mirror of
https://github.com/AsahiLinux/u-boot
synced 2024-12-05 02:51:00 +00:00
83d290c56f
When U-Boot started using SPDX tags we were among the early adopters and there weren't a lot of other examples to borrow from. So we picked the area of the file that usually had a full license text and replaced it with an appropriate SPDX-License-Identifier: entry. Since then, the Linux Kernel has adopted SPDX tags and they place it as the very first line in a file (except where shebangs are used, then it's second line) and with slightly different comment styles than us. In part due to community overlap, in part due to better tag visibility and in part for other minor reasons, switch over to that style. This commit changes all instances where we have a single declared license in the tag as both the before and after are identical in tag contents. There's also a few places where I found we did not have a tag and have introduced one. Signed-off-by: Tom Rini <trini@konsulko.com>
382 lines
9.9 KiB
C
382 lines
9.9 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* Copyright (C) 2014 Google, Inc
|
|
*
|
|
* From coreboot, originally based on the Linux kernel (drivers/pci/pci.c).
|
|
*
|
|
* Modifications are:
|
|
* Copyright (C) 2003-2004 Linux Networx
|
|
* (Written by Eric Biederman <ebiederman@lnxi.com> for Linux Networx)
|
|
* Copyright (C) 2003-2006 Ronald G. Minnich <rminnich@gmail.com>
|
|
* Copyright (C) 2004-2005 Li-Ta Lo <ollie@lanl.gov>
|
|
* Copyright (C) 2005-2006 Tyan
|
|
* (Written by Yinghai Lu <yhlu@tyan.com> for Tyan)
|
|
* Copyright (C) 2005-2009 coresystems GmbH
|
|
* (Written by Stefan Reinauer <stepan@coresystems.de> for coresystems GmbH)
|
|
*
|
|
* PCI Bus Services, see include/linux/pci.h for further explanation.
|
|
*
|
|
* Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter,
|
|
* David Mosberger-Tang
|
|
*
|
|
* Copyright 1997 -- 1999 Martin Mares <mj@atrey.karlin.mff.cuni.cz>
|
|
*/
|
|
|
|
#include <common.h>
|
|
#include <bios_emul.h>
|
|
#include <dm.h>
|
|
#include <errno.h>
|
|
#include <malloc.h>
|
|
#include <pci.h>
|
|
#include <pci_rom.h>
|
|
#include <vbe.h>
|
|
#include <video.h>
|
|
#include <video_fb.h>
|
|
#include <linux/screen_info.h>
|
|
|
|
#ifdef CONFIG_X86
|
|
#include <asm/acpi_s3.h>
|
|
DECLARE_GLOBAL_DATA_PTR;
|
|
#endif
|
|
|
|
__weak bool board_should_run_oprom(struct udevice *dev)
|
|
{
|
|
#if defined(CONFIG_X86) && defined(CONFIG_HAVE_ACPI_RESUME)
|
|
if (gd->arch.prev_sleep_state == ACPI_S3) {
|
|
if (IS_ENABLED(CONFIG_S3_VGA_ROM_RUN))
|
|
return true;
|
|
else
|
|
return false;
|
|
}
|
|
#endif
|
|
|
|
return true;
|
|
}
|
|
|
|
__weak bool board_should_load_oprom(struct udevice *dev)
|
|
{
|
|
return true;
|
|
}
|
|
|
|
__weak uint32_t board_map_oprom_vendev(uint32_t vendev)
|
|
{
|
|
return vendev;
|
|
}
|
|
|
|
static int pci_rom_probe(struct udevice *dev, struct pci_rom_header **hdrp)
|
|
{
|
|
