u-boot/arch/arm/cpu/armv8/fsl-layerscape/soc.c
Mathew McBride 07164d0ef1 arch: arm: fsl-layerscape: allow "opt-out" of fsl_setenv_bootcmd
Allow individual Layerscape boards to opt-out of fsl_setenv_bootcmd
by declaring the original function as weak.

fsl_setenv_bootcmd is used to change the bootcmd based on the
TF-A boot source (e.g QSPI vs SD/MMC) for reasons including
secure boot / integrity measurements and DPAA2 configuration loading.
See previous discussion at [1].

On the Ten64 board, our bootcmd is the same across
all TF-A boot sources so we don't want this behaviour.

Signed-off-by: Mathew McBride <matt@traverse.com.au>

[1] https://patchwork.ozlabs.org/project/uboot/patch/20211110044639.7070-3-matt@traverse.com.au/#2790037

Reviewed-by: Peng Fan <peng.fan@nxp.com>
2023-08-03 09:40:50 -04:00

989 lines
25 KiB
C

// SPDX-License-Identifier: GPL-2.0+
/*
* Copyright 2014-2015 Freescale Semiconductor
* Copyright 2019-2021 NXP
*/
#include <common.h>
#include <clock_legacy.h>
#include <cpu_func.h>
#include <env.h>
#include <fsl_immap.h>
#include <fsl_ifc.h>
#include <init.h>
#include <linux/sizes.h>
#include <log.h>
#include <asm/arch/fsl_serdes.h>
#include <asm/arch/soc.h>
#include <asm/cache.h>
#include <asm/io.h>
#include <asm/global_data.h>
#include <asm/arch-fsl-layerscape/config.h>
#include <asm/arch-fsl-layerscape/ns_access.h>
#include <asm/arch-fsl-layerscape/fsl_icid.h>
#include <asm/gic-v3.h>
#ifdef CONFIG_LAYERSCAPE_NS_ACCESS
#include <fsl_csu.h>
#endif
#ifdef CONFIG_SYS_FSL_DDR
#include <fsl_ddr_sdram.h>
#include <fsl_ddr.h>
#endif
#ifdef CONFIG_CHAIN_OF_TRUST
#include <fsl_validate.h>
#endif
#include <fsl_immap.h>
#include <dm.h>
#include <dm/device_compat.h>
#include <linux/err.h>
#ifdef CONFIG_GIC_V3_ITS
DECLARE_GLOBAL_DATA_PTR;
#endif
#ifdef CONFIG_GIC_V3_ITS
#define PENDTABLE_MAX_SZ ALIGN(BIT(ITS_MAX_LPI_NRBITS), SZ_64K)
#define PROPTABLE_MAX_SZ ALIGN(BIT(ITS_MAX_LPI_NRBITS) / 8, SZ_64K)
#define GIC_LPI_SIZE ALIGN(cpu_numcores() * PENDTABLE_MAX_SZ + \
PROPTABLE_MAX_SZ, SZ_1M)
static int fdt_add_resv_mem_gic_rd_tables(void *blob, u64 base, size_t size)
{
int err;
struct fdt_memory gic_rd_tables;
gic_rd_tables.start = base;
gic_rd_tables.end = base + size - 1;
err = fdtdec_add_reserved_memory(blob, "gic-rd-tables", &gic_rd_tables,
NULL, 0, NULL, 0);
if (err < 0)
debug("%s: failed to add reserved memory: %d\n", __func__, err);
return err;
}
int ls_gic_rd_tables_init(void *blob)
{
u64 gic_lpi_base;
int ret;
gic_lpi_base = ALIGN(gd->arch.resv_ram - GIC_LPI_SIZE, SZ_64K);
ret = fdt_add_resv_mem_gic_rd_tables(blob, gic_lpi_base, GIC_LPI_SIZE);
if (ret)
return ret;
