mirror of
https://github.com/AsahiLinux/u-boot
synced 2024-12-17 16:53:06 +00:00
1be82afa80
Use proper project name in comments, Kconfig, readmes. Reviewed-by: Neil Armstrong <neil.armstrong@linaro.org> Acked-by: Ilias Apalodimas <ilias.apalodimas@linaro.org> Reviewed-by: Stefan Roese <sr@denx.de> Reviewed-by: Qu Wenruo <wqu@suse.com> Signed-off-by: Michal Simek <michal.simek@amd.com> Link: https://lore.kernel.org/r/0dbdf0432405c1c38ffca55703b6737a48219e79.1684307818.git.michal.simek@amd.com
254 lines
8.3 KiB
C
254 lines
8.3 KiB
C
/* SPDX-License-Identifier: GPL-2.0+ */
|
|
/*
|
|
* Copyright (C) 2013-2014, 2020 Synopsys, Inc. All rights reserved.
|
|
*/
|
|
|
|
#ifndef __ASM_ARC_IO_H
|
|
#define __ASM_ARC_IO_H
|
|
|
|
#include <linux/types.h>
|
|
#include <asm/byteorder.h>
|
|
|
|
/*
|
|
* Compiler barrier. It prevents compiler from reordering instructions before
|
|
* and after it. It doesn't prevent HW (CPU) from any reordering though.
|
|
*/
|
|
#define __comp_b() asm volatile("" : : : "memory")
|
|
|
|
#ifdef __ARCHS__
|
|
|
|
/*
|
|
* ARCv2 based HS38 cores are in-order issue, but still weakly ordered
|
|
* due to micro-arch buffering/queuing of load/store, cache hit vs. miss ...
|
|
*
|
|
* Explicit barrier provided by DMB instruction
|
|
* - Operand supports fine grained load/store/load+store semantics
|
|
* - Ensures that selected memory operation issued before it will complete
|
|
* before any subsequent memory operation of same type
|
|
* - DMB guarantees SMP as well as local barrier semantics
|
|
* (asm-generic/barrier.h ensures sane smp_*mb if not defined here, i.e.
|
|
* UP: barrier(), SMP: smp_*mb == *mb)
|
|
* - DSYNC provides DMB+completion_of_cache_bpu_maintenance_ops hence not needed
|
|
* in the general case. Plus it only provides full barrier.
|
|
*/
|
|
|
|
#define mb() asm volatile("dmb 3\n" : : : "memory")
|
|
#define rmb() asm volatile("dmb 1\n" : : : "memory")
|
|
#define wmb() asm volatile("dmb 2\n" : : : "memory")
|
|
|
|
#else
|
|
|
|
/*
|
|
* ARCompact based cores (ARC700) only have SYNC instruction which is super
|
|
* heavy weight as it flushes the pipeline as well.
|
|
* There are no real SMP implementations of such cores.
|
|
*/
|
|
|
|
#define mb() asm volatile("sync\n" : : : "memory")
|
|
#endif
|
|
|
|
#ifdef __ARCHS__
|
|
#define __iormb() rmb()
|
|
#define __iowmb() wmb()
|
|
#else
|
|
#define __iormb() __comp_b()
|
|
#define __iowmb() __comp_b()
|
|
#endif
|
|
|
|
static inline void sync(void)
|
|
{
|
|
/* Not yet implemented */
|
|
}
|
|
|
|
/*
|
|
* We must use 'volatile' in C-version read/write IO accessors implementation
|
|
* to avoid merging several reads (writes) into one read (write), or optimizing
|
|
* them out by compiler.
|
|
* We must use compiler barriers before and after operation (read or write) so
|
|
* it won't be reordered by compiler.
|
|
*/
|
|
#define __arch_getb(a) ({ u8 __v; __comp_b(); __v = *(volatile u8 *)(a); __comp_b(); __v; })
|
|
#define __arch_getw(a) ({ u16 __v; __comp_b(); __v = *(volatile u16 *)(a); __comp_b(); __v; })
|
|
#define __arch_getl(a) ({ u32 __v; __comp_b(); __v = *(volatile u32 *)(a); __comp_b(); __v; })
|
|
#define __arch_getq(a) ({ u64 __v; __comp_b(); __v = *(volatile u64 *)(a); __comp_b(); __v; })
|
|
|
|
#define __arch_putb(v, a) ({ __comp_b(); *(volatile u8 *)(a) = (v); __comp_b(); })
|
|
#define __arch_putw(v, a) ({ __comp_b(); *(volatile u16 *)(a) = (v); __comp_b(); })
|
|
#define __arch_putl(v, a) ({ __comp_b(); *(volatile u32 *)(a) = (v); __comp_b(); })
|
|
#define __arch_putq(v, a) ({ __comp_b(); *(volatile u64 *)(a) = (v); __comp_b(); })
|
|
|
|
|
|
/*
|
|
* We add memory barriers for __raw_readX / __raw_writeX accessors same way as
|
|
* it is done for readX and writeX accessors as lots of U-Boot driver uses
|
|
* __raw_readX / __raw_writeX instead of proper accessor with barrier.
