u-boot/test/image/spl_load_fs.c
Sean Anderson 6ba8ecaa96 test: spl: Add a test for the MMC load method
Add a test for the MMC load method. This shows the general shape of tests
to come: The main test function calls do_spl_test_load with an appropriate
callback to write the image to the medium.

Signed-off-by: Sean Anderson <seanga2@gmail.com>
Reviewed-by: Simon Glass <sjg@chromium.org>
2023-10-17 20:50:52 -04:00

428 lines
13 KiB
C

// SPDX-License-Identifier: GPL-2.0+
/*
* Copyright (C) 2023 Sean Anderson <seanga2@gmail.com>
*/
#include <common.h>
#include <blk.h>
#include <ext_common.h>
#include <ext4fs.h>
#include <fat.h>
#include <fs.h>
#include <memalign.h>
#include <spl.h>
#include <asm/io.h>
#include <linux/stat.h>
#include <test/spl.h>
#include <test/ut.h>
/**
* create_ext2() - Create an "ext2" filesystem with a single file
* @dst: The location of the new filesystem; MUST be zeroed
* @size: The size of the file
* @filename: The name of the file
* @data_offset: Filled with the offset of the file data from @dst
*
* Budget mke2fs. We use 1k blocks (to reduce overhead) with a single block
* group, which limits us to 8M of data. Almost every feature which increases
* complexity (checksums, hash tree directories, etc.) is disabled. We do cheat
* a little and use extents from ext4 to save having to deal with indirects, but
* U-Boot doesn't care.
*
* If @dst is %NULL, nothing is copied.
*
* Return: The size of the filesystem in bytes
*/
static size_t create_ext2(void *dst, size_t size, const char *filename,
size_t *data_offset)
{
u32 super_block = 1;
u32 group_block = 2;
u32 block_bitmap_block = 3;
u32 inode_bitmap_block = 4;
u32 inode_table_block = 5;
u32 root_block = 6;
u32 file_block = 7;
u32 root_ino = EXT2_ROOT_INO;
u32 file_ino = EXT2_BOOT_LOADER_INO;
u32 block_size = EXT2_MIN_BLOCK_SIZE;
u32 inode_size = sizeof(struct ext2_inode);
u32 file_blocks = (size + block_size - 1) / block_size;
u32 blocks = file_block + file_blocks;
u32 inodes = block_size / inode_size;
u32 filename_len = strlen(filename);
u32 dirent_len = ALIGN(filename_len, sizeof(struct ext2_dirent)) +
sizeof(struct ext2_dirent);
struct ext2_sblock *sblock = dst + super_block * block_size;
struct ext2_block_group *bg = dst + group_block * block_size;
struct ext2_inode *inode_table = dst + inode_table_block * block_size;
struct ext2_inode *root_inode = &inode_table[root_ino - 1];
struct ext2_inode *file_inode = &inode_table[file_ino - 1];
struct ext4_extent_header *ext_block = (void *)&file_inode->b;
struct ext4_extent *extent = (void *)(ext_block + 1);
struct ext2_dirent *dot = dst + root_block * block_size;
struct ext2_dirent *dotdot = dot + 2;
struct ext2_dirent *dirent = dotdot + 2;
struct ext2_dirent *last = ((void *)dirent) + dirent_len;
/* Make sure we fit in one block group */
if (blocks > block_size * 8)
return 0;
if (filename_len > EXT2_NAME_LEN)
return 0;
if (data_offset)
*data_offset = file_block * block_size;
if (!dst)
goto out;
sblock->total_inodes = cpu_to_le32(inodes);
sblock->total_blocks = cpu_to_le32(blocks);
sblock->first_data_block = cpu_to_le32(super_block);
sblock->blocks_per_group = cpu_to_le32(blocks);
sblock->fragments_per_group = cpu_to_le32(blocks);
sblock->inodes_per_group = cpu_to_le32(inodes);
sblock->magic = cpu_to_le16(EXT2_MAGIC);
/* Done mostly so we can pretend to be (in)compatible */
sblock->revision_level = cpu_to_le32(EXT2_DYNAMIC_REV);
/* Not really accurate but it doesn't matter */
sblock->first_inode = cpu_to_le32(EXT2_GOOD_OLD_FIRST_INO);
sblock->inode_size = cpu_to_le32(inode_size);
sblock->feature_incompat = cpu_to_le32(EXT4_FEATURE_INCOMPAT_EXTENTS);
bg->block_id = cpu_to_le32(block_bitmap_block);
bg->inode_id = cpu_to_le32(inode_bitmap_block);
bg->inode_table_id = cpu_to_le32(inode_table_block);
/*
* All blocks/inodes are in-use. I don't want to have to deal with
* endianness, so just fill everything in.
