_t mpll_multiplier;
cvmx_gserx_dlmx_ref_clkdiv2_t clkdiv;
u64 meas_refclock, mult;
if (!OCTEON_IS_MODEL(OCTEON_CN70XX))
return;
if (qlm == -1)
return;
meas_refclock = cvmx_qlm_measure_clock(qlm);
if (meas_refclock == 0) {
printf("DLM%d: Reference clock not running\n", qlm);
return;
}
/*
* The baud rate multiplier needs to be adjusted on the CN70XX if
* the reference clock is > 100MHz.
*/
if (qlm == 0) {
clkdiv.u64 = csr_rd(CVMX_GSERX_DLMX_REF_CLKDIV2(qlm, 0));
if (clkdiv.s.ref_clkdiv2)
baud_mhz *= 2;
}
mult = (uint64_t)baud_mhz * 1000000 + (meas_refclock / 2);
mult /= meas_refclock;
/*
* 6. Decrease MPLL_MULTIPLIER by one continually until it reaches
* the desired long-term setting, ensuring that each MPLL_MULTIPLIER
* value is constant for at least 1 msec before changing to the next
* value. The desired long-term setting is as indicated in HRM tables
* 21-1, 21-2, and 21-3. This is not required with the HRM
* sequence.
*/
do {
mpll_multiplier.u64 = csr_rd(CVMX_GSERX_DLMX_MPLL_MULTIPLIER(qlm, 0));
mpll_multiplier.s.mpll_multiplier = --old_multiplier;
csr_wr(CVMX_GSERX_DLMX_MPLL_MULTIPLIER(qlm, 0), mpll_multiplier.u64);
/* Wait for 1 ms */
udelay(1000);
} while (old_multiplier > (int)mult);
}
enum cvmx_qlm_mode cvmx_qlm_get_mode_cn78xx(int node, int qlm)
{
cvmx_gserx_cfg_t gserx_cfg;
int qlm_mode[2][9] = { { -1, -1, -1, -1, -1, -1, -1, -1 },
{ -1, -1, -1, -1, -1, -1, -1, -1 } };
if (qlm >= 8)
return CVMX_QLM_MODE_OCI;
if (qlm_mode[node][qlm] != -1)
return qlm_mode[node][qlm];
gserx_cfg.u64 = csr_rd_node(node, CVMX_GSERX_CFG(qlm));
if (gserx_cfg.s.pcie) {
switch (qlm) {
case 0: /* Either PEM0 x4 or PEM0 x8 */
case 1: /* Either PEM0 x8 or PEM1 x4 */
{
cvmx_pemx_cfg_t pemx_cfg;
pemx_cfg.u64 = csr_rd_node(node, CVMX_PEMX_CFG(0));
if (pemx_cfg.cn78xx.lanes8) {
/* PEM0 x8 */
qlm_mode[node][qlm] = CVMX_QLM_MODE_PCIE_1X8;
} else {
/* PEM0 x4 */
qlm_mode[node][qlm] = CVMX_QLM_MODE_PCIE;
}
break;
}
case 2: /* Either PEM2 x4 or PEM2 x8 */
{
cvmx_pemx_cfg_t pemx_cfg;
pemx_cfg.u64 = csr_rd_node(node, CVMX_PEMX_CFG(2));
if (pemx_cfg.cn78xx.lanes8) {
/* PEM2 x8 */
qlm_mode[node][qlm] = CVMX_QLM_MODE_PCIE_1X8;
} else {
/* PEM2 x4 */
qlm_mode[node][qlm] = CVMX_QLM_MODE_PCIE;
}
break;
}
case 3: /* Either PEM2 x8 or PEM3 x4 or PEM3 x8 */
{
cvmx_pemx_cfg_t pemx_cfg;
pemx_cfg.u64 = csr_rd_node(node, CVMX_PEMX_CFG(2));
if (pemx_cfg.cn78xx.lanes8) {
/* PEM2 x8 */
qlm_mode[node][qlm] = CVMX_QLM_MODE_PCIE_1X8;
}
/* Can be first 4 lanes of PEM3 */
pemx_cfg.u64 = csr_rd_node(node, CVMX_PEMX_CFG(3));
if (pemx_cfg.cn78xx.lanes8) {
/* PEM3 x8 */
qlm_mode[node][qlm] = CVMX_QLM_MODE_PCIE_1X8;
} else {
/* PEM2 x4 */
qlm_mode[node][qlm] = CVMX_QLM_MODE_PCIE;
}
break;
}
case 4: /* Either PEM3 x8 or PEM3 x4 */
{
cvmx_pemx_cfg_t pemx_cfg;
pemx_cfg.u64 = csr_rd_node(node, CVMX_PEMX_CFG(3));
if (pemx_cfg.cn78xx.lanes8) {
/* PEM3 x8 */
qlm_mode[node][qlm] = CVMX_QLM_MODE_PCIE_1X8;
} else {
/* PEM3 x4 */
qlm_mode[node][qlm] = CVMX_QLM_MODE_PCIE;
}
break;
}
default:
qlm_mode[node][qlm] = CVMX_QLM_MODE_DISABLED;
break;
}
} else if (gserx_cfg.s.ila) {
qlm_mode[node][qlm] = CVMX_QLM_MODE_ILK;
} else if (gserx_cfg.s.bgx) {
cvmx_bgxx_cmrx_config_t cmr_config;
cvmx_bgxx_spux_br_pmd_control_t pmd_control;
int bgx = (qlm < 2) ? qlm : qlm - 2;
cmr_config.u64 = csr_rd_node(node, CVMX_BGXX_CMRX_CONFIG(0, bgx));
pmd_control.u64 = csr_rd_node(node, CVMX_BGXX_SPUX_BR_PMD_CONTROL(0, bgx));
switch (cmr_config.s.lmac_type) {
case 0:
qlm_mode[node][qlm] = CVMX_QLM_MODE_SGMII;
break;
