u-boot/drivers/pwm/pwm-cadence-ttc.c
Michal Simek fb92cc2c17 pwm: Add driver for cadence TTC
TTC has three modes of operations. Timer, PWM and input counters.

There is already driver for timer under CADENCE_TTC_TIMER which is used for
ZynqMP R5 configuration.
This driver is targeting PWM which is for example configuration which can
be used for fan control.
The driver has been tested on Xilinx Kria SOM platform where fan is
connected to one PL pin. When TTC output is connected via EMIO to PL pin
TTC pwm can be configured and tested for example like this:
pwm config 0 0 10000 1200
pwm enable 0 0
pwm config 0 0 10000 1400
pwm config 0 0 10000 1600

Signed-off-by: Michal Simek <michal.simek@xilinx.com>
Reviewed-by: Sean Anderson <sean.anderson@seco.com>
Link: https://lore.kernel.org/r/915a662ddb88f7a958ca1f307e8fea59af9d7feb.1634303847.git.michal.simek@xilinx.com
2022-03-30 14:50:47 +02:00

261 lines
6.5 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* (C) Copyright 2021 Xilinx, Inc. Michal Simek
*/
#define LOG_CATEGORY UCLASS_PWM
#include <clk.h>
#include <common.h>
#include <div64.h>
#include <dm.h>
#include <log.h>
#include <pwm.h>
#include <asm/io.h>
#include <log.h>
#include <div64.h>
#include <linux/bitfield.h>
#include <linux/math64.h>
#include <linux/log2.h>
#include <dm/device_compat.h>
#define CLOCK_CONTROL 0
#define COUNTER_CONTROL 0xc
#define INTERVAL_COUNTER 0x24
#define MATCH_1_COUNTER 0x30
#define CLK_FALLING_EDGE BIT(6)
#define CLK_SRC_EXTERNAL BIT(5)
#define CLK_PRESCALE_MASK GENMASK(4, 1)
#define CLK_PRESCALE_ENABLE BIT(0)
#define COUNTER_WAVE_POL BIT(6)
#define COUNTER_WAVE_DISABLE BIT(5)
#define COUNTER_RESET BIT(4)
#define COUNTER_MATCH_ENABLE BIT(3)
#define COUNTER_DECREMENT_ENABLE BIT(2)
#define COUNTER_INTERVAL_ENABLE BIT(1)
#define COUNTER_COUNTING_DISABLE BIT(0)
#define NSEC_PER_SEC 1000000000L
#define TTC_REG(reg, channel) ((reg) + (channel) * sizeof(u32))
#define TTC_CLOCK_CONTROL(reg, channel) \
TTC_REG((reg) + CLOCK_CONTROL, (channel))
#define TTC_COUNTER_CONTROL(reg, channel) \
TTC_REG((reg) + COUNTER_CONTROL, (channel))
#define TTC_INTERVAL_COUNTER(reg, channel) \
TTC_REG((reg) + INTERVAL_COUNTER, (channel))
#define TTC_MATCH_1_COUNTER(reg, channel) \
TTC_REG((reg) + MATCH_1_COUNTER, (channel))
struct cadence_ttc_pwm_plat {
u8 *regs;
u32 timer_width;
};
struct cadence_ttc_pwm_priv {
u8 *regs;
u32 timer_width;
u32 timer_mask;
unsigned long frequency;
bool invert[2];
};
static int cadence_ttc_pwm_set_invert(struct udevice *dev, uint channel,
bool polarity)
{
struct cadence_ttc_pwm_priv *priv = dev_get_priv(dev);
if (channel > 2) {
dev_err(dev, "Unsupported channel number %d(max 2)\n", channel);
return -EINVAL;
}
priv->invert[channel] = polarity;
dev_dbg(dev, "polarity=%u. Please config PWM again\n", polarity);
return 0;
}
static int cadence_ttc_pwm_set_config(struct udevice *dev, uint channel,
uint period_ns, uint duty_ns)
{
struct cadence_ttc_pwm_priv *priv = dev_get_priv(dev);
u32 counter_ctrl, clock_ctrl;
int period_clocks, duty_clocks, prescaler;
dev_dbg(dev, "channel %d, duty %d/period %d ns\n", channel,
duty_ns, period_ns);
if (channel > 2) {
dev_err(dev, "Unsupported channel number %d(max 2)\n", channel);
return -EINVAL;
}
/* Make sure counter is stopped */
counter_ctrl = readl(TTC_COUNTER_CONTROL(priv->regs, channel));
setbits_le32(TTC_COUNTER_CONTROL(priv->regs, channel),
COUNTER_COUNTING_DISABLE | COUNTER_WAVE_DISABLE);
/* Calculate period, prescaler and set clock control register */
period_clocks = div64_u64(((int64_t)period_ns * priv->frequency),
NSEC_PER_SEC);
prescaler = ilog2(period_clocks) + 1 - priv->timer_width;
if (prescaler < 0)