*/
memset(dst + block_bitmap_block * block_size, 0xff, block_size * 2);
root_inode->mode = cpu_to_le16(S_IFDIR | 0755);
root_inode->size = cpu_to_le32(block_size);
root_inode->nlinks = cpu_to_le16(3);
root_inode->blockcnt = cpu_to_le32(1);
root_inode->flags = cpu_to_le32(EXT4_TOPDIR_FL);
root_inode->b.blocks.dir_blocks[0] = root_block;
file_inode->mode = cpu_to_le16(S_IFREG | 0644);
file_inode->size = cpu_to_le32(size);
file_inode->nlinks = cpu_to_le16(1);
file_inode->blockcnt = cpu_to_le32(file_blocks);
file_inode->flags = cpu_to_le32(EXT4_EXTENTS_FL);
ext_block->eh_magic = cpu_to_le16(EXT4_EXT_MAGIC);
ext_block->eh_entries = cpu_to_le16(1);
ext_block->eh_max = cpu_to_le16(sizeof(file_inode->b) /
sizeof(*ext_block) - 1);
extent->ee_len = cpu_to_le16(file_blocks);
extent->ee_start_lo = cpu_to_le16(file_block);
/* I'm not sure we need these, but it can't hurt */
dot->inode = cpu_to_le32(root_ino);
dot->direntlen = cpu_to_le16(2 * sizeof(*dot));
dot->namelen = 1;
dot->filetype = FILETYPE_DIRECTORY;
memcpy(dot + 1, ".", dot->namelen);
dotdot->inode = cpu_to_le32(root_ino);
dotdot->direntlen = cpu_to_le16(2 * sizeof(*dotdot));
dotdot->namelen = 2;
dotdot->filetype = FILETYPE_DIRECTORY;
memcpy(dotdot + 1, "..", dotdot->namelen);
dirent->inode = cpu_to_le32(file_ino);
dirent->direntlen = cpu_to_le16(dirent_len);
dirent->namelen = filename_len;
dirent->filetype = FILETYPE_REG;
memcpy(dirent + 1, filename, filename_len);
last->direntlen = block_size - dirent_len;
out:
return (size_t)blocks * block_size;
}
/**
* create_fat() - Create a FAT32 filesystem with a single file
* @dst: The location of the new filesystem; MUST be zeroed
* @size: The size of the file
* @filename: The name of the file
* @data_offset: Filled with the offset of the file data from @dst
*
* Budget mkfs.fat. We use FAT32 (so I don't have to deal with FAT12) with no
* info sector, and a single one-sector FAT. This limits us to 64k of data
* (enough for anyone). The filename must fit in 8.3.
*
* If @dst is %NULL, nothing is copied.