case 1:
qlm_mode[node][qlm] = CVMX_QLM_MODE_XAUI;
break;
case 2:
qlm_mode[node][qlm] = CVMX_QLM_MODE_RXAUI;
break;
case 3:
/*
* Use training to determine if we're in 10GBASE-KR
* or XFI
*/
if (pmd_control.s.train_en)
qlm_mode[node][qlm] = CVMX_QLM_MODE_10G_KR;
else
qlm_mode[node][qlm] = CVMX_QLM_MODE_XFI;
break;
case 4:
/*
* Use training to determine if we're in 40GBASE-KR
* or XLAUI
*/
if (pmd_control.s.train_en)
qlm_mode[node][qlm] = CVMX_QLM_MODE_40G_KR4;
else
qlm_mode[node][qlm] = CVMX_QLM_MODE_XLAUI;
break;
default:
qlm_mode[node][qlm] = CVMX_QLM_MODE_DISABLED;
break;
}
} else {
qlm_mode[node][qlm] = CVMX_QLM_MODE_DISABLED;
}
return qlm_mode[node][qlm];
}
enum cvmx_qlm_mode __cvmx_qlm_get_mode_cn73xx(int qlm)
{
cvmx_gserx_cfg_t gserx_cfg;
int qlm_mode[7] = { -1, -1, -1, -1, -1, -1, -1 };
if (qlm_mode[qlm] != -1)
return qlm_mode[qlm];
if (qlm > 6) {
debug("Invalid QLM(%d) passed\n", qlm);
return -1;
}
gserx_cfg.u64 = csr_rd(CVMX_GSERX_CFG(qlm));
if (gserx_cfg.s.pcie) {
cvmx_pemx_cfg_t pemx_cfg;
switch (qlm) {
case 0: /* Either PEM0 x4 or PEM0 x8 */
case 1: /* Either PEM0 x8 or PEM1 x4 */
{
pemx_cfg.u64 = csr_rd(CVMX_PEMX_CFG(0));
if (pemx_cfg.cn78xx.lanes8) {
/* PEM0 x8 */
qlm_mode[qlm] = CVMX_QLM_MODE_PCIE_1X8;
} else {
/* PEM0/PEM1 x4 */
qlm_mode[qlm] = CVMX_QLM_MODE_PCIE;
}
break;
}
case 2: /* Either PEM2 x4 or PEM2 x8 */
{
pemx_cfg.u64 = csr_rd(CVMX_PEMX_CFG(2));
if (pemx_cfg.cn78xx.lanes8) {
/* PEM2 x8 */
qlm_mode[qlm] = CVMX_QLM_MODE_PCIE_1X8;
} else {
/* PEM2 x4 */
qlm_mode[qlm] = CVMX_QLM_MODE_PCIE;
}
break;
}
case 5:
case 6: /* PEM3 x2 */
qlm_mode[qlm] = CVMX_QLM_MODE_PCIE_1X2; /* PEM3 x2 */
break;
case 3: /* Either PEM2 x8 or PEM3 x4 */
{
pemx_cfg.u64 = csr_rd(CVMX_PEMX_CFG(2));
if (pemx_cfg.cn78xx.lanes8) {
/* PEM2 x8 */
qlm_mode[qlm] = CVMX_QLM_MODE_PCIE_1X8;
} else {
/* PEM3 x4 */
qlm_mode[qlm] = CVMX_QLM_MODE_PCIE;
}
break;
}
default:
qlm_mode[qlm] = CVMX_QLM_MODE_DISABLED;
break;
}
} else if (gserx_cfg.s.bgx) {
cvmx_bgxx_cmrx_config_t cmr_config;
cvmx_bgxx_cmr_rx_lmacs_t bgx_cmr_rx_lmacs;
cvmx_bgxx_spux_br_pmd_control_t pmd_control;
int bgx = 0;
int start = 0, end = 4, index;
int lane_mask = 0, train_mask = 0;
int mux = 0; // 0:BGX2 (DLM5/DLM6), 1:BGX2(DLM5), 2:BGX2(DLM6)
if (qlm < 4) {
bgx = qlm - 2;
} else if (qlm == 5 || qlm == 6) {
bgx = 2;
mux = cvmx_qlm_mux_interface(bgx);
if (mux == 0) {
start = 0;
end = 4;
} else if (mux == 1) {
start = 0;
end = 2;
} else if (mux == 2) {
start = 2;
end = 4;
} else {
qlm_mode[qlm] = CVMX_QLM_MODE_DISABLED;
return qlm_mode[qlm];
}
}
for (index = start; index < end; index++) {
cmr_config.u64 = csr_rd(CVMX_BGXX_CMRX_CONFIG(index, bgx));
pmd_control.u64 = csr_rd(CVMX_BGXX_SPUX_BR_PMD_CONTROL(index, bgx));
lane_mask |= (cmr_config.s.lmac_type << (index * 4));
train_mask |= (pmd_control.s.train_en << (index * 4));
}
/* Need to include DLM5 lmacs when only DLM6 DLM is used */
if (mux == 2)
bgx_cmr_rx_lmacs.u64 = csr_rd(CVMX_BGXX_CMR_RX_LMACS(2));
switch (lane_mask) {
case 0:
if (mux == 1) {
qlm_mode[qlm] = CVMX_QLM_MODE_SGMII_2X1;
} else if (mux == 2) {
qlm_mode[qlm] = CVMX_QLM_MODE_SGMII_2X1;
bgx_cmr_rx_lmacs.s.lmacs = 4;
}
qlm_mode[qlm] = CVMX_QLM_MODE_SGMII;
break;
case 0x1:
qlm_mode[qlm] = CVMX_QLM_MODE_XAUI;
break;
case 0x2:
if (mux == 1) {
// NONE+RXAUI
qlm_mode[qlm] = CVMX_QLM_MODE_RXAUI_1X2;
} else if (mux == 0) {
// RXAUI+SGMII
qlm_mode[qlm] = CVMX_QLM_MODE_MIXED;
} else {
qlm_mode[qlm] = CVMX_QLM_MODE_DISABLED;
}
break;
case 0x202:
if (mux == 2) {
// RXAUI+RXAUI
