mirror of
https://github.com/AsahiLinux/u-boot
synced 2024-11-18 18:59:44 +00:00
35f4f8e6fc
Commit 4afc4f37c7
("doc: FIT image: Clarify format and simplify
syntax") and delegated FPGA images to be added via the list of
"loadables" in lieu of the "fpga" property. Now actually implement
this in code.
Note that the "compatible" property is ignored for the time being, as
implementing "compatible" loading is beyond the scope of this change.
However, "u-boot,fpga-legacy" is accepted without warning.
Signed-off-by: Alexandru Gagniuc <mr.nuke.me@gmail.com>
806 lines
21 KiB
C
806 lines
21 KiB
C
// SPDX-License-Identifier: GPL-2.0+
|
|
/*
|
|
* Copyright (C) 2016 Google, Inc
|
|
* Written by Simon Glass <sjg@chromium.org>
|
|
*/
|
|
|
|
#include <common.h>
|
|
#include <errno.h>
|
|
#include <fpga.h>
|
|
#include <gzip.h>
|
|
#include <image.h>
|
|
#include <log.h>
|
|
#include <malloc.h>
|
|
#include <mapmem.h>
|
|
#include <spl.h>
|
|
#include <sysinfo.h>
|
|
#include <asm/cache.h>
|
|
#include <asm/global_data.h>
|
|
#include <linux/libfdt.h>
|
|
|
|
DECLARE_GLOBAL_DATA_PTR;
|
|
|
|
#ifndef CONFIG_SPL_LOAD_FIT_APPLY_OVERLAY_BUF_SZ
|
|
#define CONFIG_SPL_LOAD_FIT_APPLY_OVERLAY_BUF_SZ (64 * 1024)
|
|
#endif
|
|
|
|
#ifndef CONFIG_SYS_BOOTM_LEN
|
|
#define CONFIG_SYS_BOOTM_LEN (64 << 20)
|
|
#endif
|
|
|
|
struct spl_fit_info {
|
|
const void *fit; /* Pointer to a valid FIT blob */
|
|
size_t ext_data_offset; /* Offset to FIT external data (end of FIT) */
|
|
int images_node; /* FDT offset to "/images" node */
|
|
int conf_node; /* FDT offset to selected configuration node */
|
|
};
|
|
|
|
__weak void board_spl_fit_post_load(const void *fit)
|
|
{
|
|
}
|
|
|
|
__weak ulong board_spl_fit_size_align(ulong size)
|
|
{
|
|
return size;
|
|
}
|
|
|
|
static int find_node_from_desc(const void *fit, int node, const char *str)
|
|
{
|
|
int child;
|
|
|
|
if (node < 0)
|
|
return -EINVAL;
|
|
|
|
/* iterate the FIT nodes and find a matching description */
|
|
for (child = fdt_first_subnode(fit, node); child >= 0;
|
|
child = fdt_next_subnode(fit, child)) {
|
|
int len;
|
|
const char *desc = fdt_getprop(fit, child, "description", &len);
|
|
|
|
if (!desc)
|
|
continue;
|
|
|
|
if (!strcmp(desc, str))
|
|
return child;
|
|
}
|
|
|
|
return -ENOENT;
|
|
}
|
|
|
|
/**
|
|
* spl_fit_get_image_name(): By using the matching configuration subnode,
|
|
* retrieve the name of an image, specified by a property name and an index
|
|
* into that.
|
|
* @fit: Pointer to the FDT blob.
|
|
* @images: Offset of the /images subnode.
|
|
* @type: Name of the property within the configuration subnode.
|
|
* @index: Index into the list of strings in this property.