*
* Return: The size of the filesystem in bytes
*/
static size_t create_fat(void *dst, size_t size, const char *filename,
size_t *data_offset)
{
u16 boot_sector = 0;
u16 fat_sector = 1;
u32 root_sector = 2;
u32 file_sector = 3;
u16 sector_size = 512;
u32 file_sectors = (size + sector_size - 1) / sector_size;
u32 sectors = file_sector + file_sectors;
char *ext;
size_t filename_len, ext_len;
int i;
struct boot_sector *bs = dst + boot_sector * sector_size;
struct volume_info *vi = (void *)(bs + 1);
__le32 *fat = dst + fat_sector * sector_size;
struct dir_entry *dirent = dst + root_sector * sector_size;
/* Make sure we fit in the FAT */
if (sectors > sector_size / sizeof(u32))
return 0;
ext = strchr(filename, '.');
if (ext) {
filename_len = ext - filename;
ext++;
ext_len = strlen(ext);
} else {
filename_len = strlen(filename);
ext_len = 0;
}
if (filename_len > 8 || ext_len > 3)
return 0;
if (data_offset)
*data_offset = file_sector * sector_size;
if (!dst)
goto out;
bs->sector_size[0] = sector_size & 0xff;
bs->sector_size[1] = sector_size >> 8;
bs->cluster_size = 1;
bs->reserved = cpu_to_le16(fat_sector);
bs->fats = 1;
bs->media = 0xf8;
bs->total_sect = cpu_to_le32(sectors);
bs->fat32_length = cpu_to_le32(1);
bs->root_cluster = cpu_to_le32(root_sector);
vi->ext_boot_sign = 0x29;
memcpy(vi->fs_type, FAT32_SIGN, sizeof(vi->fs_type));
memcpy(dst + 0x1fe, "\x55\xAA", 2);
fat[0] = cpu_to_le32(0x0ffffff8);
fat[1] = cpu_to_le32(0x0fffffff);
fat[2] = cpu_to_le32(0x0ffffff8);
for (i = file_sector; file_sectors > 1; file_sectors--, i++)
fat[i] = cpu_to_le32(i + 1);
fat[i] = cpu_to_le32(0x0ffffff8);
for (i = 0; i < sizeof(dirent->nameext.name); i++) {
if (i < filename_len)
dirent->nameext.name[i] = toupper(filename[i]);
else
dirent->nameext.name[i] = ' ';
}
for (i = 0; i < sizeof(dirent->nameext.ext); i++) {
if (i < ext_len)
dirent->nameext.ext[i] = toupper(ext[i]);
else
dirent->nameext.ext[i] = ' ';
}
dirent->start = cpu_to_le16(file_sector);
dirent->size = cpu_to_le32(size);
out:
return sectors * sector_size;
}
typedef size_t (*create_fs_t)(void *, size_t, const char *, size_t *);
static int spl_test_fs(struct unit_test_state *uts, const char *test_name,
create_fs_t create)
{
const char *filename = CONFIG_SPL_FS_LOAD_PAYLOAD_NAME;
struct blk_desc *dev_desc;
char *data_write, *data_read;
void *fs;
size_t fs_size, fs_data, fs_blocks, data_size = SPL_TEST_DATA_SIZE;
loff_t actread;
fs_size = create(NULL, data_size, filename, &fs_data);
ut_assert(fs_size);
fs = calloc(fs_size, 1);
ut_assertnonnull(fs);
data_write = fs + fs_data;
generate_data(data_write, data_size, test_name);
ut_asserteq(fs_size, create(fs, data_size, filename, NULL));
dev_desc = blk_get_devnum_by_uclass_id(UCLASS_MMC, 0);
ut_assertnonnull(dev_desc);
ut_asserteq(512, dev_desc->blksz);
fs_blocks = fs_size / dev_desc->blksz;
ut_asserteq(fs_blocks, blk_dwrite(dev_desc, 0, fs_blocks, fs));
/* We have to use malloc so we can call virt_to_phys */
data_read = malloc_cache_aligned(data_size);
ut_assertnonnull(data_read);
ut_assertok(fs_set_blk_dev_with_part(dev_desc, 0));
ut_assertok(fs_read("/" CONFIG_SPL_FS_LOAD_PAYLOAD_NAME,
virt_to_phys(data_read), 0, data_size, &actread));
ut_asserteq(data_size, actread);
ut_asserteq_mem(data_write, data_read, data_size);
free(data_read);
free(fs);
return 0;
}
static int spl_test_ext(struct unit_test_state *uts)
{
return spl_test_fs(uts, __func__, create_ext2);
}
SPL_TEST(spl_test_ext, DM_FLAGS);
static int spl_test_fat(struct unit_test_state *uts)