|
|
*/
|
|
#define __raw_writeb(v, c) ({ __iowmb(); __arch_putb(v, c); })
|
|
#define __raw_writew(v, c) ({ __iowmb(); __arch_putw(v, c); })
|
|
#define __raw_writel(v, c) ({ __iowmb(); __arch_putl(v, c); })
|
|
#define __raw_writeq(v, c) ({ __iowmb(); __arch_putq(v, c); })
|
|
|
|
#define __raw_readb(c) ({ u8 __v = __arch_getb(c); __iormb(); __v; })
|
|
#define __raw_readw(c) ({ u16 __v = __arch_getw(c); __iormb(); __v; })
|
|
#define __raw_readl(c) ({ u32 __v = __arch_getl(c); __iormb(); __v; })
|
|
#define __raw_readq(c) ({ u64 __v = __arch_getq(c); __iormb(); __v; })
|
|
|
|
|
|
static inline void __raw_writesb(unsigned long addr, const void *data,
|
|
int bytelen)
|
|
{
|
|
u8 *buf = (uint8_t *)data;
|
|
|
|
__iowmb();
|
|
|
|
while (bytelen--)
|
|
__arch_putb(*buf++, addr);
|
|
}
|
|
|
|
static inline void __raw_writesw(unsigned long addr, const void *data,
|
|
int wordlen)
|
|
{
|
|
u16 *buf = (uint16_t *)data;
|
|
|
|
__iowmb();
|
|
|
|
while (wordlen--)
|
|
__arch_putw(*buf++, addr);
|
|
}
|
|
|
|
static inline void __raw_writesl(unsigned long addr, const void *data,
|
|
int longlen)
|
|
{
|
|
u32 *buf = (uint32_t *)data;
|
|
|
|
__iowmb();
|
|
|
|
while (longlen--)
|
|
__arch_putl(*buf++, addr);
|
|
}
|
|
|
|
static inline void __raw_readsb(unsigned long addr, void *data, int bytelen)
|
|
{
|
|
u8 *buf = (uint8_t *)data;
|
|
|
|
while (bytelen--)
|
|
*buf++ = __arch_getb(addr);
|
|
|
|
__iormb();
|
|
}
|
|
|
|
static inline void __raw_readsw(unsigned long addr, void *data, int wordlen)
|
|
{
|
|
u16 *buf = (uint16_t *)data;
|
|
|
|
while (wordlen--)
|
|
*buf++ = __arch_getw(addr);
|
|
|
|
__iormb();
|
|
}
|
|
|
|
static inline void __raw_readsl(unsigned long addr, void *data, int longlen)
|
|
{
|
|
u32 *buf = (uint32_t *)data;
|
|
|
|
while (longlen--)
|
|
*buf++ = __arch_getl(addr);
|
|
|
|
__iormb();
|
|
}
|
|
|
|
/*
|
|
* Relaxed I/O memory access primitives. These follow the Device memory
|
|
* ordering rules but do not guarantee any ordering relative to Normal memory
|
|
* accesses.