|
|
* @outname: Name of the image
|
|
*
|
|
* Return: 0 on success, or a negative error number
|
|
*/
|
|
static int spl_fit_get_image_name(const struct spl_fit_info *ctx,
|
|
const char *type, int index,
|
|
const char **outname)
|
|
{
|
|
struct udevice *sysinfo;
|
|
const char *name, *str;
|
|
__maybe_unused int node;
|
|
int len, i;
|
|
bool found = true;
|
|
|
|
name = fdt_getprop(ctx->fit, ctx->conf_node, type, &len);
|
|
if (!name) {
|
|
debug("cannot find property '%s': %d\n", type, len);
|
|
return -EINVAL;
|
|
}
|
|
|
|
str = name;
|
|
for (i = 0; i < index; i++) {
|
|
str = strchr(str, '\0') + 1;
|
|
if (!str || (str - name >= len)) {
|
|
found = false;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (!found && CONFIG_IS_ENABLED(SYSINFO) && !sysinfo_get(&sysinfo)) {
|
|
int rc;
|
|
/*
|
|
* no string in the property for this index. Check if the
|
|
* sysinfo-level code can supply one.
|
|
*/
|
|
rc = sysinfo_get_fit_loadable(sysinfo, index - i - 1, type,
|
|
&str);
|
|
if (rc && rc != -ENOENT)
|
|
return rc;
|
|
|
|
if (!rc) {
|
|
/*
|
|
* The sysinfo provided a name for a loadable.
|
|
* Try to match it against the description properties
|
|
* first. If no matching node is found, use it as a
|
|
* node name.
|
|
*/
|
|
int node;
|
|
int images = fdt_path_offset(ctx->fit, FIT_IMAGES_PATH);
|
|
|
|
node = find_node_from_desc(ctx->fit, images, str);
|
|
if (node > 0)
|
|
str = fdt_get_name(ctx->fit, node, NULL);
|
|
|
|
found = true;
|
|
}
|
|
}
|
|
|
|
if (!found) {
|
|
debug("no string for index %d\n", index);
|
|
return -E2BIG;
|
|
}
|
|
|
|
*outname = str;
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* spl_fit_get_image_node(): By using the matching configuration subnode,
|
|
* retrieve the name of an image, specified by a property name and an index
|
|
* into that.
|
|
* @fit: Pointer to the FDT blob.
|
|
* @images: Offset of the /images subnode.
|
|
* @type: Name of the property within the configuration subnode.
|
|
* @index: Index into the list of strings in this property.
|
|
*
|
|
* Return: the node offset of the respective image node or a negative
|
|
* error number.
|
|
*/
|
|
static int spl_fit_get_image_node(const struct spl_fit_info *ctx,
|
|
const char *type, int index)
|
|
{
|
|
const char *str;
|
|
int err;
|
|
int node;
|
|
|
|
err = spl_fit_get_image_name(ctx, type, index, &str);
|
|
if (err)
|
|
return err;
|
|
|
|
debug("%s: '%s'\n", type, str);
|
|
|
|
node = fdt_subnode_offset(ctx->fit, ctx->images_node, str);
|
|
if (node < 0) {
|
|
pr_err("cannot find image node '%s': %d\n", str, node);
|
|
return -EINVAL;
|
|
}
|
|
|
|
return node;
|
|
}
|
|
|
|
static int get_aligned_image_offset(struct spl_load_info *info, int offset)
|
|
{
|
|
/*
|
|
* If it is a FS read, get the first address before offset which is
|
|
* aligned to ARCH_DMA_MINALIGN. If it is raw read return the
|
|
* block number to which offset belongs.
|
|
*/
|
|
if (info->filename)
|
|
return offset & ~(ARCH_DMA_MINALIGN - 1);
|
|
|
|
return offset / info->bl_len;
|
|
}
|
|
|
|
static int get_aligned_image_overhead(struct spl_load_info *info, int offset)
|
|
{
|
|
/*
|
|
* If it is a FS read, get the difference between the offset and
|
|
* the first address before offset which is aligned to
|
|
* ARCH_DMA_MINALIGN. If it is raw read return the offset within the
|
|
* block.
