u-boot/board/freescale/common/vid.c
Tom Rini 5155207ae1 global: Migrate CONFIG_SYS_MPC8* symbols to the CFG_SYS namespace
Migrate all of COFIG_SYS_MPC* to the CFG_SYS namespace.

Signed-off-by: Tom Rini <trini@konsulko.com>
2022-11-10 10:08:55 -05:00

796 lines
21 KiB
C

// SPDX-License-Identifier: GPL-2.0+
/*
* Copyright 2014 Freescale Semiconductor, Inc.
* Copyright 2020-21 NXP
* Copyright 2020 Stephen Carlson <stcarlso@linux.microsoft.com>
*/
#include <common.h>
#include <command.h>
#include <env.h>
#include <i2c.h>
#include <irq_func.h>
#include <log.h>
#include <asm/io.h>
#ifdef CONFIG_FSL_LSCH2
#include <asm/arch/immap_lsch2.h>
#elif defined(CONFIG_FSL_LSCH3)
#include <asm/arch/immap_lsch3.h>
#else
#include <asm/immap_85xx.h>
#endif
#include <linux/delay.h>
#include "i2c_common.h"
#include "vid.h"
#ifndef I2C_VOL_MONITOR_BUS
#define I2C_VOL_MONITOR_BUS 0
#endif
/* Voltages are generally handled in mV to keep them as integers */
#define MV_PER_V 1000
/*
* Select the channel on the I2C mux (on some NXP boards) that contains
* the voltage regulator to use for VID. Return 0 for success or nonzero
* for failure.
*/
int __weak i2c_multiplexer_select_vid_channel(u8 channel)
{
return 0;
}
/*
* Compensate for a board specific voltage drop between regulator and SoC.
* Returns the voltage offset in mV.
*/
int __weak board_vdd_drop_compensation(void)
{
return 0;
}
/*
* Performs any board specific adjustments after the VID voltage has been
* set. Return 0 for success or nonzero for failure.
*/
int __weak board_adjust_vdd(int vdd)
{
return 0;
}
/*
* Processor specific method of converting the fuse value read from VID
* registers into the core voltage to supply. Return the voltage in mV.
*/
u16 __weak soc_get_fuse_vid(int vid_index)
{
/* Default VDD for Layerscape Chassis 1 devices */
static const u16 vdd[32] = {
0, /* unused */
9875, /* 0.9875V */
9750,
9625,
9500,
9375,
9250,
9125,
9000,
8875,
8750,
8625,
8500,
8375,
8250,
8125,
10000, /* 1.0000V */
10125,
10250,
10375,
10500,
10625,
10750,
10875,
11000,
0, /* reserved */
};
return vdd[vid_index];
}
#ifndef I2C_VOL_MONITOR_ADDR
#define I2C_VOL_MONITOR_ADDR 0
#endif
#if defined(CONFIG_VOL_MONITOR_IR36021_SET) || \
defined(CONFIG_VOL_MONITOR_IR36021_READ)
/*
* Get the i2c address configuration for the IR regulator chip
*
* There are some variance in the RDB HW regarding the I2C address configuration
* for the IR regulator chip, which is likely a problem of external resistor
* accuracy. So we just check each address in a hopefully non-intrusive mode
* and use the first one that seems to work
*
* The IR chip can show up under the following addresses:
* 0x08 (Verified on T1040RDB-PA,T4240RDB-PB,X-T4240RDB-16GPA)
* 0x09 (Verified on T1040RDB-PA)
* 0x38 (Verified on T2080QDS, T2081QDS, T4240RDB)
*/
static int find_ir_chip_on_i2c(void)
{
int i2caddress, ret, i;
u8 mfrID;
const int ir_i2c_addr[] = {0x38, 0x08, 0x09};
DEVICE_HANDLE_T dev;
/* Check all the address */
for (i = 0; i < (sizeof(ir_i2c_addr)/sizeof(ir_i2c_addr[0])); i++) {
i2caddress = ir_i2c_addr[i];
ret = fsl_i2c_get_device(i2caddress, I2C_VOL_MONITOR_BUS, &dev);
if (!ret) {
ret = I2C_READ(dev, IR36021_MFR_ID_OFFSET,