qlm_mode[qlm] = CVMX_QLM_MODE_RXAUI_1X2;
bgx_cmr_rx_lmacs.s.lmacs = 4;
} else if (mux == 1) {
// RXAUI+RXAUI
qlm_mode[qlm] = CVMX_QLM_MODE_RXAUI_1X2;
} else if (mux == 0) {
qlm_mode[qlm] = CVMX_QLM_MODE_RXAUI;
} else {
qlm_mode[qlm] = CVMX_QLM_MODE_DISABLED;
}
break;
case 0x22:
qlm_mode[qlm] = CVMX_QLM_MODE_RXAUI;
break;
case 0x3333:
/*
* Use training to determine if we're in 10GBASE-KR
* or XFI
*/
if (train_mask)
qlm_mode[qlm] = CVMX_QLM_MODE_10G_KR;
else
qlm_mode[qlm] = CVMX_QLM_MODE_XFI;
break;
case 0x4:
/*
* Use training to determine if we're in 40GBASE-KR
* or XLAUI
*/
if (train_mask)
qlm_mode[qlm] = CVMX_QLM_MODE_40G_KR4;
else
qlm_mode[qlm] = CVMX_QLM_MODE_XLAUI;
break;
case 0x0005:
qlm_mode[qlm] = CVMX_QLM_MODE_RGMII_SGMII;
break;
case 0x3335:
if (train_mask)
qlm_mode[qlm] = CVMX_QLM_MODE_RGMII_10G_KR;
else
qlm_mode[qlm] = CVMX_QLM_MODE_RGMII_XFI;
break;
case 0x45:
if (train_mask)
qlm_mode[qlm] = CVMX_QLM_MODE_RGMII_40G_KR4;
else
qlm_mode[qlm] = CVMX_QLM_MODE_RGMII_XLAUI;
break;
case 0x225:
qlm_mode[qlm] = CVMX_QLM_MODE_RGMII_RXAUI;
break;
case 0x15:
qlm_mode[qlm] = CVMX_QLM_MODE_RGMII_XAUI;
break;
case 0x200:
if (mux == 2) {
qlm_mode[qlm] = CVMX_QLM_MODE_RXAUI_1X2;
bgx_cmr_rx_lmacs.s.lmacs = 4;
} else
case 0x205:
case 0x233:
case 0x3302:
case 0x3305:
if (mux == 0)
qlm_mode[qlm] = CVMX_QLM_MODE_MIXED;
else
qlm_mode[qlm] = CVMX_QLM_MODE_DISABLED;
break;
case 0x3300:
if (mux == 0) {
qlm_mode[qlm] = CVMX_QLM_MODE_MIXED;
} else if (mux == 2) {
if (train_mask)
qlm_mode[qlm] = CVMX_QLM_MODE_10G_KR_1X2;
else
qlm_mode[qlm] = CVMX_QLM_MODE_XFI_1X2;
bgx_cmr_rx_lmacs.s.lmacs = 4;
} else {
qlm_mode[qlm] = CVMX_QLM_MODE_DISABLED;
}
break;
case 0x33:
if (mux == 1 || mux == 2) {
if (train_mask)
qlm_mode[qlm] = CVMX_QLM_MODE_10G_KR_1X2;
else
qlm_mode[qlm] = CVMX_QLM_MODE_XFI_1X2;
if (mux == 2)
bgx_cmr_rx_lmacs.s.lmacs = 4;
} else {
qlm_mode[qlm] = CVMX_QLM_MODE_DISABLED;
}
break;
case 0x0035:
if (mux == 0)
qlm_mode[qlm] = CVMX_QLM_MODE_MIXED;
else if (train_mask)
qlm_mode[qlm] = CVMX_QLM_MODE_RGMII_10G_KR_1X1;
else
qlm_mode[qlm] = CVMX_QLM_MODE_RGMII_XFI_1X1;
break;
case 0x235:
if (mux == 0)
qlm_mode[qlm] = CVMX_QLM_MODE_MIXED;
else
qlm_mode[qlm] = CVMX_QLM_MODE_DISABLED;
break;
default:
qlm_mode[qlm] = CVMX_QLM_MODE_DISABLED;
break;
}
if (mux == 2) {
csr_wr(CVMX_BGXX_CMR_RX_LMACS(2), bgx_cmr_rx_lmacs.u64);
csr_wr(CVMX_BGXX_CMR_TX_LMACS(2), bgx_cmr_rx_lmacs.u64);
}
} else if (gserx_cfg.s.sata) {
qlm_mode[qlm] = CVMX_QLM_MODE_SATA_2X1;
} else {
qlm_mode[qlm] = CVMX_QLM_MODE_DISABLED;
}
return qlm_mode[qlm];
}
enum cvmx_qlm_mode __cvmx_qlm_get_mode_cnf75xx(int qlm)
{
cvmx_gserx_cfg_t gserx_cfg;
int qlm_mode[9] = { -1, -1, -1, -1, -1, -1, -1 };
if (qlm_mode[qlm] != -1)
return qlm_mode[qlm];
if (qlm > 9) {
debug("Invalid QLM(%d) passed\n", qlm);
return -1;
}
if ((qlm == 2 || qlm == 3) && (OCTEON_IS_MODEL(OCTEON_CNF75XX))) {
cvmx_sriox_status_reg_t status_reg;
int port = (qlm == 2) ? 0 : 1;
status_reg.u64 = csr_rd(CVMX_SRIOX_STATUS_REG(port));
/* FIXME add different width */
if (status_reg.s.srio)
qlm_mode[qlm] = CVMX_QLM_MODE_SRIO_1X4;
else
qlm_mode[qlm] = CVMX_QLM_MODE_DISABLED;
return qlm_mode[qlm];
}
gserx_cfg.u64 = csr_rd(CVMX_GSERX_CFG(qlm));
if (gserx_cfg.s.pcie) {
switch (qlm) {
case 0: /* Either PEM0 x2 or PEM0 x4 */
case 1: /* Either PEM1 x2 or PEM0 x4 */
{
/* FIXME later */
qlm_mode[qlm] = CVMX_QLM_MODE_PCIE;
break;
}
default:
qlm_mode[qlm] = CVMX_QLM_MODE_DISABLED;
break;
}
} else if (gserx_cfg.s.bgx) {