|
|
*/
|
|
if (info->filename)
|
|
return offset & (ARCH_DMA_MINALIGN - 1);
|
|
|
|
return offset % info->bl_len;
|
|
}
|
|
|
|
static int get_aligned_image_size(struct spl_load_info *info, int data_size,
|
|
int offset)
|
|
{
|
|
data_size = data_size + get_aligned_image_overhead(info, offset);
|
|
|
|
if (info->filename)
|
|
return data_size;
|
|
|
|
return (data_size + info->bl_len - 1) / info->bl_len;
|
|
}
|
|
|
|
/**
|
|
* spl_load_fit_image(): load the image described in a certain FIT node
|
|
* @info: points to information about the device to load data from
|
|
* @sector: the start sector of the FIT image on the device
|
|
* @ctx: points to the FIT context structure
|
|
* @node: offset of the DT node describing the image to load (relative
|
|
* to @fit)
|
|
* @image_info: will be filled with information about the loaded image
|
|
* If the FIT node does not contain a "load" (address) property,
|
|
* the image gets loaded to the address pointed to by the
|
|
* load_addr member in this struct, if load_addr is not 0
|
|
*
|
|
* Return: 0 on success or a negative error number.
|
|
*/
|
|
static int spl_load_fit_image(struct spl_load_info *info, ulong sector,
|
|
const struct spl_fit_info *ctx, int node,
|
|
struct spl_image_info *image_info)
|
|
{
|
|
int offset;
|
|
size_t length;
|
|
int len;
|
|
ulong size;
|
|
ulong load_addr;
|
|
void *load_ptr;
|
|
void *src;
|
|
ulong overhead;
|
|
int nr_sectors;
|
|
uint8_t image_comp = -1, type = -1;
|
|
const void *data;
|
|
const void *fit = ctx->fit;
|
|
bool external_data = false;
|
|
|
|
if (IS_ENABLED(CONFIG_SPL_FPGA) ||
|
|
(IS_ENABLED(CONFIG_SPL_OS_BOOT) && IS_ENABLED(CONFIG_SPL_GZIP))) {
|
|
if (fit_image_get_type(fit, node, &type))
|
|
puts("Cannot get image type.\n");
|
|
else
|
|
debug("%s ", genimg_get_type_name(type));
|
|
}
|
|
|
|
if (IS_ENABLED(CONFIG_SPL_GZIP)) {
|
|
fit_image_get_comp(fit, node, &image_comp);
|
|
debug("%s ", genimg_get_comp_name(image_comp));
|
|
}
|
|
|
|
if (fit_image_get_load(fit, node, &load_addr)) {
|
|
if (!image_info->load_addr) {
|
|
printf("Can't load %s: No load address and no buffer\n",
|
|
fit_get_name(fit, node, NULL));
|
|
return -ENOBUFS;
|
|
}
|
|
load_addr = image_info->load_addr;
|
|
}
|
|
|
|
if (!fit_image_get_data_position(fit, node, &offset)) {
|
|
external_data = true;
|
|
} else if (!fit_image_get_data_offset(fit, node, &offset)) {
|
|
offset += ctx->ext_data_offset;
|
|
external_data = true;
|
|
}
|
|
|
|
if (external_data) {
|
|
void *src_ptr;
|
|
|
|
/* External data */
|
|
if (fit_image_get_data_size(fit, node, &len))
|
|
return -ENOENT;
|
|
|
|
src_ptr = map_sysmem(ALIGN(load_addr, ARCH_DMA_MINALIGN), len);
|
|
length = len;
|
|
|
|
overhead = get_aligned_image_overhead(info, offset);
|
|
nr_sectors = get_aligned_image_size(info, length, offset);
|
|
|
|
if (info->read(info,
|
|
sector + get_aligned_image_offset(info, offset),
|
|
nr_sectors, src_ptr) != nr_sectors)
|
|
return -EIO;
|
|
|
|
debug("External data: dst=%p, offset=%x, size=%lx\n",
|
|
src_ptr, offset, (unsigned long)length);
|
|
src = src_ptr + overhead;
|
|
} else {
|
|
/* Embedded data */
|
|
if (fit_image_get_data(fit, node, &data, &length)) {
|
|