ret = gic_lpi_tables_init(gic_lpi_base, cpu_numcores());
if (ret)
debug("%s: failed to init gic-lpi-tables\n", __func__);
return ret;
}
#endif
bool soc_has_dp_ddr(void)
{
struct ccsr_gur __iomem *gur = (void *)(CFG_SYS_FSL_GUTS_ADDR);
u32 svr = gur_in32(&gur->svr);
/* LS2085A, LS2088A, LS2048A has DP_DDR */
if ((SVR_SOC_VER(svr) == SVR_LS2085A) ||
(SVR_SOC_VER(svr) == SVR_LS2088A) ||
(SVR_SOC_VER(svr) == SVR_LS2048A))
return true;
return false;
}
bool soc_has_aiop(void)
{
struct ccsr_gur __iomem *gur = (void *)(CFG_SYS_FSL_GUTS_ADDR);
u32 svr = gur_in32(&gur->svr);
/* LS2085A has AIOP */
if (SVR_SOC_VER(svr) == SVR_LS2085A)
return true;
return false;
}
static inline void set_usb_txvreftune(u32 __iomem *scfg, u32 offset)
{
scfg_clrsetbits32(scfg + offset / 4,
0xF << 6,
SCFG_USB_TXVREFTUNE << 6);
}
static void erratum_a009008(void)
{
#ifdef CONFIG_SYS_FSL_ERRATUM_A009008
u32 __iomem *scfg = (u32 __iomem *)SCFG_BASE;
#if defined(CONFIG_ARCH_LS1043A) || defined(CONFIG_ARCH_LS1046A) || \
defined(CONFIG_ARCH_LS1012A)
set_usb_txvreftune(scfg, SCFG_USB3PRM1CR_USB1);
#if defined(CONFIG_ARCH_LS1043A) || defined(CONFIG_ARCH_LS1046A)
set_usb_txvreftune(scfg, SCFG_USB3PRM1CR_USB2);
set_usb_txvreftune(scfg, SCFG_USB3PRM1CR_USB3);
#endif
#elif defined(CONFIG_ARCH_LS2080A)
set_usb_txvreftune(scfg, SCFG_USB3PRM1CR);
#endif
#endif /* CONFIG_SYS_FSL_ERRATUM_A009008 */
}
static inline void set_usb_sqrxtune(u32 __iomem *scfg, u32 offset)
{
scfg_clrbits32(scfg + offset / 4,
SCFG_USB_SQRXTUNE_MASK << 23);
}
static void erratum_a009798(void)
{
#ifdef CONFIG_SYS_FSL_ERRATUM_A009798
u32 __iomem *scfg = (u32 __iomem *)SCFG_BASE;
#if defined(CONFIG_ARCH_LS1043A) || defined(CONFIG_ARCH_LS1046A) || \
defined(CONFIG_ARCH_LS1012A)
set_usb_sqrxtune(scfg, SCFG_USB3PRM1CR_USB1);
#if defined(CONFIG_ARCH_LS1043A) || defined(CONFIG_ARCH_LS1046A)
set_usb_sqrxtune(scfg, SCFG_USB3PRM1CR_USB2);
set_usb_sqrxtune(scfg, SCFG_USB3PRM1CR_USB3);
#endif
#elif defined(CONFIG_ARCH_LS2080A)
set_usb_sqrxtune(scfg, SCFG_USB3PRM1CR);
#endif
#endif /* CONFIG_SYS_FSL_ERRATUM_A009798 */
}
#if defined(CONFIG_ARCH_LS1043A) || defined(CONFIG_ARCH_LS1046A) || \
defined(CONFIG_ARCH_LS1012A)
static inline void set_usb_pcstxswingfull(u32 __iomem *scfg, u32 offset)
{
scfg_clrsetbits32(scfg + offset / 4,
0x7F << 9,
SCFG_USB_PCSTXSWINGFULL << 9);
}
#endif
static void erratum_a008997(void)
{
#ifdef CONFIG_SYS_FSL_ERRATUM_A008997
#if defined(CONFIG_ARCH_LS1043A) || defined(CONFIG_ARCH_LS1046A) || \
defined(CONFIG_ARCH_LS1012A)
u32 __iomem *scfg = (u32 __iomem *)SCFG_BASE;
set_usb_pcstxswingfull(scfg, SCFG_USB3PRM2CR_USB1);
#if defined(CONFIG_ARCH_LS1043A) || defined(CONFIG_ARCH_LS1046A)