cvmx_bgxx_cmrx_config_t cmr_config;
cvmx_bgxx_spux_br_pmd_control_t pmd_control;
int bgx = 0;
int start = 0, end = 4, index;
int lane_mask = 0, train_mask = 0;
int mux = 0; // 0:BGX0 (DLM4/DLM5), 1:BGX0(DLM4), 2:BGX0(DLM5)
cvmx_gserx_cfg_t gser1, gser2;
gser1.u64 = csr_rd(CVMX_GSERX_CFG(4));
gser2.u64 = csr_rd(CVMX_GSERX_CFG(5));
if (gser1.s.bgx && gser2.s.bgx) {
start = 0;
end = 4;
} else if (gser1.s.bgx) {
start = 0;
end = 2;
mux = 1;
} else if (gser2.s.bgx) {
start = 2;
end = 4;
mux = 2;
} else {
qlm_mode[qlm] = CVMX_QLM_MODE_DISABLED;
return qlm_mode[qlm];
}
for (index = start; index < end; index++) {
cmr_config.u64 = csr_rd(CVMX_BGXX_CMRX_CONFIG(index, bgx));
pmd_control.u64 = csr_rd(CVMX_BGXX_SPUX_BR_PMD_CONTROL(index, bgx));
lane_mask |= (cmr_config.s.lmac_type << (index * 4));
train_mask |= (pmd_control.s.train_en << (index * 4));
}
switch (lane_mask) {
case 0:
if (mux == 1 || mux == 2)
qlm_mode[qlm] = CVMX_QLM_MODE_SGMII_2X1;
else
qlm_mode[qlm] = CVMX_QLM_MODE_SGMII;
break;
case 0x3300:
if (mux == 0)
qlm_mode[qlm] = CVMX_QLM_MODE_MIXED;
else if (mux == 2)
if (train_mask)
qlm_mode[qlm] = CVMX_QLM_MODE_10G_KR_1X2;
else
qlm_mode[qlm] = CVMX_QLM_MODE_XFI_1X2;
else
qlm_mode[qlm] = CVMX_QLM_MODE_DISABLED;
break;
default:
qlm_mode[qlm] = CVMX_QLM_MODE_DISABLED;
break;
}
} else {
qlm_mode[qlm] = CVMX_QLM_MODE_DISABLED;
}
return qlm_mode[qlm];
}
/*
* Read QLM and return mode.
*/
enum cvmx_qlm_mode cvmx_qlm_get_mode(int qlm)
{
if (OCTEON_IS_OCTEON2())
return __cvmx_qlm_get_mode_cn6xxx(qlm);
else if (OCTEON_IS_MODEL(OCTEON_CN70XX))
return __cvmx_qlm_get_mode_cn70xx(qlm);
else if (OCTEON_IS_MODEL(OCTEON_CN78XX))
return cvmx_qlm_get_mode_cn78xx(cvmx_get_node_num(), qlm);
else if (OCTEON_IS_MODEL(OCTEON_CN73XX))
return __cvmx_qlm_get_mode_cn73xx(qlm);
else if (OCTEON_IS_MODEL(OCTEON_CNF75XX))
return __cvmx_qlm_get_mode_cnf75xx(qlm);
return CVMX_QLM_MODE_DISABLED;
}
int cvmx_qlm_measure_clock_cn7xxx(int node, int qlm)
{
cvmx_gserx_cfg_t cfg;
cvmx_gserx_refclk_sel_t refclk_sel;
cvmx_gserx_lane_mode_t lane_mode;
if (OCTEON_IS_MODEL(OCTEON_CN73XX)) {
if (node != 0 || qlm >= 7)
return -1;
} else if (OCTEON_IS_MODEL(OCTEON_CN78XX)) {
if (qlm >= 8 || node > 1)
return -1; /* FIXME for OCI */
} else {
debug("%s: Unsupported OCTEON model\n", __func__);
return -1;
}
cfg.u64 = csr_rd_node(node, CVMX_GSERX_CFG(qlm));
if (cfg.s.pcie) {
refclk_sel.u64 = csr_rd_node(node, CVMX_GSERX_REFCLK_SEL(qlm));
if (refclk_sel.s.pcie_refclk125)
return REF_125MHZ; /* Ref 125 Mhz */
else
return REF_100MHZ; /* Ref 100Mhz */
}
lane_mode.u64 = csr_rd_node(node, CVMX_GSERX_LANE_MODE(qlm));
switch (lane_mode.s.lmode) {
case R_25G_REFCLK100:
return REF_100MHZ;
case R_5G_REFCLK100:
return REF_100MHZ;
case R_8G_REFCLK100:
return REF_100MHZ;
case R_125G_REFCLK15625_KX:
return REF_156MHZ;
case R_3125G_REFCLK15625_XAUI:
return REF_156MHZ;
case R_103125G_REFCLK15625_KR:
return REF_156MHZ;
case R_125G_REFCLK15625_SGMII:
return REF_156MHZ;
case R_5G_REFCLK15625_QSGMII:
return REF_156MHZ;
case R_625G_REFCLK15625_RXAUI:
return REF_156MHZ;
case R_25G_REFCLK125:
return REF_125MHZ;
case R_5G_REFCLK125:
return REF_125MHZ;
case R_8G_REFCLK125:
return REF_125MHZ;
default:
return 0;
}
}
/**
* Measure the reference clock of a QLM on a multi-node setup
*
* @param node node to measure
* @param qlm QLM to measure
*
* @return Clock rate in Hz
*/
int cvmx_qlm_measure_clock_node(int node, int qlm)
{
if (octeon_has_feature(OCTEON_FEATURE_MULTINODE))
return cvmx_qlm_measure_clock_cn7xxx(node, qlm);
else