puts("Cannot get image data/size\n");
|
|
return -ENOENT;
|
|
}
|
|
debug("Embedded data: dst=%lx, size=%lx\n", load_addr,
|
|
(unsigned long)length);
|
|
src = (void *)data; /* cast away const */
|
|
}
|
|
|
|
if (CONFIG_IS_ENABLED(FIT_SIGNATURE)) {
|
|
printf("## Checking hash(es) for Image %s ... ",
|
|
fit_get_name(fit, node, NULL));
|
|
if (!fit_image_verify_with_data(fit, node, src, length))
|
|
return -EPERM;
|
|
puts("OK\n");
|
|
}
|
|
|
|
if (CONFIG_IS_ENABLED(FIT_IMAGE_POST_PROCESS))
|
|
board_fit_image_post_process(&src, &length);
|
|
|
|
load_ptr = map_sysmem(load_addr, length);
|
|
if (IS_ENABLED(CONFIG_SPL_GZIP) && image_comp == IH_COMP_GZIP) {
|
|
size = length;
|
|
if (gunzip(load_ptr, CONFIG_SYS_BOOTM_LEN, src, &size)) {
|
|
puts("Uncompressing error\n");
|
|
return -EIO;
|
|
}
|
|
length = size;
|
|
} else {
|
|
memcpy(load_ptr, src, length);
|
|
}
|
|
|
|
if (image_info) {
|
|
ulong entry_point;
|
|
|
|
image_info->load_addr = load_addr;
|
|
image_info->size = length;
|
|
|
|
if (!fit_image_get_entry(fit, node, &entry_point))
|
|
image_info->entry_point = entry_point;
|
|
else
|
|
image_info->entry_point = FDT_ERROR;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static bool os_takes_devicetree(uint8_t os)
|
|
{
|
|
switch (os) {
|
|
case IH_OS_U_BOOT:
|
|
return true;
|
|
case IH_OS_LINUX:
|
|
return IS_ENABLED(CONFIG_SPL_OS_BOOT);
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
static int spl_fit_append_fdt(struct spl_image_info *spl_image,
|
|
struct spl_load_info *info, ulong sector,
|
|
const struct spl_fit_info *ctx)
|
|
{
|
|
struct spl_image_info image_info;
|
|
int node, ret = 0, index = 0;
|
|
|
|
/*
|
|
* Use the address following the image as target address for the
|
|
* device tree.
|
|
*/
|
|
image_info.load_addr = spl_image->load_addr + spl_image->size;
|
|
|
|
/* Figure out which device tree the board wants to use */
|
|
node = spl_fit_get_image_node(ctx, FIT_FDT_PROP, index++);
|
|
if (node < 0) {
|
|
debug("%s: cannot find FDT node\n", __func__);
|
|
|
|
/*
|
|
* U-Boot did not find a device tree inside the FIT image. Use
|
|
* the U-Boot device tree instead.
|
|
*/
|
|
if (gd->fdt_blob)
|
|
memcpy((void *)image_info.load_addr, gd->fdt_blob,
|
|
fdt_totalsize(gd->fdt_blob));
|
|
else
|
|
return node;
|
|
} else {
|
|
ret = spl_load_fit_image(info, sector, ctx, node,
|
|
&image_info);
|
|
if (ret < 0)
|
|
return ret;
|
|
}
|
|
|
|
/* Make the load-address of the FDT available for the SPL framework */
|
|
spl_image->fdt_addr = map_sysmem(image_info.load_addr, 0);
|
|
if (CONFIG_IS_ENABLED(FIT_IMAGE_TINY))
|
|
return 0;
|
|
|
|
if (CONFIG_IS_ENABLED(LOAD_FIT_APPLY_OVERLAY)) {
|
|
void *tmpbuffer = NULL;
|
|
|
|
for (; ; index++) {
|
|
node = spl_fit_get_image_node(ctx, FIT_FDT_PROP, index);
|
|
if (node == -E2BIG) {
|
|
debug("%s: No additional FDT node\n", __func__);
|
|
break;
|
|
} else if (node < 0) {
|
|
debug("%s: unable to find FDT node %d\n",
|
|
__func__, index);
|
|
continue;
|
|
}
|
|
|
|
if (!tmpbuffer) {
|
|
/*
|
|
* allocate memory to store the DT overlay
|
|
* before it is applied. It may not be used
|
|
* depending on how the overlay is stored, so
|
|
* don't fail yet if the allocation failed.