prescaler = 0;
clock_ctrl = readl(TTC_CLOCK_CONTROL(priv->regs, channel));
if (!prescaler) {
clock_ctrl &= ~(CLK_PRESCALE_ENABLE | CLK_PRESCALE_MASK);
} else {
clock_ctrl &= ~CLK_PRESCALE_MASK;
clock_ctrl |= CLK_PRESCALE_ENABLE;
clock_ctrl |= FIELD_PREP(CLK_PRESCALE_MASK, prescaler - 1);
};
/* External source is not handled by this driver now */
clock_ctrl &= ~CLK_SRC_EXTERNAL;
writel(clock_ctrl, TTC_CLOCK_CONTROL(priv->regs, channel));
/* Calculate interval and set counter control value */
duty_clocks = div64_u64(((int64_t)duty_ns * priv->frequency),
NSEC_PER_SEC);
writel((period_clocks >> prescaler) & priv->timer_mask,
TTC_INTERVAL_COUNTER(priv->regs, channel));
writel((duty_clocks >> prescaler) & priv->timer_mask,
TTC_MATCH_1_COUNTER(priv->regs, channel));
/* Restore/reset counter */
counter_ctrl &= ~COUNTER_DECREMENT_ENABLE;
counter_ctrl |= COUNTER_INTERVAL_ENABLE |
COUNTER_RESET |
COUNTER_MATCH_ENABLE;
if (priv->invert[channel])
counter_ctrl |= COUNTER_WAVE_POL;
else
counter_ctrl &= ~COUNTER_WAVE_POL;
writel(counter_ctrl, TTC_COUNTER_CONTROL(priv->regs, channel));
dev_dbg(dev, "%d/%d clocks, prescaler 2^%d\n", duty_clocks,
period_clocks, prescaler);
return 0;
};
static int cadence_ttc_pwm_set_enable(struct udevice *dev, uint channel,
bool enable)
{
struct cadence_ttc_pwm_priv *priv = dev_get_priv(dev);
if (channel > 2) {
dev_err(dev, "Unsupported channel number %d(max 2)\n", channel);
return -EINVAL;
}
dev_dbg(dev, "Enable: %d, channel %d\n", enable, channel);
if (enable) {
clrbits_le32(TTC_COUNTER_CONTROL(priv->regs, channel),
COUNTER_COUNTING_DISABLE |
COUNTER_WAVE_DISABLE);
setbits_le32(TTC_COUNTER_CONTROL(priv->regs, channel),
COUNTER_RESET);
} else {
setbits_le32(TTC_COUNTER_CONTROL(priv->regs, channel),
COUNTER_COUNTING_DISABLE |
COUNTER_WAVE_DISABLE);
}
return 0;
};
static int cadence_ttc_pwm_probe(struct udevice *dev)
{
struct cadence_ttc_pwm_priv *priv = dev_get_priv(dev);
struct cadence_ttc_pwm_plat *plat = dev_get_plat(dev);
struct clk clk;
int ret;
priv->regs = plat->regs;
priv->timer_width = plat->timer_width;
priv->timer_mask = GENMASK(priv->timer_width - 1, 0);
ret = clk_get_by_index(dev, 0, &clk);
if (ret < 0) {
dev_err(dev, "failed to get clock\n");
return ret;
}
priv->frequency = clk_get_rate(&clk);
if (IS_ERR_VALUE(priv->frequency)) {
dev_err(dev, "failed to get rate\n");
return priv->frequency;
}
dev_dbg(dev, "Clk frequency: %ld\n", priv->frequency);
ret = clk_enable(&clk);
if (ret) {
dev_err(dev, "failed to enable clock\n");
return ret;
}
return 0;
}
static int cadence_ttc_pwm_of_to_plat(struct udevice *dev)
{
struct cadence_ttc_pwm_plat *plat = dev_get_plat(dev);
const char *cells;
cells = dev_read_prop(dev, "#pwm-cells", NULL);
if (!cells)
return -EINVAL;
plat->regs = dev_read_addr_ptr(dev);
plat->timer_width = dev_read_u32_default(dev, "timer-width", 16);
return 0;
}
static int cadence_ttc_pwm_bind(struct udevice *dev)
{
const char *cells;
cells = dev_read_prop(dev, "#pwm-cells", NULL);
if (!cells)
return -ENODEV;
return 0;
}
static const struct pwm_ops cadence_ttc_pwm_ops = {
.set_invert = cadence_ttc_pwm_set_invert,
.set_config = cadence_ttc_pwm_set_config,
.set_enable = cadence_ttc_pwm_set_enable,
};
static const struct udevice_id cadence_ttc_pwm_ids[] = {
{ .compatible = "cdns,ttc" },
{ }
};
U_BOOT_DRIVER(cadence_ttc_pwm) = {
.name = "cadence_ttc_pwm",
.id = UCLASS_PWM,
.of_match = cadence_ttc_pwm_ids,
.ops = &cadence_ttc_pwm_ops,
.bind = cadence_ttc_pwm_bind,
.of_to_plat = cadence_ttc_pwm_of_to_plat,
.probe = cadence_ttc_pwm_probe,
.priv_auto = sizeof(struct cadence_ttc_pwm_priv),
.plat_auto = sizeof(struct cadence_ttc_pwm_plat),
};