return cvmx_qlm_measure_clock(qlm);
}
/**
* Measure the reference clock of a QLM
*
* @param qlm QLM to measure
*
* @return Clock rate in Hz
*/
int cvmx_qlm_measure_clock(int qlm)
{
cvmx_mio_ptp_clock_cfg_t ptp_clock;
u64 count;
u64 start_cycle, stop_cycle;
int evcnt_offset = 0x10;
int incr_count = 1;
int ref_clock[16] = { 0 };
if (ref_clock[qlm])
return ref_clock[qlm];
if (OCTEON_IS_OCTEON3() && !OCTEON_IS_MODEL(OCTEON_CN70XX))
return cvmx_qlm_measure_clock_cn7xxx(cvmx_get_node_num(), qlm);
if (OCTEON_IS_MODEL(OCTEON_CN70XX) && qlm == 0) {
cvmx_gserx_dlmx_ref_clkdiv2_t ref_clkdiv2;
ref_clkdiv2.u64 = csr_rd(CVMX_GSERX_DLMX_REF_CLKDIV2(qlm, 0));
if (ref_clkdiv2.s.ref_clkdiv2)
incr_count = 2;
}
/* Fix reference clock for OCI QLMs */
/* Disable the PTP event counter while we configure it */
ptp_clock.u64 = csr_rd(CVMX_MIO_PTP_CLOCK_CFG); /* For CN63XXp1 errata */
ptp_clock.s.evcnt_en = 0;
csr_wr(CVMX_MIO_PTP_CLOCK_CFG, ptp_clock.u64);
/* Count on rising edge, Choose which QLM to count */
ptp_clock.u64 = csr_rd(CVMX_MIO_PTP_CLOCK_CFG); /* For CN63XXp1 errata */
ptp_clock.s.evcnt_edge = 0;
ptp_clock.s.evcnt_in = evcnt_offset + qlm;
csr_wr(CVMX_MIO_PTP_CLOCK_CFG, ptp_clock.u64);
/* Clear MIO_PTP_EVT_CNT */
csr_rd(CVMX_MIO_PTP_EVT_CNT); /* For CN63XXp1 errata */
count = csr_rd(CVMX_MIO_PTP_EVT_CNT);
csr_wr(CVMX_MIO_PTP_EVT_CNT, -count);
/* Set MIO_PTP_EVT_CNT to 1 billion */
csr_wr(CVMX_MIO_PTP_EVT_CNT, 1000000000);
/* Enable the PTP event counter */
ptp_clock.u64 = csr_rd(CVMX_MIO_PTP_CLOCK_CFG); /* For CN63XXp1 errata */
ptp_clock.s.evcnt_en = 1;
csr_wr(CVMX_MIO_PTP_CLOCK_CFG, ptp_clock.u64);
start_cycle = get_ticks();
/* Wait for 50ms */
mdelay(50);
/* Read the counter */
csr_rd(CVMX_MIO_PTP_EVT_CNT); /* For CN63XXp1 errata */
count = csr_rd(CVMX_MIO_PTP_EVT_CNT);
stop_cycle = get_ticks();
/* Disable the PTP event counter */
ptp_clock.u64 = csr_rd(CVMX_MIO_PTP_CLOCK_CFG); /* For CN63XXp1 errata */
ptp_clock.s.evcnt_en = 0;
csr_wr(CVMX_MIO_PTP_CLOCK_CFG, ptp_clock.u64);
/* Clock counted down, so reverse it */
count = 1000000000 - count;
count *= incr_count;
/* Return the rate */
ref_clock[qlm] = count * gd->cpu_clk / (stop_cycle - start_cycle);
return ref_clock[qlm];
}
/*
* Perform RX equalization on a QLM
*
* @param node Node the QLM is on
* @param qlm QLM to perform RX equalization on
* @param lane Lane to use, or -1 for all lanes
*
* @return Zero on success, negative if any lane failed RX equalization
*/
int __cvmx_qlm_rx_equalization(int node, int qlm, int lane)
{
cvmx_gserx_phy_ctl_t phy_ctl;
cvmx_gserx_br_rxx_ctl_t rxx_ctl;
cvmx_gserx_br_rxx_eer_t rxx_eer;
cvmx_gserx_rx_eie_detsts_t eie_detsts;
int fail, gbaud, l, lane_mask;
enum cvmx_qlm_mode mode;
int max_lanes = cvmx_qlm_get_lanes(qlm);
cvmx_gserx_lane_mode_t lmode;
cvmx_gserx_lane_px_mode_1_t pmode_1;
int pending = 0;
u64 timeout;
/* Don't touch QLMs if it is reset or powered down */
phy_ctl.u64 = csr_rd_node(node, CVMX_GSERX_PHY_CTL(qlm));
if (phy_ctl.s.phy_pd || phy_ctl.s.phy_reset)
return -1;
/*
* Check whether GSER PRBS pattern matcher is enabled on any of the
* applicable lanes. Can't complete RX Equalization while pattern
* matcher is enabled because it causes errors
*/
for (l = 0; l < max_lanes; l++) {
cvmx_gserx_lanex_lbert_cfg_t lbert_cfg;
if (lane != -1 && lane != l)
continue;
lbert_cfg.u64 = csr_rd_node(node, CVMX_GSERX_LANEX_LBERT_CFG(l, qlm));
if (lbert_cfg.s.lbert_pm_en == 1)
return -1;
}
/* Get Lane Mode */
lmode.u64 = csr_rd_node(node, CVMX_GSERX_LANE_MODE(qlm));