|
|
*/
|
|
tmpbuffer = malloc(CONFIG_SPL_LOAD_FIT_APPLY_OVERLAY_BUF_SZ);
|
|
if (!tmpbuffer)
|
|
debug("%s: unable to allocate space for overlays\n",
|
|
__func__);
|
|
}
|
|
image_info.load_addr = (ulong)tmpbuffer;
|
|
ret = spl_load_fit_image(info, sector, ctx,
|
|
node, &image_info);
|
|
if (ret < 0)
|
|
break;
|
|
|
|
/* Make room in FDT for changes from the overlay */
|
|
ret = fdt_increase_size(spl_image->fdt_addr,
|
|
image_info.size);
|
|
if (ret < 0)
|
|
break;
|
|
|
|
ret = fdt_overlay_apply_verbose(spl_image->fdt_addr,
|
|
(void *)image_info.load_addr);
|
|
if (ret) {
|
|
pr_err("failed to apply DT overlay %s\n",
|
|
fit_get_name(ctx->fit, node, NULL));
|
|
break;
|
|
}
|
|
|
|
debug("%s: DT overlay %s applied\n", __func__,
|
|
fit_get_name(ctx->fit, node, NULL));
|
|
}
|
|
free(tmpbuffer);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
/* Try to make space, so we can inject details on the loadables */
|
|
ret = fdt_shrink_to_minimum(spl_image->fdt_addr, 8192);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int spl_fit_record_loadable(const struct spl_fit_info *ctx, int index,
|
|
void *blob, struct spl_image_info *image)
|
|
{
|
|
int ret = 0;
|
|
const char *name;
|
|
int node;
|
|
|
|
if (CONFIG_IS_ENABLED(FIT_IMAGE_TINY))
|
|
return 0;
|
|
|
|
ret = spl_fit_get_image_name(ctx, "loadables", index, &name);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
node = spl_fit_get_image_node(ctx, "loadables", index);
|
|
|
|
ret = fdt_record_loadable(blob, index, name, image->load_addr,
|
|
image->size, image->entry_point,
|
|
fdt_getprop(ctx->fit, node, "type", NULL),
|
|
fdt_getprop(ctx->fit, node, "os", NULL));
|
|
return ret;
|
|
}
|
|
|
|
static int spl_fit_image_is_fpga(const void *fit, int node)
|
|
{
|
|
const char *type;
|
|
|
|
if (!IS_ENABLED(CONFIG_SPL_FPGA))
|
|
return 0;
|
|
|
|
type = fdt_getprop(fit, node, FIT_TYPE_PROP, NULL);
|
|
if (!type)
|
|
return 0;
|
|
|
|
return !strcmp(type, "fpga");
|
|
}
|
|
|
|
static int spl_fit_image_get_os(const void *fit, int noffset, uint8_t *os)
|
|
{
|
|
if (!CONFIG_IS_ENABLED(FIT_IMAGE_TINY) || CONFIG_IS_ENABLED(OS_BOOT))
|
|
return fit_image_get_os(fit, noffset, os);
|
|
|
|
const char *name = fdt_getprop(fit, noffset, FIT_OS_PROP, NULL);
|
|
if (!name)
|
|
return -ENOENT;
|
|
|
|
/*
|
|
* We don't care what the type of the image actually is,
|
|
* only whether or not it is U-Boot. This saves some
|
|
* space by omitting the large table of OS types.