(void *)&mfrID, sizeof(mfrID));
/* If manufacturer ID matches the IR36021 */
if (!ret && mfrID == IR36021_MFR_ID)
return i2caddress;
}
}
return -1;
}
#endif
/* Maximum loop count waiting for new voltage to take effect */
#define MAX_LOOP_WAIT_NEW_VOL 100
/* Maximum loop count waiting for the voltage to be stable */
#define MAX_LOOP_WAIT_VOL_STABLE 100
/*
* read_voltage from sensor on I2C bus
* We use average of 4 readings, waiting for WAIT_FOR_ADC before
* another reading
*/
#define NUM_READINGS 4 /* prefer to be power of 2 for efficiency */
/* If an INA220 chip is available, we can use it to read back the voltage
* as it may have a higher accuracy than the IR chip for the same purpose
*/
#ifdef CONFIG_VOL_MONITOR_INA220
#define WAIT_FOR_ADC 532 /* wait for 532 microseconds for ADC */
#define ADC_MIN_ACCURACY 4
#else
#define WAIT_FOR_ADC 138 /* wait for 138 microseconds for ADC */
#define ADC_MIN_ACCURACY 4
#endif
#ifdef CONFIG_VOL_MONITOR_INA220
static int read_voltage_from_INA220(int i2caddress)
{
int i, ret, voltage_read = 0;
u16 vol_mon;
u8 buf[2];
DEVICE_HANDLE_T dev;
/* Open device handle */
ret = fsl_i2c_get_device(i2caddress, I2C_VOL_MONITOR_BUS, &dev);
if (ret)
return ret;
for (i = 0; i < NUM_READINGS; i++) {
ret = I2C_READ(dev, I2C_VOL_MONITOR_BUS_V_OFFSET,
(void *)&buf[0], sizeof(buf));
if (ret) {
printf("VID: failed to read core voltage\n");
return ret;
}
vol_mon = (buf[0] << 8) | buf[1];
if (vol_mon & I2C_VOL_MONITOR_BUS_V_OVF) {
printf("VID: Core voltage sensor error\n");
return -1;
}
debug("VID: bus voltage reads 0x%04x\n", vol_mon);
/* LSB = 4mv */
voltage_read += (vol_mon >> I2C_VOL_MONITOR_BUS_V_SHIFT) * 4;
udelay(WAIT_FOR_ADC);
}
/* calculate the average */
voltage_read /= NUM_READINGS;
return voltage_read;
}
#endif
#ifdef CONFIG_VOL_MONITOR_IR36021_READ
/* read voltage from IR */
static int read_voltage_from_IR(int i2caddress)
{
int i, ret, voltage_read = 0;
u16 vol_mon;
u8 buf;
DEVICE_HANDLE_T dev;
/* Open device handle */
ret = fsl_i2c_get_device(i2caddress, I2C_VOL_MONITOR_BUS, &dev);
if (ret)
return ret;
for (i = 0; i < NUM_READINGS; i++) {
ret = I2C_READ(dev, IR36021_LOOP1_VOUT_OFFSET, (void *)&buf,
sizeof(buf));
if (ret) {
printf("VID: failed to read core voltage\n");
return ret;
}
vol_mon = buf;
if (!vol_mon) {
printf("VID: Core voltage sensor error\n");
return -1;
}
debug("VID: bus voltage reads 0x%02x\n", vol_mon);
/* Resolution is 1/128V. We scale up here to get 1/128mV
* and divide at the end
*/
voltage_read += vol_mon * MV_PER_V;
udelay(WAIT_FOR_ADC);
}
/* Scale down to the real mV as IR resolution is 1/128V, rounding up */
voltage_read = DIV_ROUND_UP(voltage_read, 128);
/* calculate the average */
voltage_read /= NUM_READINGS;
/* Compensate for a board specific voltage drop between regulator and
* SoC before converting into an IR VID value
*/
voltage_read -= board_vdd_drop_compensation();
return voltage_read;
}
#endif
#if defined(CONFIG_VOL_MONITOR_ISL68233_READ) || \
defined(CONFIG_VOL_MONITOR_LTC3882_READ) || \
defined(CONFIG_VOL_MONITOR_ISL68233_SET) || \
defined(CONFIG_VOL_MONITOR_LTC3882_SET)
/*
* The message displayed if the VOUT exponent causes a resolution
* worse than 1.0 V (if exponent is >= 0).