struct pci_child_platdata *pplat = dev_get_parent_platdata(dev);
|
|
struct pci_rom_header *rom_header;
|
|
struct pci_rom_data *rom_data;
|
|
u16 rom_vendor, rom_device;
|
|
u32 rom_class;
|
|
u32 vendev;
|
|
u32 mapped_vendev;
|
|
u32 rom_address;
|
|
|
|
vendev = pplat->vendor << 16 | pplat->device;
|
|
mapped_vendev = board_map_oprom_vendev(vendev);
|
|
if (vendev != mapped_vendev)
|
|
debug("Device ID mapped to %#08x\n", mapped_vendev);
|
|
|
|
#ifdef CONFIG_VGA_BIOS_ADDR
|
|
rom_address = CONFIG_VGA_BIOS_ADDR;
|
|
#else
|
|
|
|
dm_pci_read_config32(dev, PCI_ROM_ADDRESS, &rom_address);
|
|
if (rom_address == 0x00000000 || rom_address == 0xffffffff) {
|
|
debug("%s: rom_address=%x\n", __func__, rom_address);
|
|
return -ENOENT;
|
|
}
|
|
|
|
/* Enable expansion ROM address decoding. */
|
|
dm_pci_write_config32(dev, PCI_ROM_ADDRESS,
|
|
rom_address | PCI_ROM_ADDRESS_ENABLE);
|
|
#endif
|
|
debug("Option ROM address %x\n", rom_address);
|
|
rom_header = (struct pci_rom_header *)(unsigned long)rom_address;
|
|
|
|
debug("PCI expansion ROM, signature %#04x, INIT size %#04x, data ptr %#04x\n",
|
|
le16_to_cpu(rom_header->signature),
|
|
rom_header->size * 512, le16_to_cpu(rom_header->data));
|
|
|
|
if (le16_to_cpu(rom_header->signature) != PCI_ROM_HDR) {
|
|
printf("Incorrect expansion ROM header signature %04x\n",
|
|
le16_to_cpu(rom_header->signature));
|
|
#ifndef CONFIG_VGA_BIOS_ADDR
|
|
/* Disable expansion ROM address decoding */
|
|
dm_pci_write_config32(dev, PCI_ROM_ADDRESS, rom_address);
|
|
#endif
|
|
return -EINVAL;
|
|
}
|
|
|
|
rom_data = (((void *)rom_header) + le16_to_cpu(rom_header->data));
|
|
rom_vendor = le16_to_cpu(rom_data->vendor);
|
|
rom_device = le16_to_cpu(rom_data->device);
|
|
|
|
debug("PCI ROM image, vendor ID %04x, device ID %04x,\n",
|
|
rom_vendor, rom_device);
|
|
|
|
/* If the device id is mapped, a mismatch is expected */
|
|
if ((pplat->vendor != rom_vendor || pplat->device != rom_device) &&
|
|
(vendev == mapped_vendev)) {
|
|
printf("ID mismatch: vendor ID %04x, device ID %04x\n",
|
|
rom_vendor, rom_device);
|
|
/* Continue anyway */
|
|
}
|
|
|
|
rom_class = (le16_to_cpu(rom_data->class_hi) << 8) | rom_data->class_lo;
|
|
debug("PCI ROM image, Class Code %06x, Code Type %02x\n",
|
|
rom_class, rom_data->type);
|
|
|
|
if (pplat->class != rom_class) {
|
|
debug("Class Code mismatch ROM %06x, dev %06x\n",
|
|
rom_class, pplat->class);
|
|
}
|
|
*hdrp = rom_header;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* pci_rom_load() - Load a ROM image and return a pointer to it
|
|
*
|
|
* @rom_header: Pointer to ROM image
|
|
* @ram_headerp: Returns a pointer to the image in RAM
|
|
* @allocedp: Returns true if @ram_headerp was allocated and needs
|
|
* to be freed
|
|
* @return 0 if OK, -ve on error. Note that @allocedp is set up regardless of
|
|
* the error state. Even if this function returns an error, it may have
|
|
* allocated memory.