|
|
*/
|
|
if (!strcmp(name, "u-boot"))
|
|
*os = IH_OS_U_BOOT;
|
|
else
|
|
*os = IH_OS_INVALID;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* The purpose of the FIT load buffer is to provide a memory location that is
|
|
* independent of the load address of any FIT component.
|
|
*/
|
|
static void *spl_get_fit_load_buffer(size_t size)
|
|
{
|
|
void *buf;
|
|
|
|
buf = malloc(size);
|
|
if (!buf) {
|
|
pr_err("Could not get FIT buffer of %lu bytes\n", (ulong)size);
|
|
pr_err("\tcheck CONFIG_SYS_SPL_MALLOC_SIZE\n");
|
|
buf = spl_get_load_buffer(0, size);
|
|
}
|
|
return buf;
|
|
}
|
|
|
|
/*
|
|
* Weak default function to allow customizing SPL fit loading for load-only
|
|
* use cases by allowing to skip the parsing/processing of the FIT contents
|
|
* (so that this can be done separately in a more customized fashion)
|
|
*/
|
|
__weak bool spl_load_simple_fit_skip_processing(void)
|
|
{
|
|
return false;
|
|
}
|
|
|
|
static void warn_deprecated(const char *msg)
|
|
{
|
|
printf("DEPRECATED: %s\n", msg);
|
|
printf("\tSee doc/uImage.FIT/source_file_format.txt\n");
|
|
}
|
|
|
|
static int spl_fit_upload_fpga(struct spl_fit_info *ctx, int node,
|
|
struct spl_image_info *fpga_image)
|
|
{
|
|
const char *compatible;
|
|
int ret;
|
|
|
|
debug("FPGA bitstream at: %x, size: %x\n",
|
|
(u32)fpga_image->load_addr, fpga_image->size);
|
|
|
|
compatible = fdt_getprop(ctx->fit, node, "compatible", NULL);
|
|
if (!compatible)
|
|
warn_deprecated("'fpga' image without 'compatible' property");
|
|
else if (strcmp(compatible, "u-boot,fpga-legacy"))
|
|
printf("Ignoring compatible = %s property\n", compatible);
|
|
|
|
ret = fpga_load(0, (void *)fpga_image->load_addr, fpga_image->size,
|
|
BIT_FULL);
|
|
if (ret) {
|
|
printf("%s: Cannot load the image to the FPGA\n", __func__);
|
|
return ret;
|
|
}
|
|
|
|
puts("FPGA image loaded from FIT\n");
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int spl_fit_load_fpga(struct spl_fit_info *ctx,
|
|
struct spl_load_info *info, ulong sector)
|
|
{
|
|
int node, ret;
|
|
|
|
struct spl_image_info fpga_image = {
|
|
.load_addr = 0,
|
|
};
|
|
|
|
node = spl_fit_get_image_node(ctx, "fpga", 0);
|
|
if (node < 0)
|
|
return node;
|
|
|
|
warn_deprecated("'fpga' property in config node. Use 'loadables'");
|
|
|
|
/* Load the image and set up the fpga_image structure */
|
|
ret = spl_load_fit_image(info, sector, ctx, node, &fpga_image);
|
|
if (ret) {
|
|
printf("%s: Cannot load the FPGA: %i\n", __func__, ret);
|
|
return ret;
|
|
}
|
|
|
|
return spl_fit_upload_fpga(ctx, node, &fpga_image);
|
|
}
|
|
|
|
static int spl_simple_fit_read(struct spl_fit_info *ctx,
|
|
struct spl_load_info *info, ulong sector,
|
|
const void *fit_header)
|
|
{
|
|
unsigned long count, size;
|
|
int sectors;
|
|
void *buf;
|
|
|
|
/*
|
|
* For FIT with external data, figure out where the external images
|
|
* start. This is the base for the data-offset properties in each
|
|
* image.