*/
#define VOUT_WARNING "VID: VOUT_MODE exponent has resolution worse than 1 V!\n"
/* Checks the PMBus voltage monitor for the format used for voltage values */
static int get_pmbus_multiplier(DEVICE_HANDLE_T dev)
{
u8 mode;
int exponent, multiplier, ret;
ret = I2C_READ(dev, PMBUS_CMD_VOUT_MODE, &mode, sizeof(mode));
if (ret) {
printf("VID: unable to determine voltage multiplier\n");
return 1;
}
/* Upper 3 bits is mode, lower 5 bits is exponent */
exponent = (int)mode & 0x1F;
mode >>= 5;
switch (mode) {
case 0:
/* Linear, 5 bit twos component exponent */
if (exponent & 0x10) {
multiplier = 1 << (16 - (exponent & 0xF));
} else {
/* If exponent is >= 0, then resolution is 1 V! */
printf(VOUT_WARNING);
multiplier = 1;
}
break;
case 1:
/* VID code identifier */
printf("VID: custom VID codes are not supported\n");
multiplier = MV_PER_V;
break;
default:
/* Direct, in mV */
multiplier = MV_PER_V;
break;
}
debug("VID: calculated multiplier is %d\n", multiplier);
return multiplier;
}
#endif
#if defined(CONFIG_VOL_MONITOR_ISL68233_READ) || \
defined(CONFIG_VOL_MONITOR_LTC3882_READ)
static int read_voltage_from_pmbus(int i2caddress)
{
int ret, multiplier, vout;
u8 channel = PWM_CHANNEL0;
u16 vcode;
DEVICE_HANDLE_T dev;
/* Open device handle */
ret = fsl_i2c_get_device(i2caddress, I2C_VOL_MONITOR_BUS, &dev);
if (ret)
return ret;
/* Select the right page */
ret = I2C_WRITE(dev, PMBUS_CMD_PAGE, &channel, sizeof(channel));
if (ret) {
printf("VID: failed to select VDD page %d\n", channel);
return ret;
}
/* VOUT is little endian */
ret = I2C_READ(dev, PMBUS_CMD_READ_VOUT, (void *)&vcode, sizeof(vcode));
if (ret) {
printf("VID: failed to read core voltage\n");
return ret;
}
/* Scale down to the real mV */
multiplier = get_pmbus_multiplier(dev);
vout = (int)vcode;
/* Multiplier 1000 (direct mode) requires no change to convert */
if (multiplier != MV_PER_V)
vout = DIV_ROUND_UP(vout * MV_PER_V, multiplier);
return vout - board_vdd_drop_compensation();
}
#endif
static int read_voltage(int i2caddress)
{
int voltage_read;
#ifdef CONFIG_VOL_MONITOR_INA220
voltage_read = read_voltage_from_INA220(I2C_VOL_MONITOR_ADDR);
#elif defined CONFIG_VOL_MONITOR_IR36021_READ
voltage_read = read_voltage_from_IR(i2caddress);
#elif defined(CONFIG_VOL_MONITOR_ISL68233_READ) || \
defined(CONFIG_VOL_MONITOR_LTC3882_READ)
voltage_read = read_voltage_from_pmbus(i2caddress);
#else
voltage_read = -1;
#endif
return voltage_read;
}
#ifdef CONFIG_VOL_MONITOR_IR36021_SET
/*
* We need to calculate how long before the voltage stops to drop
* or increase. It returns with the loop count. Each loop takes
* several readings (WAIT_FOR_ADC)
*/
static int wait_for_new_voltage(int vdd, int i2caddress)
{
int timeout, vdd_current;
vdd_current = read_voltage(i2caddress);
/* wait until voltage starts to reach the target. Voltage slew
* rates by typical regulators will always lead to stable readings
* within each fairly long ADC interval in comparison to the
* intended voltage delta change until the target voltage is
* reached. The fairly small voltage delta change to any target
* VID voltage also means that this function will always complete
* within few iterations. If the timeout was ever reached, it would
* point to a serious failure in the regulator system.