{
spl_fat_force_reregister();
return spl_test_fs(uts, __func__, create_fat);
}
SPL_TEST(spl_test_fat, DM_FLAGS);
static bool spl_mmc_raw;
u32 spl_mmc_boot_mode(struct mmc *mmc, const u32 boot_device)
{
return spl_mmc_raw ? MMCSD_MODE_RAW : MMCSD_MODE_FS;
}
static int spl_test_mmc_fs(struct unit_test_state *uts, const char *test_name,
enum spl_test_image type, create_fs_t create_fs,
bool blk_mode)
{
const char *filename = CONFIG_SPL_FS_LOAD_PAYLOAD_NAME;
struct blk_desc *dev_desc;
size_t fs_size, fs_data, img_size, img_data,
data_size = SPL_TEST_DATA_SIZE;
struct spl_image_info info_write = {
.name = test_name,
.size = data_size,
}, info_read = { };
struct disk_partition part = {
.start = 1,
.sys_ind = 0x83,
};
struct spl_image_loader *loader =
SPL_LOAD_IMAGE_GET(0, BOOT_DEVICE_MMC1, spl_mmc_load_image);
struct spl_boot_device bootdev = {
.boot_device = loader->boot_device,
};
void *fs;
char *data;
img_size = create_image(NULL, type, &info_write, &img_data);
ut_assert(img_size);
fs_size = create_fs(NULL, img_size, filename, &fs_data);
ut_assert(fs_size);
fs = calloc(fs_size, 1);
ut_assertnonnull(fs);
data = fs + fs_data + img_data;
generate_data(data, data_size, test_name);
ut_asserteq(img_size, create_image(fs + fs_data, type, &info_write,
NULL));
ut_asserteq(fs_size, create_fs(fs, img_size, filename, NULL));
dev_desc = blk_get_devnum_by_uclass_id(UCLASS_MMC, 0);
ut_assertnonnull(dev_desc);
ut_asserteq(512, dev_desc->blksz);
part.size = fs_size / dev_desc->blksz;
ut_assertok(write_mbr_partitions(dev_desc, &part, 1, 0));
ut_asserteq(part.size, blk_dwrite(dev_desc, part.start, part.size, fs));
spl_mmc_raw = false;
if (blk_mode)
ut_assertok(spl_blk_load_image(&info_read, &bootdev, UCLASS_MMC,
0, 1));
else
ut_assertok(loader->load_image(&info_read, &bootdev));
if (check_image_info(uts, &info_write, &info_read))
return CMD_RET_FAILURE;
ut_asserteq_mem(data, phys_to_virt(info_write.load_addr), data_size);
free(fs);
return 0;
}
static int spl_test_blk(struct unit_test_state *uts, const char *test_name,
enum spl_test_image type)
{
spl_fat_force_reregister();
if (spl_test_mmc_fs(uts, test_name, type, create_fat, true))
return CMD_RET_FAILURE;
return spl_test_mmc_fs(uts, test_name, type, create_ext2, true);
}
SPL_IMG_TEST(spl_test_blk, LEGACY, DM_FLAGS);
SPL_IMG_TEST(spl_test_blk, FIT_EXTERNAL, DM_FLAGS);
SPL_IMG_TEST(spl_test_blk, FIT_INTERNAL, DM_FLAGS);
static int spl_test_mmc_write_image(struct unit_test_state *uts, void *img,
size_t img_size)
{
struct blk_desc *dev_desc;
size_t img_blocks;
dev_desc = blk_get_devnum_by_uclass_id(UCLASS_MMC, 0);
ut_assertnonnull(dev_desc);
img_blocks = DIV_ROUND_UP(img_size, dev_desc->blksz);
ut_asserteq(img_blocks, blk_dwrite(dev_desc,
CONFIG_SYS_MMCSD_RAW_MODE_U_BOOT_SECTOR,
img_blocks, img));
spl_mmc_raw = true;
return 0;
}
static int spl_test_mmc(struct unit_test_state *uts, const char *test_name,
enum spl_test_image type)
{
spl_mmc_clear_cache();
spl_fat_force_reregister();
if (type == LEGACY &&
spl_test_mmc_fs(uts, test_name, type, create_ext2, false))
return CMD_RET_FAILURE;
if (type != IMX8 &&
spl_test_mmc_fs(uts, test_name, type, create_fat, false))
return CMD_RET_FAILURE;
return do_spl_test_load(uts, test_name, type,
SPL_LOAD_IMAGE_GET(0, BOOT_DEVICE_MMC1,
spl_mmc_load_image),
spl_test_mmc_write_image);
}
SPL_IMG_TEST(spl_test_mmc, LEGACY, DM_FLAGS);
SPL_IMG_TEST(spl_test_mmc, IMX8, DM_FLAGS);
SPL_IMG_TEST(spl_test_mmc, FIT_EXTERNAL, DM_FLAGS);
SPL_IMG_TEST(spl_test_mmc, FIT_INTERNAL, DM_FLAGS);