|
|
*/
|
|
#define readb_relaxed(c) ({ u8 __r = __arch_getb(c); __r; })
|
|
#define readw_relaxed(c) ({ u16 __r = le16_to_cpu((__force __le16)__arch_getw(c)); __r; })
|
|
#define readl_relaxed(c) ({ u32 __r = le32_to_cpu((__force __le32)__arch_getl(c)); __r; })
|
|
#define readq_relaxed(c) ({ u64 __r = le64_to_cpu((__force __le64)__arch_getq(c)); __r; })
|
|
|
|
#define writeb_relaxed(v, c) ((void)__arch_putb((v), (c)))
|
|
#define writew_relaxed(v, c) ((void)__arch_putw((__force u16)cpu_to_le16(v), (c)))
|
|
#define writel_relaxed(v, c) ((void)__arch_putl((__force u32)cpu_to_le32(v), (c)))
|
|
#define writeq_relaxed(v, c) ((void)__arch_putq((__force u64)cpu_to_le64(v), (c)))
|
|
|
|
/*
|
|
* MMIO can also get buffered/optimized in micro-arch, so barriers needed
|
|
* Based on ARM model for the typical use case
|
|
*
|
|
* <ST [DMA buffer]>
|
|
* <writel MMIO "go" reg>
|
|
* or:
|
|
* <readl MMIO "status" reg>
|
|
* <LD [DMA buffer]>
|
|
*
|
|
* http://lkml.kernel.org/r/20150622133656.GG1583@arm.com
|
|
*/
|
|
#define readb(c) ({ u8 __v = readb_relaxed(c); __iormb(); __v; })
|
|
#define readw(c) ({ u16 __v = readw_relaxed(c); __iormb(); __v; })
|
|
#define readl(c) ({ u32 __v = readl_relaxed(c); __iormb(); __v; })
|
|
#define readq(c) ({ u64 __v = readq_relaxed(c); __iormb(); __v; })
|
|
|
|
#define writeb(v, c) ({ __iowmb(); writeb_relaxed(v, c); })
|
|
#define writew(v, c) ({ __iowmb(); writew_relaxed(v, c); })
|
|
#define writel(v, c) ({ __iowmb(); writel_relaxed(v, c); })
|
|
#define writeq(v, c) ({ __iowmb(); writeq_relaxed(v, c); })
|
|
|
|
#define out_arch(type, endian, a, v) __raw_write##type(cpu_to_##endian(v), a)
|
|
#define in_arch(type, endian, a) endian##_to_cpu(__raw_read##type(a))
|
|
|
|
#define out_le32(a, v) out_arch(l, le32, a, v)
|
|
#define out_le16(a, v) out_arch(w, le16, a, v)
|
|
|
|
#define in_le32(a) in_arch(l, le32, a)
|
|
#define in_le16(a) in_arch(w, le16, a)
|
|
|
|
#define out_be32(a, v) out_arch(l, be32, a, v)
|
|
#define out_be16(a, v) out_arch(w, be16, a, v)
|
|
|
|
#define in_be32(a) in_arch(l, be32, a)
|
|
#define in_be16(a) in_arch(w, be16, a)
|
|
|
|
#define out_8(a, v) __raw_writeb(v, a)
|
|
#define in_8(a) __raw_readb(a)
|
|
|
|
/*
|
|
* Clear and set bits in one shot. These macros can be used to clear and
|
|
* set multiple bits in a register using a single call. These macros can
|
|
* also be used to set a multiple-bit bit pattern using a mask, by
|
|
* specifying the mask in the 'clear' parameter and the new bit pattern
|
|
* in the 'set' parameter.
|
|
*/
|
|
|
|
#define clrbits(type, addr, clear) \
|
|
out_##type((addr), in_##type(addr) & ~(clear))
|
|
|
|
#define setbits(type, addr, set) \
|
|
out_##type((addr), in_##type(addr) | (set))
|
|
|
|
#define clrsetbits(type, addr, clear, set) \
|
|
out_##type((addr), (in_##type(addr) & ~(clear)) | (set))
|
|
|
|
#define clrbits_be32(addr, clear) clrbits(be32, addr, clear)
|
|
#define setbits_be32(addr, set) setbits(be32, addr, set)
|
|
#define clrsetbits_be32(addr, clear, set) clrsetbits(be32, addr, clear, set)
|
|
|
|
#define clrbits_le32(addr, clear) clrbits(le32, addr, clear)
|
|
#define setbits_le32(addr, set) setbits(le32, addr, set)
|
|
#define clrsetbits_le32(addr, clear, set) clrsetbits(le32, addr, clear, set)
|
|
|
|
#define clrbits_be16(addr, clear) clrbits(be16, addr, clear)
|
|
#define setbits_be16(addr, set) setbits(be16, addr, set)
|
|
#define clrsetbits_be16(addr, clear, set) clrsetbits(be16, addr, clear, set)
|
|
|
|
#define clrbits_le16(addr, clear) clrbits(le16, addr, clear)
|
|
#define setbits_le16(addr, set) setbits(le16, addr, set)
|
|
#define clrsetbits_le16(addr, clear, set) clrsetbits(le16, addr, clear, set)
|
|
|
|
#define clrbits_8(addr, clear) clrbits(8, addr, clear)
|
|
#define setbits_8(addr, set) setbits(8, addr, set)
|
|
#define clrsetbits_8(addr, clear, set) clrsetbits(8, addr, clear, set)
|
|
|
|
#include <asm-generic/io.h>
|
|
|
|
#endif /* __ASM_ARC_IO_H */
|