*/
for (timeout = 0;
abs(vdd - vdd_current) > (IR_VDD_STEP_UP + IR_VDD_STEP_DOWN) &&
timeout < MAX_LOOP_WAIT_NEW_VOL; timeout++) {
vdd_current = read_voltage(i2caddress);
}
if (timeout >= MAX_LOOP_WAIT_NEW_VOL) {
printf("VID: Voltage adjustment timeout\n");
return -1;
}
return timeout;
}
/*
* Blocks and reads the VID voltage until it stabilizes, or the
* timeout expires
*/
static int wait_for_voltage_stable(int i2caddress)
{
int timeout, vdd_current, vdd;
vdd = read_voltage(i2caddress);
udelay(NUM_READINGS * WAIT_FOR_ADC);
vdd_current = read_voltage(i2caddress);
/*
* The maximum timeout is
* MAX_LOOP_WAIT_VOL_STABLE * NUM_READINGS * WAIT_FOR_ADC
*/
for (timeout = MAX_LOOP_WAIT_VOL_STABLE;
abs(vdd - vdd_current) > ADC_MIN_ACCURACY &&
timeout > 0; timeout--) {
vdd = vdd_current;
udelay(NUM_READINGS * WAIT_FOR_ADC);
vdd_current = read_voltage(i2caddress);
}
if (timeout == 0)
return -1;
return vdd_current;
}
/* Sets the VID voltage using the IR36021 */
static int set_voltage_to_IR(int i2caddress, int vdd)
{
int wait, vdd_last;
int ret;
u8 vid;
DEVICE_HANDLE_T dev;
/* Open device handle */
ret = fsl_i2c_get_device(i2caddress, I2C_VOL_MONITOR_BUS, &dev);
if (ret)
return ret;
/* Compensate for a board specific voltage drop between regulator and
* SoC before converting into an IR VID value
*/
vdd += board_vdd_drop_compensation();
#ifdef CONFIG_FSL_LSCH2
vid = DIV_ROUND_UP(vdd - 265, 5);
#else
vid = DIV_ROUND_UP(vdd - 245, 5);
#endif
ret = I2C_WRITE(dev, IR36021_LOOP1_MANUAL_ID_OFFSET, (void *)&vid,
sizeof(vid));
if (ret) {
printf("VID: failed to write new voltage\n");
return -1;
}
wait = wait_for_new_voltage(vdd, i2caddress);
if (wait < 0)
return -1;
debug("VID: Waited %d us\n", wait * NUM_READINGS * WAIT_FOR_ADC);
vdd_last = wait_for_voltage_stable(i2caddress);
if (vdd_last < 0)
return -1;
debug("VID: Current voltage is %d mV\n", vdd_last);
return vdd_last;
}
#endif
#if defined(CONFIG_VOL_MONITOR_ISL68233_SET) || \
defined(CONFIG_VOL_MONITOR_LTC3882_SET)
static int set_voltage_to_pmbus(int i2caddress, int vdd)
{
int ret, vdd_last, vdd_target = vdd;
int count = MAX_LOOP_WAIT_NEW_VOL, temp = 0, multiplier;
unsigned char value;
/* The data to be sent with the PMBus command PAGE_PLUS_WRITE */
u8 buffer[5] = { 0x04, PWM_CHANNEL0, PMBUS_CMD_VOUT_COMMAND, 0, 0 };
DEVICE_HANDLE_T dev;
/* Open device handle */
ret = fsl_i2c_get_device(i2caddress, I2C_VOL_MONITOR_BUS, &dev);
if (ret)
return ret;
/* Scale up to the proper value for the VOUT command, little endian */
multiplier = get_pmbus_multiplier(dev);
vdd += board_vdd_drop_compensation();