|
|
*/
|
|
static int pci_rom_load(struct pci_rom_header *rom_header,
|
|
struct pci_rom_header **ram_headerp, bool *allocedp)
|
|
{
|
|
struct pci_rom_data *rom_data;
|
|
unsigned int rom_size;
|
|
unsigned int image_size = 0;
|
|
void *target;
|
|
|
|
*allocedp = false;
|
|
do {
|
|
/* Get next image, until we see an x86 version */
|
|
rom_header = (struct pci_rom_header *)((void *)rom_header +
|
|
image_size);
|
|
|
|
rom_data = (struct pci_rom_data *)((void *)rom_header +
|
|
le16_to_cpu(rom_header->data));
|
|
|
|
image_size = le16_to_cpu(rom_data->ilen) * 512;
|
|
} while ((rom_data->type != 0) && (rom_data->indicator == 0));
|
|
|
|
if (rom_data->type != 0)
|
|
return -EACCES;
|
|
|
|
rom_size = rom_header->size * 512;
|
|
|
|
#ifdef PCI_VGA_RAM_IMAGE_START
|
|
target = (void *)PCI_VGA_RAM_IMAGE_START;
|
|
#else
|
|
target = (void *)malloc(rom_size);
|
|
if (!target)
|
|
return -ENOMEM;
|
|
*allocedp = true;
|
|
#endif
|
|
if (target != rom_header) {
|
|
ulong start = get_timer(0);
|
|
|
|
debug("Copying VGA ROM Image from %p to %p, 0x%x bytes\n",
|
|
rom_header, target, rom_size);
|
|
memcpy(target, rom_header, rom_size);
|
|
if (memcmp(target, rom_header, rom_size)) {
|
|
printf("VGA ROM copy failed\n");
|
|
return -EFAULT;
|
|
}
|
|
debug("Copy took %lums\n", get_timer(start));
|
|
}
|
|
*ram_headerp = target;
|
|
|
|
return 0;
|
|
}
|
|
|
|
struct vbe_mode_info mode_info;
|
|
|
|
void setup_video(struct screen_info *screen_info)
|
|
{
|
|
struct vesa_mode_info *vesa = &mode_info.vesa;
|
|
|
|
/* Sanity test on VESA parameters */
|
|
if (!vesa->x_resolution || !vesa->y_resolution)
|
|
return;
|
|
|
|
screen_info->orig_video_isVGA = VIDEO_TYPE_VLFB;
|
|
|
|
screen_info->lfb_width = vesa->x_resolution;
|
|
screen_info->lfb_height = vesa->y_resolution;
|
|
screen_info->lfb_depth = vesa->bits_per_pixel;
|
|
screen_info->lfb_linelength = vesa->bytes_per_scanline;
|
|
screen_info->lfb_base = vesa->phys_base_ptr;
|
|
screen_info->lfb_size =
|
|
ALIGN(screen_info->lfb_linelength * screen_info->lfb_height,
|
|
65536);
|
|
screen_info->lfb_size >>= 16;
|
|
screen_info->red_size = vesa->red_mask_size;
|
|
screen_info->red_pos = vesa->red_mask_pos;
|
|
screen_info->green_size = vesa->green_mask_size;
|
|
screen_info->green_pos = vesa->green_mask_pos;
|
|
screen_info->blue_size = vesa->blue_mask_size;
|
|
screen_info->blue_pos = vesa->blue_mask_pos;
|
|
screen_info->rsvd_size = vesa->reserved_mask_size;
|
|
screen_info->rsvd_pos = vesa->reserved_mask_pos;
|
|
}
|
|
|
|
int dm_pci_run_vga_bios(struct udevice *dev, int (*int15_handler)(void),
|
|
int exec_method)
|
|
{
|
|
struct pci_child_platdata *pplat = dev_get_parent_platdata(dev);
|
|
struct pci_rom_header *rom = NULL, *ram = NULL;
|
|
int vesa_mode = -1;
|
|
bool emulate, alloced;
|
|
int ret;
|
|
|
|
/* Only execute VGA ROMs */
|
|
if (((pplat->class >> 8) ^ PCI_CLASS_DISPLAY_VGA) & 0xff00) {
|
|
debug("%s: Class %#x, should be %#x\n", __func__, pplat->class,
|
|
PCI_CLASS_DISPLAY_VGA);
|
|
return -ENODEV;
|
|
}
|
|
|
|
if (!board_should_load_oprom(dev))
|
|
return -ENXIO;
|
|
|
|
ret = pci_rom_probe(dev, &rom);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = pci_rom_load(rom, &ram, &alloced);