|
|
*/
|
|
size = ALIGN(fdt_totalsize(fit_header), 4);
|
|
size = board_spl_fit_size_align(size);
|
|
ctx->ext_data_offset = ALIGN(size, 4);
|
|
|
|
/*
|
|
* So far we only have one block of data from the FIT. Read the entire
|
|
* thing, including that first block.
|
|
*
|
|
* For FIT with data embedded, data is loaded as part of FIT image.
|
|
* For FIT with external data, data is not loaded in this step.
|
|
*/
|
|
sectors = get_aligned_image_size(info, size, 0);
|
|
buf = spl_get_fit_load_buffer(sectors * info->bl_len);
|
|
|
|
count = info->read(info, sector, sectors, buf);
|
|
ctx->fit = buf;
|
|
debug("fit read sector %lx, sectors=%d, dst=%p, count=%lu, size=0x%lx\n",
|
|
sector, sectors, buf, count, size);
|
|
|
|
return (count == 0) ? -EIO : 0;
|
|
}
|
|
|
|
static int spl_simple_fit_parse(struct spl_fit_info *ctx)
|
|
{
|
|
/* Find the correct subnode under "/configurations" */
|
|
ctx->conf_node = fit_find_config_node(ctx->fit);
|
|
if (ctx->conf_node < 0)
|
|
return -EINVAL;
|
|
|
|
if (IS_ENABLED(CONFIG_SPL_FIT_SIGNATURE)) {
|
|
printf("## Checking hash(es) for config %s ... ",
|
|
fit_get_name(ctx->fit, ctx->conf_node, NULL));
|
|
if (fit_config_verify(ctx->fit, ctx->conf_node))
|
|
return -EPERM;
|
|
puts("OK\n");
|
|
}
|
|
|
|
/* find the node holding the images information */
|
|
ctx->images_node = fdt_path_offset(ctx->fit, FIT_IMAGES_PATH);
|
|
if (ctx->images_node < 0) {
|
|
debug("%s: Cannot find /images node: %d\n", __func__,
|
|
ctx->images_node);
|
|
return -EINVAL;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
int spl_load_simple_fit(struct spl_image_info *spl_image,
|
|
struct spl_load_info *info, ulong sector, void *fit)
|
|
{
|
|
struct spl_image_info image_info;
|
|
struct spl_fit_info ctx;
|
|
int node = -1;
|
|
int ret;
|
|
int index = 0;
|
|
int firmware_node;
|
|
|
|
ret = spl_simple_fit_read(&ctx, info, sector, fit);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
/* skip further processing if requested to enable load-only use cases */
|
|
if (spl_load_simple_fit_skip_processing())
|
|
return 0;
|
|
|
|
ret = spl_simple_fit_parse(&ctx);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
if (IS_ENABLED(CONFIG_SPL_FPGA))
|
|
spl_fit_load_fpga(&ctx, info, sector);
|
|
|
|
/*
|
|
* Find the U-Boot image using the following search order:
|
|
* - start at 'firmware' (e.g. an ARM Trusted Firmware)
|
|
* - fall back 'kernel' (e.g. a Falcon-mode OS boot
|
|
* - fall back to using the first 'loadables' entry
|
|
*/
|
|
if (node < 0)
|
|
node = spl_fit_get_image_node(&ctx, FIT_FIRMWARE_PROP, 0);
|
|
|
|
if (node < 0 && IS_ENABLED(CONFIG_SPL_OS_BOOT))
|
|
node = spl_fit_get_image_node(&ctx, FIT_KERNEL_PROP, 0);
|
|
|
|
if (node < 0) {
|
|
debug("could not find firmware image, trying loadables...\n");
|
|
node = spl_fit_get_image_node(&ctx, "loadables", 0);
|
|
/*
|
|
* If we pick the U-Boot image from "loadables", start at
|
|
* the second image when later loading additional images.
