u-boot/board/micronas/vct/ebi_onenand.c
Stefan Roese 50752790bc MIPS: Add VCT board series support (Part 1/3)
Signed-off-by: Stefan Roese <sr@denx.de>
2009-01-27 23:08:08 +09:00

198 lines
5.3 KiB
C

/*
* (C) Copyright 2008 Stefan Roese <sr@denx.de>, DENX Software Engineering
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 of
* the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston,
* MA 02111-1307 USA
*/
#include <common.h>
#include <asm/io.h>
#include <linux/mtd/mtd.h>
#include <linux/mtd/onenand.h>
#include "vct.h"
#define BURST_SIZE_WORDS 4
static u16 ebi_nand_read_word(void __iomem *addr)
{
reg_write(EBI_CPU_IO_ACCS(EBI_BASE), (EXT_DEVICE_CHANNEL_2 | (u32)addr));
ebi_wait();
return reg_read(EBI_IO_ACCS_DATA(EBI_BASE)) >> 16;
}
static void ebi_nand_write_word(u16 data, void __iomem * addr)
{
ebi_wait();
reg_write(EBI_IO_ACCS_DATA(EBI_BASE), (data << 16));
reg_write(EBI_CPU_IO_ACCS(EBI_BASE),
EXT_DEVICE_CHANNEL_2 | EBI_CPU_WRITE | (u32)addr);
ebi_wait();
}
/*
* EBI initialization for OneNAND FLASH access
*/
int ebi_init_onenand(void)
{
reg_write(EBI_DEV1_CONFIG1(EBI_BASE), 0x83000);
reg_write(EBI_DEV2_CONFIG1(EBI_BASE), 0x00403002);
reg_write(EBI_DEV2_CONFIG2(EBI_BASE), 0x50);
reg_write(EBI_DEV3_CONFIG1(EBI_BASE), 0x00403002);
reg_write(EBI_DEV3_CONFIG2(EBI_BASE), 0x0); /* byte/word ordering */
reg_write(EBI_DEV2_TIM1_RD1(EBI_BASE), 0x00504000);
reg_write(EBI_DEV2_TIM1_RD2(EBI_BASE), 0x00001000);
reg_write(EBI_DEV2_TIM1_WR1(EBI_BASE), 0x12002223);
reg_write(EBI_DEV2_TIM1_WR2(EBI_BASE), 0x3FC02220);
reg_write(EBI_DEV3_TIM1_RD1(EBI_BASE), 0x00504000);
reg_write(EBI_DEV3_TIM1_RD2(EBI_BASE), 0x00001000);
reg_write(EBI_DEV3_TIM1_WR1(EBI_BASE), 0x05001000);
reg_write(EBI_DEV3_TIM1_WR2(EBI_BASE), 0x00010200);
reg_write(EBI_DEV2_TIM_EXT(EBI_BASE), 0xFFF00000);
reg_write(EBI_DEV2_EXT_ACC(EBI_BASE), 0x0FFFFFFF);
reg_write(EBI_DEV3_TIM_EXT(EBI_BASE), 0xFFF00000);
reg_write(EBI_DEV3_EXT_ACC(EBI_BASE), 0x0FFFFFFF);
/* prepare DMA configuration for EBI */
reg_write(EBI_DEV3_FIFO_CONFIG(EBI_BASE), 0x0101ff00);
/* READ only no byte order change, TAG 1 used */
reg_write(EBI_DEV3_DMA_CONFIG2(EBI_BASE), 0x00000004);
reg_write(EBI_TAG1_SYS_ID(EBI_BASE), 0x0); /* SCC DMA channel 0 */
reg_write(EBI_TAG2_SYS_ID(EBI_BASE), 0x1);
reg_write(EBI_TAG3_SYS_ID(EBI_BASE), 0x2);
reg_write(EBI_TAG4_SYS_ID(EBI_BASE), 0x3);
return 0;
}
static void *memcpy_16_from_onenand(void *dst, const void *src, unsigned int len)
{
void *ret = dst;
u16 *d = dst;
u16 *s = (u16 *)src;
len >>= 1;
while (len-- > 0)
*d++ = ebi_nand_read_word(s++);
return ret;
}
static void *memcpy_32_from_onenand(void *dst, const void *src, unsigned int len)
{
void *ret = dst;
u32 *d = (u32 *)dst;
u32 s = (u32)src;
u32 bytes_per_block = BURST_SIZE_WORDS * sizeof(int);
u32 n_blocks = len / bytes_per_block;
u32 block = 0;
u32 burst_word;
for (block = 0; block < n_blocks; block++) {
/* Trigger read channel 3 */
reg_write(EBI_CPU_IO_ACCS(EBI_BASE),
(EXT_DEVICE_CHANNEL_3 | (s + (block * bytes_per_block))));
/* Poll status to see whether read has finished */
ebi_wait();
/* Squirrel the data away in a safe place */
for (burst_word = 0; burst_word < BURST_SIZE_WORDS; burst_word++)
*d++ = reg_read(EBI_IO_ACCS_DATA(EBI_BASE));
}
return ret;
}
static void *memcpy_16_to_onenand(void *dst, const void *src, unsigned int len)
{
void *ret = dst;
u16 *d = dst;
u16 *s = (u16 *)src;
len >>= 1;
while (len-- > 0)
ebi_nand_write_word(*s++, d++);
return ret;
}
static inline int onenand_bufferram_offset(struct mtd_info *mtd, int area)
{
struct onenand_chip *this = mtd->priv;
if (ONENAND_CURRENT_BUFFERRAM(this)) {
if (area == ONENAND_DATARAM)
return mtd->writesize;
if (area == ONENAND_SPARERAM)
return mtd->oobsize;
}
return 0;
}
static int ebi_read_bufferram(struct mtd_info *mtd, loff_t addr, int area,
unsigned char *buffer, int offset,
size_t count)
{
struct onenand_chip *this = mtd->priv;
void __iomem *bufferram;
bufferram = this->base + area;
bufferram += onenand_bufferram_offset(mtd, area);
if (count < 4)
memcpy_16_from_onenand(buffer, bufferram + offset, count);
else
memcpy_32_from_onenand(buffer, bufferram + offset, count);
return 0;
}
static int ebi_write_bufferram(struct mtd_info *mtd, loff_t addr, int area,
const unsigned char *buffer, int offset,
size_t count)
{
struct onenand_chip *this = mtd->priv;
void __iomem *bufferram;
bufferram = this->base + area;
bufferram += onenand_bufferram_offset(mtd, area);
memcpy_16_to_onenand(bufferram + offset, buffer, count);
return 0;
}
void onenand_board_init(struct mtd_info *mtd)
{
struct onenand_chip *chip = mtd->priv;
/*
* Insert board specific OneNAND access functions
*/
chip->read_word = ebi_nand_read_word;
chip->write_word = ebi_nand_write_word;
chip->read_bufferram = ebi_read_bufferram;
chip->read_spareram = ebi_read_bufferram;
chip->write_bufferram = ebi_write_bufferram;
}