if (multiplier != MV_PER_V)
vdd = DIV_ROUND_UP(vdd * multiplier, MV_PER_V);
buffer[3] = vdd & 0xFF;
buffer[4] = (vdd & 0xFF00) >> 8;
/* Check write protect state */
ret = I2C_READ(dev, PMBUS_CMD_WRITE_PROTECT, (void *)&value,
sizeof(value));
if (ret)
goto exit;
if (value != EN_WRITE_ALL_CMD) {
value = EN_WRITE_ALL_CMD;
ret = I2C_WRITE(dev, PMBUS_CMD_WRITE_PROTECT,
(void *)&value, sizeof(value));
if (ret)
goto exit;
}
/* Write the desired voltage code to the regulator */
ret = I2C_WRITE(dev, PMBUS_CMD_PAGE_PLUS_WRITE, (void *)&buffer[0],
sizeof(buffer));
if (ret) {
printf("VID: I2C failed to write to the voltage regulator\n");
return -1;
}
exit:
/* Wait for the voltage to get to the desired value */
do {
vdd_last = read_voltage_from_pmbus(i2caddress);
if (vdd_last < 0) {
printf("VID: Couldn't read sensor abort VID adjust\n");
return -1;
}
count--;
temp = vdd_last - vdd_target;
} while ((abs(temp) > 2) && (count > 0));
return vdd_last;
}
#endif
static int set_voltage(int i2caddress, int vdd)
{
int vdd_last = -1;
#ifdef CONFIG_VOL_MONITOR_IR36021_SET
vdd_last = set_voltage_to_IR(i2caddress, vdd);
#elif defined(CONFIG_VOL_MONITOR_ISL68233_SET) || \
defined(CONFIG_VOL_MONITOR_LTC3882_SET)
vdd_last = set_voltage_to_pmbus(i2caddress, vdd);
#else
#error Specific voltage monitor must be defined
#endif
return vdd_last;
}
int adjust_vdd(ulong vdd_override)
{
int re_enable = disable_interrupts();
#if defined(CONFIG_FSL_LSCH2) || defined(CONFIG_FSL_LSCH3)
struct ccsr_gur *gur = (void *)(CONFIG_SYS_FSL_GUTS_ADDR);
#else
ccsr_gur_t __iomem *gur =
(void __iomem *)(CFG_SYS_MPC85xx_GUTS_ADDR);
#endif
u8 vid;
u32 fusesr;
int vdd_current, vdd_last, vdd_target;
int ret, i2caddress = I2C_VOL_MONITOR_ADDR;
unsigned long vdd_string_override;
char *vdd_string;
#if defined(CONFIG_VOL_MONITOR_IR36021_SET) || \
defined(CONFIG_VOL_MONITOR_IR36021_READ)
u8 buf;
DEVICE_HANDLE_T dev;
#endif
/*
* VID is used according to the table below
* ---------------------------------------
* | DA_V |
* |-------------------------------------|
* | 5b00000 | 5b00001-5b11110 | 5b11111 |
* ---------------+---------+-----------------+---------|
* | D | 5b00000 | NO VID | VID = DA_V | NO VID |
* | A |----------+---------+-----------------+---------|
* | _ | 5b00001 |VID = | VID = |VID = |
* | V | ~ | DA_V_ALT| DA_V_ALT | DA_A_VLT|
* | _ | 5b11110 | | | |
* | A |----------+---------+-----------------+---------|
* | L | 5b11111 | No VID | VID = DA_V | NO VID |
* | T | | | | |
* ------------------------------------------------------
*/
#if defined(CONFIG_FSL_LSCH3)
fusesr = in_le32(&gur->dcfg_fusesr);