|
|
*/
|
|
index = 1;
|
|
}
|
|
if (node < 0) {
|
|
debug("%s: Cannot find u-boot image node: %d\n",
|
|
__func__, node);
|
|
return -1;
|
|
}
|
|
|
|
/* Load the image and set up the spl_image structure */
|
|
ret = spl_load_fit_image(info, sector, &ctx, node, spl_image);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/*
|
|
* For backward compatibility, we treat the first node that is
|
|
* as a U-Boot image, if no OS-type has been declared.
|
|
*/
|
|
if (!spl_fit_image_get_os(ctx.fit, node, &spl_image->os))
|
|
debug("Image OS is %s\n", genimg_get_os_name(spl_image->os));
|
|
else if (!IS_ENABLED(CONFIG_SPL_OS_BOOT))
|
|
spl_image->os = IH_OS_U_BOOT;
|
|
|
|
/*
|
|
* Booting a next-stage U-Boot may require us to append the FDT.
|
|
* We allow this to fail, as the U-Boot image might embed its FDT.
|
|
*/
|
|
if (os_takes_devicetree(spl_image->os)) {
|
|
ret = spl_fit_append_fdt(spl_image, info, sector, &ctx);
|
|
if (ret < 0 && spl_image->os != IH_OS_U_BOOT)
|
|
return ret;
|
|
}
|
|
|
|
firmware_node = node;
|
|
/* Now check if there are more images for us to load */
|
|
for (; ; index++) {
|
|
uint8_t os_type = IH_OS_INVALID;
|
|
|
|
node = spl_fit_get_image_node(&ctx, "loadables", index);
|
|
if (node < 0)
|
|
break;
|
|
|
|
/*
|
|
* if the firmware is also a loadable, skip it because
|
|
* it already has been loaded. This is typically the case with
|
|
* u-boot.img generated by mkimage.
|
|
*/
|
|
if (firmware_node == node)
|
|
continue;
|
|
|
|
image_info.load_addr = 0;
|
|
ret = spl_load_fit_image(info, sector, &ctx, node, &image_info);
|
|
if (ret < 0) {
|
|
printf("%s: can't load image loadables index %d (ret = %d)\n",
|
|
__func__, index, ret);
|
|
return ret;
|
|
}
|
|
|
|
if (spl_fit_image_is_fpga(ctx.fit, node))
|
|
spl_fit_upload_fpga(&ctx, node, &image_info);
|
|
|
|
if (!spl_fit_image_get_os(ctx.fit, node, &os_type))
|
|
debug("Loadable is %s\n", genimg_get_os_name(os_type));
|
|
|
|
if (os_takes_devicetree(os_type)) {
|
|
spl_fit_append_fdt(&image_info, info, sector, &ctx);
|
|
spl_image->fdt_addr = image_info.fdt_addr;
|
|
}
|
|
|
|
/*
|
|
* If the "firmware" image did not provide an entry point,
|
|
* use the first valid entry point from the loadables.
|
|
*/
|
|
if (spl_image->entry_point == FDT_ERROR &&
|
|
image_info.entry_point != FDT_ERROR)
|
|
spl_image->entry_point = image_info.entry_point;
|
|
|
|
/* Record our loadables into the FDT */
|
|
if (spl_image->fdt_addr)
|
|
spl_fit_record_loadable(&ctx, index,
|
|
spl_image->fdt_addr,
|
|
&image_info);
|
|
}
|
|
|
|
/*
|
|
* If a platform does not provide CONFIG_SYS_UBOOT_START, U-Boot's
|
|
* Makefile will set it to 0 and it will end up as the entry point
|
|
* here. What it actually means is: use the load address.
|
|
*/
|
|
if (spl_image->entry_point == FDT_ERROR || spl_image->entry_point == 0)
|
|
spl_image->entry_point = spl_image->load_addr;
|
|
|
|
spl_image->flags |= SPL_FIT_FOUND;
|
|
|
|
if (IS_ENABLED(CONFIG_IMX_HAB))
|
|
board_spl_fit_post_load(ctx.fit);
|
|
|
|
return 0;
|
|
}
|