/*
* Check to see if in VMA manual mode is set. If in VMA manual mode
* don't complete rx equalization
*/
pmode_1.u64 = csr_rd_node(node, CVMX_GSERX_LANE_PX_MODE_1(lmode.s.lmode, qlm));
if (pmode_1.s.vma_mm == 1) {
#ifdef DEBUG_QLM
debug("N%d:QLM%d: VMA Manual (manual DFE) selected. Not completing Rx equalization\n",
node, qlm);
#endif
return 0;
}
if (OCTEON_IS_MODEL(OCTEON_CN78XX)) {
gbaud = cvmx_qlm_get_gbaud_mhz_node(node, qlm);
mode = cvmx_qlm_get_mode_cn78xx(node, qlm);
} else {
gbaud = cvmx_qlm_get_gbaud_mhz(qlm);
mode = cvmx_qlm_get_mode(qlm);
}
/* Apply RX Equalization for speed >= 8G */
if (qlm < 8) {
if (gbaud < 6250)
return 0;
}
/* Don't run on PCIe Links */
if (mode == CVMX_QLM_MODE_PCIE || mode == CVMX_QLM_MODE_PCIE_1X8 ||
mode == CVMX_QLM_MODE_PCIE_1X2 || mode == CVMX_QLM_MODE_PCIE_2X1)
return -1;
fail = 0;
/*
* Before completing Rx equalization wait for
* GSERx_RX_EIE_DETSTS[CDRLOCK] to be set.
* This ensures the rx data is valid
*/
if (lane == -1) {
/*
* check all 4 Lanes (cdrlock = 1111/b) for CDR Lock with
* lane == -1
*/
if (CVMX_WAIT_FOR_FIELD64_NODE(node, CVMX_GSERX_RX_EIE_DETSTS(qlm),
cvmx_gserx_rx_eie_detsts_t, cdrlock, ==,
(1 << max_lanes) - 1, 500)) {
#ifdef DEBUG_QLM
eie_detsts.u64 = csr_rd_node(node, CVMX_GSERX_RX_EIE_DETSTS(qlm));
debug("ERROR: %d:QLM%d: CDR Lock not detected for all 4 lanes. CDR_LOCK(0x%x)\n",
node, qlm, eie_detsts.s.cdrlock);
#endif
return -1;
}
} else {
if (CVMX_WAIT_FOR_FIELD64_NODE(node, CVMX_GSERX_RX_EIE_DETSTS(qlm),
cvmx_gserx_rx_eie_detsts_t, cdrlock, &, (1 << lane),
500)) {
#ifdef DEBUG_QLM
eie_detsts.u64 = csr_rd_node(node, CVMX_GSERX_RX_EIE_DETSTS(qlm));
debug("ERROR: %d:QLM%d: CDR Lock not detected for Lane%d CDR_LOCK(0x%x)\n",
node, qlm, lane, eie_detsts.s.cdrlock);
#endif
return -1;
}
}
/*
* Errata (GSER-20075) GSER(0..13)_BR_RX3_EER[RXT_ERR] is
* GSER(0..13)_BR_RX2_EER[RXT_ERR]. Since lanes 2-3 trigger at the
* same time, we need to setup lane 3 before we loop through the lanes
*/
if (OCTEON_IS_MODEL(OCTEON_CN78XX_PASS1_X) && (lane == -1 || lane == 3)) {
/* Enable software control */
rxx_ctl.u64 = csr_rd_node(node, CVMX_GSERX_BR_RXX_CTL(3, qlm));
rxx_ctl.s.rxt_swm = 1;
csr_wr_node(node, CVMX_GSERX_BR_RXX_CTL(3, qlm), rxx_ctl.u64);
/* Clear the completion flag */
rxx_eer.u64 = csr_rd_node(node, CVMX_GSERX_BR_RXX_EER(3, qlm));
rxx_eer.s.rxt_esv = 0;
csr_wr_node(node, CVMX_GSERX_BR_RXX_EER(3, qlm), rxx_eer.u64);
/* Initiate a new request on lane 2 */
if (lane == 3) {
rxx_eer.u64 = csr_rd_node(node, CVMX_GSERX_BR_RXX_EER(2, qlm));
rxx_eer.s.rxt_eer = 1;
csr_wr_node(node, CVMX_GSERX_BR_RXX_EER(2, qlm), rxx_eer.u64);
}
}
for (l = 0; l < max_lanes; l++) {
if (lane != -1 && lane != l)
continue;
/*
* Skip lane 3 on 78p1.x due to Errata (GSER-20075).
* Handled above
*/
if (OCTEON_IS_MODEL(OCTEON_CN78XX_PASS1_X) && l == 3) {
/*
* Need to add lane 3 to pending list for 78xx
* pass 1.x
*/
pending |= 1 << 3;
continue;
}
/* Enable software control */
rxx_ctl.u64 = csr_rd_node(node, CVMX_GSERX_BR_RXX_CTL(l, qlm));
rxx_ctl.s.rxt_swm = 1;
csr_wr_node(node, CVMX_GSERX_BR_RXX_CTL(l, qlm), rxx_ctl.u64);
/* Clear the completion flag and initiate a new request */
rxx_eer.u64 = csr_rd_node(node, CVMX_GSERX_BR_RXX_EER(l, qlm));
rxx_eer.s.rxt_esv = 0;
rxx_eer.s.rxt_eer = 1;
csr_wr_node(node, CVMX_GSERX_BR_RXX_EER(l, qlm), rxx_eer.u64);
pending |= 1 << l;
}
/*
* Wait for 250ms, approx 10x times measured value, as XFI/XLAUI
* can take 21-23ms, other interfaces can take 2-3ms.