|
|
if (ret)
|
|
goto err;
|
|
|
|
if (!board_should_run_oprom(dev)) {
|
|
ret = -ENXIO;
|
|
goto err;
|
|
}
|
|
|
|
#if defined(CONFIG_FRAMEBUFFER_SET_VESA_MODE) && \
|
|
defined(CONFIG_FRAMEBUFFER_VESA_MODE)
|
|
vesa_mode = CONFIG_FRAMEBUFFER_VESA_MODE;
|
|
#endif
|
|
debug("Selected vesa mode %#x\n", vesa_mode);
|
|
|
|
if (exec_method & PCI_ROM_USE_NATIVE) {
|
|
#ifdef CONFIG_X86
|
|
emulate = false;
|
|
#else
|
|
if (!(exec_method & PCI_ROM_ALLOW_FALLBACK)) {
|
|
printf("BIOS native execution is only available on x86\n");
|
|
ret = -ENOSYS;
|
|
goto err;
|
|
}
|
|
emulate = true;
|
|
#endif
|
|
} else {
|
|
#ifdef CONFIG_BIOSEMU
|
|
emulate = true;
|
|
#else
|
|
if (!(exec_method & PCI_ROM_ALLOW_FALLBACK)) {
|
|
printf("BIOS emulation not available - see CONFIG_BIOSEMU\n");
|
|
ret = -ENOSYS;
|
|
goto err;
|
|
}
|
|
emulate = false;
|
|
#endif
|
|
}
|
|
|
|
if (emulate) {
|
|
#ifdef CONFIG_BIOSEMU
|
|
BE_VGAInfo *info;
|
|
|
|
ret = biosemu_setup(dev, &info);
|
|
if (ret)
|
|
goto err;
|
|
biosemu_set_interrupt_handler(0x15, int15_handler);
|
|
ret = biosemu_run(dev, (uchar *)ram, 1 << 16, info,
|
|
true, vesa_mode, &mode_info);
|
|
if (ret)
|
|
goto err;
|
|
#endif
|
|
} else {
|
|
#if defined(CONFIG_X86) && CONFIG_IS_ENABLED(X86_32BIT_INIT)
|
|
bios_set_interrupt_handler(0x15, int15_handler);
|
|
|
|
bios_run_on_x86(dev, (unsigned long)ram, vesa_mode,
|
|
&mode_info);
|
|
#endif
|
|
}
|
|
debug("Final vesa mode %#x\n", mode_info.video_mode);
|
|
ret = 0;
|
|
|
|
err:
|
|
if (alloced)
|
|
free(ram);
|
|
return ret;
|
|
}
|
|
|
|
#ifdef CONFIG_DM_VIDEO
|
|
int vbe_setup_video_priv(struct vesa_mode_info *vesa,
|
|
struct video_priv *uc_priv,
|
|
struct video_uc_platdata *plat)
|
|
{
|
|
if (!vesa->x_resolution)
|
|
return -ENXIO;
|
|
uc_priv->xsize = vesa->x_resolution;
|
|
uc_priv->ysize = vesa->y_resolution;
|
|
switch (vesa->bits_per_pixel) {
|
|
case 32:
|
|
case 24:
|
|
uc_priv->bpix = VIDEO_BPP32;
|
|
break;
|
|
case 16:
|
|
uc_priv->bpix = VIDEO_BPP16;
|
|
break;
|
|
default:
|
|
return -EPROTONOSUPPORT;
|
|
}
|
|
plat->base = vesa->phys_base_ptr;
|
|
plat->size = vesa->bytes_per_scanline * vesa->y_resolution;
|
|
|
|
return 0;
|
|
}
|
|
|
|
int vbe_setup_video(struct udevice *dev, int (*int15_handler)(void))
|
|
{
|
|
struct video_uc_platdata *plat = dev_get_uclass_platdata(dev);
|
|
struct video_priv *uc_priv = dev_get_uclass_priv(dev);
|
|
int ret;
|
|
|
|
/* If we are running from EFI or coreboot, this can't work */
|
|
if (!ll_boot_init()) {
|
|
printf("Not available (previous bootloader prevents it)\n");
|
|
return -EPERM;
|
|
}
|
|
bootstage_start(BOOTSTAGE_ID_ACCUM_LCD, "vesa display");
|
|
ret = dm_pci_run_vga_bios(dev, int15_handler, PCI_ROM_USE_NATIVE |
|
|
PCI_ROM_ALLOW_FALLBACK);
|
|
bootstage_accum(BOOTSTAGE_ID_ACCUM_LCD);
|
|
if (ret) {
|
|
debug("failed to run video BIOS: %d\n", ret);
|
|
return ret;
|
|
}
|
|
|
|
ret = vbe_setup_video_priv(&mode_info.vesa, uc_priv, plat);
|
|
if (ret) {
|
|
debug("No video mode configured\n");
|
|
return ret;
|
|
}
|
|
|
|
printf("Video: %dx%dx%d\n", uc_priv->xsize, uc_priv->ysize,
|
|
mode_info.vesa.bits_per_pixel);
|
|
|
|
return 0;
|
|
}
|
|
#endif
|