vid = (fusesr >> FSL_CHASSIS3_DCFG_FUSESR_ALTVID_SHIFT) &
FSL_CHASSIS3_DCFG_FUSESR_ALTVID_MASK;
if (vid == 0 || vid == FSL_CHASSIS3_DCFG_FUSESR_ALTVID_MASK) {
vid = (fusesr >> FSL_CHASSIS3_DCFG_FUSESR_VID_SHIFT) &
FSL_CHASSIS3_DCFG_FUSESR_VID_MASK;
}
#elif defined(CONFIG_FSL_LSCH2)
fusesr = in_be32(&gur->dcfg_fusesr);
vid = (fusesr >> FSL_CHASSIS2_DCFG_FUSESR_ALTVID_SHIFT) &
FSL_CHASSIS2_DCFG_FUSESR_ALTVID_MASK;
if (vid == 0 || vid == FSL_CHASSIS2_DCFG_FUSESR_ALTVID_MASK) {
vid = (fusesr >> FSL_CHASSIS2_DCFG_FUSESR_VID_SHIFT) &
FSL_CHASSIS2_DCFG_FUSESR_VID_MASK;
}
#else
fusesr = in_be32(&gur->dcfg_fusesr);
vid = (fusesr >> FSL_CORENET_DCFG_FUSESR_ALTVID_SHIFT) &
FSL_CORENET_DCFG_FUSESR_ALTVID_MASK;
if (vid == 0 || vid == FSL_CORENET_DCFG_FUSESR_ALTVID_MASK) {
vid = (fusesr >> FSL_CORENET_DCFG_FUSESR_VID_SHIFT) &
FSL_CORENET_DCFG_FUSESR_VID_MASK;
}
#endif
vdd_target = soc_get_fuse_vid((int)vid);
ret = i2c_multiplexer_select_vid_channel(I2C_MUX_CH_VOL_MONITOR);
if (ret) {
debug("VID: I2C failed to switch channel\n");
ret = -1;
goto exit;
}
#if defined(CONFIG_VOL_MONITOR_IR36021_SET) || \
defined(CONFIG_VOL_MONITOR_IR36021_READ)
ret = find_ir_chip_on_i2c();
if (ret < 0) {
printf("VID: Could not find voltage regulator on I2C.\n");
ret = -1;
goto exit;
} else {
i2caddress = ret;
debug("VID: IR Chip found on I2C address 0x%02x\n", i2caddress);
}
ret = fsl_i2c_get_device(i2caddress, I2C_VOL_MONITOR_BUS, &dev);
if (ret)
return ret;
/* check IR chip work on Intel mode */
ret = I2C_READ(dev, IR36021_INTEL_MODE_OFFSET, (void *)&buf,
sizeof(buf));
if (ret) {
printf("VID: failed to read IR chip mode.\n");
ret = -1;
goto exit;
}
if ((buf & IR36021_MODE_MASK) != IR36021_INTEL_MODE) {
printf("VID: IR Chip is not used in Intel mode.\n");
ret = -1;
goto exit;
}
#endif
/* check override variable for overriding VDD */
vdd_string = env_get(CONFIG_VID_FLS_ENV);
debug("VID: Initial VDD value is %d mV\n",
DIV_ROUND_UP(vdd_target, 10));
if (vdd_override == 0 && vdd_string &&
!strict_strtoul(vdd_string, 10, &vdd_string_override))
vdd_override = vdd_string_override;
if (vdd_override >= VDD_MV_MIN && vdd_override <= VDD_MV_MAX) {
vdd_target = vdd_override * 10; /* convert to 1/10 mV */
debug("VID: VDD override is %lu\n", vdd_override);
} else if (vdd_override != 0) {
printf("VID: Invalid VDD value.\n");
}
if (vdd_target == 0) {
debug("VID: VID not used\n");
ret = 0;
goto exit;
} else {
/* divide and round up by 10 to get a value in mV */
vdd_target = DIV_ROUND_UP(vdd_target, 10);
debug("VID: vid = %d mV\n", vdd_target);
}
/*
* Read voltage monitor to check real voltage.