*/
timeout = get_timer(0);
lane_mask = 0;
while (pending) {
/* Wait for RX equalization to complete */
for (l = 0; l < max_lanes; l++) {
lane_mask = 1 << l;
/* Only check lanes that are pending */
if (!(pending & lane_mask))
continue;
/*
* Read the registers for checking Electrical Idle/CDR
* lock and the status of the RX equalization
*/
eie_detsts.u64 = csr_rd_node(node, CVMX_GSERX_RX_EIE_DETSTS(qlm));
rxx_eer.u64 = csr_rd_node(node, CVMX_GSERX_BR_RXX_EER(l, qlm));
/*
* Mark failure if lane entered Electrical Idle or lost
* CDR Lock. The bit for the lane will have cleared in
* either EIESTS or CDRLOCK
*/
if (!(eie_detsts.s.eiests & eie_detsts.s.cdrlock & lane_mask)) {
fail |= lane_mask;
pending &= ~lane_mask;
} else if (rxx_eer.s.rxt_esv) {
pending &= ~lane_mask;
}
}
/* Breakout of the loop on timeout */
if (get_timer(timeout) > 250)
break;
}
lane_mask = 0;
/* Cleanup and report status */
for (l = 0; l < max_lanes; l++) {
if (lane != -1 && lane != l)
continue;
lane_mask = 1 << l;
rxx_eer.u64 = csr_rd_node(node, CVMX_GSERX_BR_RXX_EER(l, qlm));
/* Switch back to hardware control */
rxx_ctl.u64 = csr_rd_node(node, CVMX_GSERX_BR_RXX_CTL(l, qlm));
rxx_ctl.s.rxt_swm = 0;
csr_wr_node(node, CVMX_GSERX_BR_RXX_CTL(l, qlm), rxx_ctl.u64);
/* Report status */
if (fail & lane_mask) {
#ifdef DEBUG_QLM
debug("%d:QLM%d: Lane%d RX equalization lost CDR Lock or entered Electrical Idle\n",
node, qlm, l);
#endif
} else if ((pending & lane_mask) || !rxx_eer.s.rxt_esv) {
#ifdef DEBUG_QLM
debug("%d:QLM%d: Lane %d RX equalization timeout\n", node, qlm, l);
#endif
fail |= 1 << l;
} else {
#ifdef DEBUG_QLM
char *dir_label[4] = { "Hold", "Inc", "Dec", "Hold" };
#ifdef DEBUG_QLM_RX
cvmx_gserx_lanex_rx_aeq_out_0_t rx_aeq_out_0;
cvmx_gserx_lanex_rx_aeq_out_1_t rx_aeq_out_1;
cvmx_gserx_lanex_rx_aeq_out_2_t rx_aeq_out_2;
cvmx_gserx_lanex_rx_vma_status_0_t rx_vma_status_0;
#endif
debug("%d:QLM%d: Lane%d: RX equalization completed.\n", node, qlm, l);
debug(" Tx Direction Hints TXPRE: %s, TXMAIN: %s, TXPOST: %s, Figure of Merit: %d\n",
dir_label[(rxx_eer.s.rxt_esm) & 0x3],
dir_label[((rxx_eer.s.rxt_esm) >> 2) & 0x3],
dir_label[((rxx_eer.s.rxt_esm) >> 4) & 0x3], rxx_eer.s.rxt_esm >> 6);
#ifdef DEBUG_QLM_RX
rx_aeq_out_0.u64 = csr_rd_node(node, CVMX_GSERX_LANEX_RX_AEQ_OUT_0(l, qlm));
rx_aeq_out_1.u64 = csr_rd_node(node, CVMX_GSERX_LANEX_RX_AEQ_OUT_1(l, qlm));
rx_aeq_out_2.u64 = csr_rd_node(node, CVMX_GSERX_LANEX_RX_AEQ_OUT_2(l, qlm));
rx_vma_status_0.u64 =
csr_rd_node(node, CVMX_GSERX_LANEX_RX_VMA_STATUS_0(l, qlm));
debug(" DFE Tap1:%lu, Tap2:%ld, Tap3:%ld, Tap4:%ld, Tap5:%ld\n",
(unsigned int long)cvmx_bit_extract(rx_aeq_out_1.u64, 0, 5),
(unsigned int long)cvmx_bit_extract_smag(rx_aeq_out_1.u64, 5, 9),
(unsigned int long)cvmx_bit_extract_smag(rx_aeq_out_1.u64, 10, 14),
(unsigned int long)cvmx_bit_extract_smag(rx_aeq_out_0.u64, 0, 4),
(unsigned int long)cvmx_bit_extract_smag(rx_aeq_out_0.u64, 5, 9));
debug(" Pre-CTLE Gain:%lu, Post-CTLE Gain:%lu, CTLE Peak:%lu, CTLE Pole:%lu\n",
(unsigned int long)cvmx_bit_extract(rx_aeq_out_2.u64, 4, 4),
(unsigned int long)cvmx_bit_extract(rx_aeq_out_2.u64, 0, 4),
(unsigned int long)cvmx_bit_extract(rx_vma_status_0.u64, 2, 4),
(unsigned int long)cvmx_bit_extract(rx_vma_status_0.u64, 0, 2));
#endif
#endif
}
}
return (fail) ? -1 : 0;
}
/**
* Errata GSER-27882 -GSER 10GBASE-KR Transmit Equalizer
* Training may not update PHY Tx Taps. This function is not static
* so we can share it with BGX KR
*