*/
vdd_last = read_voltage(i2caddress);
if (vdd_last < 0) {
printf("VID: Couldn't read sensor abort VID adjustment\n");
ret = -1;
goto exit;
}
vdd_current = vdd_last;
debug("VID: Core voltage is currently at %d mV\n", vdd_last);
#if defined(CONFIG_VOL_MONITOR_LTC3882_SET) || \
defined(CONFIG_VOL_MONITOR_ISL68233_SET)
/* Set the target voltage */
vdd_current = set_voltage(i2caddress, vdd_target);
vdd_last = vdd_current;
#else
/*
* Adjust voltage to at or one step above target.
* As measurements are less precise than setting the values
* we may run through dummy steps that cancel each other
* when stepping up and then down.
*/
while (vdd_last > 0 &&
vdd_last < vdd_target) {
vdd_current += IR_VDD_STEP_UP;
vdd_last = set_voltage(i2caddress, vdd_current);
}
while (vdd_last > 0 &&
vdd_last > vdd_target + (IR_VDD_STEP_DOWN - 1)) {
vdd_current -= IR_VDD_STEP_DOWN;
vdd_last = set_voltage(i2caddress, vdd_current);
}
#endif
/* Board specific adjustments */
if (board_adjust_vdd(vdd_target) < 0) {
ret = -1;
goto exit;
}
if (vdd_last > 0)
printf("VID: Core voltage after adjustment is at %d mV\n",
vdd_last);
else
ret = -1;
exit:
if (re_enable)
enable_interrupts();
i2c_multiplexer_select_vid_channel(I2C_MUX_CH_DEFAULT);
return ret;
}
static int print_vdd(void)
{
int vdd_last, ret, i2caddress = I2C_VOL_MONITOR_ADDR;
ret = i2c_multiplexer_select_vid_channel(I2C_MUX_CH_VOL_MONITOR);
if (ret) {
debug("VID : I2c failed to switch channel\n");
return -1;
}
#if defined(CONFIG_VOL_MONITOR_IR36021_SET) || \
defined(CONFIG_VOL_MONITOR_IR36021_READ)
ret = find_ir_chip_on_i2c();
if (ret < 0) {
printf("VID: Could not find voltage regulator on I2C.\n");
goto exit;
} else {
i2caddress = ret;
debug("VID: IR Chip found on I2C address 0x%02x\n", i2caddress);
}
#endif
/*
* Read voltage monitor to check real voltage.
*/
vdd_last = read_voltage(i2caddress);
if (vdd_last < 0) {
printf("VID: Couldn't read sensor abort VID adjustment\n");
goto exit;
}
printf("VID: Core voltage is at %d mV\n", vdd_last);
exit:
i2c_multiplexer_select_vid_channel(I2C_MUX_CH_DEFAULT);
return ret < 0 ? -1 : 0;
}
static int do_vdd_override(struct cmd_tbl *cmdtp,
int flag, int argc,
char *const argv[])
{
ulong override;
int ret = 0;
if (argc < 2)
return CMD_RET_USAGE;
if (!strict_strtoul(argv[1], 10, &override)) {
ret = adjust_vdd(override);
if (ret < 0)
return CMD_RET_FAILURE;
} else
return CMD_RET_USAGE;
return 0;
}
static int do_vdd_read(struct cmd_tbl *cmdtp, int flag, int argc,
char *const argv[])
{
if (argc < 1)
return CMD_RET_USAGE;
print_vdd();
return 0;
}
U_BOOT_CMD(
vdd_override, 2, 0, do_vdd_override,
"override VDD",
" - override with the voltage specified in mV, eg. 1050"
);
U_BOOT_CMD(
vdd_read, 1, 0, do_vdd_read,
"read VDD",
" - Read the voltage specified in mV"
)