* @param node Node to apply errata workaround
* @param qlm QLM to apply errata workaround
* @param lane Lane to apply the errata
*/
int cvmx_qlm_gser_errata_27882(int node, int qlm, int lane)
{
cvmx_gserx_lanex_pcs_ctlifc_0_t clifc0;
cvmx_gserx_lanex_pcs_ctlifc_2_t clifc2;
if (!(OCTEON_IS_MODEL(OCTEON_CN73XX_PASS1_0) || OCTEON_IS_MODEL(OCTEON_CN73XX_PASS1_1) ||
OCTEON_IS_MODEL(OCTEON_CN73XX_PASS1_2) || OCTEON_IS_MODEL(OCTEON_CNF75XX_PASS1_0) ||
OCTEON_IS_MODEL(OCTEON_CN78XX)))
return 0;
if (CVMX_WAIT_FOR_FIELD64_NODE(node, CVMX_GSERX_RX_EIE_DETSTS(qlm),
cvmx_gserx_rx_eie_detsts_t, cdrlock, &,
(1 << lane), 200))
return -1;
clifc0.u64 = csr_rd_node(node, CVMX_GSERX_LANEX_PCS_CTLIFC_0(lane, qlm));
clifc0.s.cfg_tx_coeff_req_ovrrd_val = 1;
csr_wr_node(node, CVMX_GSERX_LANEX_PCS_CTLIFC_0(lane, qlm), clifc0.u64);
clifc2.u64 = csr_rd_node(node, CVMX_GSERX_LANEX_PCS_CTLIFC_2(lane, qlm));
clifc2.s.cfg_tx_coeff_req_ovrrd_en = 1;
csr_wr_node(node, CVMX_GSERX_LANEX_PCS_CTLIFC_2(lane, qlm), clifc2.u64);
clifc2.u64 = csr_rd_node(node, CVMX_GSERX_LANEX_PCS_CTLIFC_2(lane, qlm));
clifc2.s.ctlifc_ovrrd_req = 1;
csr_wr_node(node, CVMX_GSERX_LANEX_PCS_CTLIFC_2(lane, qlm), clifc2.u64);
clifc2.u64 = csr_rd_node(node, CVMX_GSERX_LANEX_PCS_CTLIFC_2(lane, qlm));
clifc2.s.cfg_tx_coeff_req_ovrrd_en = 0;
csr_wr_node(node, CVMX_GSERX_LANEX_PCS_CTLIFC_2(lane, qlm), clifc2.u64);
clifc2.u64 = csr_rd_node(node, CVMX_GSERX_LANEX_PCS_CTLIFC_2(lane, qlm));
clifc2.s.ctlifc_ovrrd_req = 1;
csr_wr_node(node, CVMX_GSERX_LANEX_PCS_CTLIFC_2(lane, qlm), clifc2.u64);
return 0;
}
/**
* Updates the RX EQ Default Settings Update (CTLE Bias) to support longer
* SERDES channels
*
* @INTERNAL
*
* @param node Node number to configure
* @param qlm QLM number to configure
*/
void cvmx_qlm_gser_errata_25992(int node, int qlm)
{
int lane;
int num_lanes = cvmx_qlm_get_lanes(qlm);
if (!(OCTEON_IS_MODEL(OCTEON_CN73XX_PASS1_0) || OCTEON_IS_MODEL(OCTEON_CN73XX_PASS1_1) ||
OCTEON_IS_MODEL(OCTEON_CN73XX_PASS1_2) || OCTEON_IS_MODEL(OCTEON_CN78XX_PASS1_X)))
return;
for (lane = 0; lane < num_lanes; lane++) {
cvmx_gserx_lanex_rx_ctle_ctrl_t rx_ctle_ctrl;
cvmx_gserx_lanex_rx_cfg_4_t rx_cfg_4;
rx_ctle_ctrl.u64 = csr_rd_node(node, CVMX_GSERX_LANEX_RX_CTLE_CTRL(lane, qlm));
rx_ctle_ctrl.s.pcs_sds_rx_ctle_bias_ctrl = 3;
csr_wr_node(node, CVMX_GSERX_LANEX_RX_CTLE_CTRL(lane, qlm), rx_ctle_ctrl.u64);
rx_cfg_4.u64 = csr_rd_node(node, CVMX_GSERX_LANEX_RX_CFG_4(lane, qlm));
rx_cfg_4.s.cfg_rx_errdet_ctrl = 0xcd6f;
csr_wr_node(node, CVMX_GSERX_LANEX_RX_CFG_4(lane, qlm), rx_cfg_4.u64);
}
}
void cvmx_qlm_display_registers(int qlm)
{
int num_lanes = cvmx_qlm_get_lanes(qlm);
int lane;
const __cvmx_qlm_jtag_field_t *ptr = cvmx_qlm_jtag_get_field();
debug("%29s", "Field[<stop bit>:<start bit>]");
for (lane = 0; lane < num_lanes; lane++)
debug("\t Lane %d", lane);
debug("\n");
while (ptr && ptr->name) {
debug("%20s[%3d:%3d]", ptr->name, ptr->stop_bit, ptr->start_bit);
for (lane = 0; lane < num_lanes; lane++) {
u64 val;
int tx_byp = 0;
/*
* Make sure serdes_tx_byp is set for displaying
* TX amplitude and TX demphasis field values.
*/
if (strncmp(ptr->name, "biasdrv_", 8) == 0 ||
strncmp(ptr->name, "tcoeff_", 7) == 0) {
tx_byp = cvmx_qlm_jtag_get(qlm, lane, "serdes_tx_byp");
if (tx_byp == 0) {
debug("\t \t");
continue;
}
}
val = cvmx_qlm_jtag_get(qlm, lane, ptr->name);
debug("\t%4llu (0x%04llx)", (unsigned long long)val,
(unsigned long long)val);
}
debug("\n");
ptr++;
}
}
/* ToDo: CVMX_DUMP_GSER removed for now (unused!) */