set_usb_pcstxswingfull(scfg, SCFG_USB3PRM2CR_USB2);
set_usb_pcstxswingfull(scfg, SCFG_USB3PRM2CR_USB3);
#endif
#elif defined(CONFIG_ARCH_LS1028A)
clrsetbits_le32(DCSR_BASE + DCSR_USB_IOCR1,
0x7F << 11,
DCSR_USB_PCSTXSWINGFULL << 11);
#endif
#endif /* CONFIG_SYS_FSL_ERRATUM_A008997 */
}
#if defined(CONFIG_ARCH_LS1043A) || defined(CONFIG_ARCH_LS1046A) || \
defined(CONFIG_ARCH_LS1012A)
#define PROGRAM_USB_PHY_RX_OVRD_IN_HI(phy) \
out_be16((phy) + SCFG_USB_PHY_RX_OVRD_IN_HI, USB_PHY_RX_EQ_VAL_1); \
out_be16((phy) + SCFG_USB_PHY_RX_OVRD_IN_HI, USB_PHY_RX_EQ_VAL_2); \
out_be16((phy) + SCFG_USB_PHY_RX_OVRD_IN_HI, USB_PHY_RX_EQ_VAL_3); \
out_be16((phy) + SCFG_USB_PHY_RX_OVRD_IN_HI, USB_PHY_RX_EQ_VAL_4)
#elif defined(CONFIG_ARCH_LS2080A) || defined(CONFIG_ARCH_LS1088A) || \
defined(CONFIG_ARCH_LS1028A) || defined(CONFIG_ARCH_LX2160A) || \
defined(CONFIG_ARCH_LX2162A)
#define PROGRAM_USB_PHY_RX_OVRD_IN_HI(phy) \
out_le16((phy) + DCSR_USB_PHY_RX_OVRD_IN_HI, USB_PHY_RX_EQ_VAL_1); \
out_le16((phy) + DCSR_USB_PHY_RX_OVRD_IN_HI, USB_PHY_RX_EQ_VAL_2); \
out_le16((phy) + DCSR_USB_PHY_RX_OVRD_IN_HI, USB_PHY_RX_EQ_VAL_3); \
out_le16((phy) + DCSR_USB_PHY_RX_OVRD_IN_HI, USB_PHY_RX_EQ_VAL_4)
#endif
static void erratum_a009007(void)
{
if (!IS_ENABLED(CONFIG_SYS_FSL_ERRATUM_A009007))
return;
#if defined(CONFIG_ARCH_LS1043A) || defined(CONFIG_ARCH_LS1046A) || \
defined(CONFIG_ARCH_LS1012A)
void __iomem *usb_phy = (void __iomem *)SCFG_USB_PHY1;
PROGRAM_USB_PHY_RX_OVRD_IN_HI(usb_phy);
#if defined(CONFIG_ARCH_LS1043A) || defined(CONFIG_ARCH_LS1046A)
usb_phy = (void __iomem *)SCFG_USB_PHY2;
PROGRAM_USB_PHY_RX_OVRD_IN_HI(usb_phy);
usb_phy = (void __iomem *)SCFG_USB_PHY3;
PROGRAM_USB_PHY_RX_OVRD_IN_HI(usb_phy);
#endif
#elif defined(CONFIG_ARCH_LS2080A) || defined(CONFIG_ARCH_LS1088A) || \
defined(CONFIG_ARCH_LS1028A)
void __iomem *dcsr = (void __iomem *)DCSR_BASE;
PROGRAM_USB_PHY_RX_OVRD_IN_HI(dcsr + DCSR_USB_PHY1);
PROGRAM_USB_PHY_RX_OVRD_IN_HI(dcsr + DCSR_USB_PHY2);
#endif /* CONFIG_SYS_FSL_ERRATUM_A009007 */
}
#if defined(CONFIG_FSL_LSCH3)
static void erratum_a050204(void)
{
#if defined(CONFIG_ARCH_LX2160A) || defined(CONFIG_ARCH_LX2162A)
void __iomem *dcsr = (void __iomem *)DCSR_BASE;
PROGRAM_USB_PHY_RX_OVRD_IN_HI(dcsr + DCSR_USB_PHY1);
PROGRAM_USB_PHY_RX_OVRD_IN_HI(dcsr + DCSR_USB_PHY2);
#endif
}
/*
* This erratum requires setting a value to eddrtqcr1 to
* optimal the DDR performance.
*/
static void erratum_a008336(void)
{
#ifdef CONFIG_SYS_FSL_ERRATUM_A008336
u32 *eddrtqcr1;
#ifdef CFG_SYS_FSL_DCSR_DDR_ADDR
eddrtqcr1 = (void *)CFG_SYS_FSL_DCSR_DDR_ADDR + 0x800;
if (fsl_ddr_get_version(0) == 0x50200)
out_le32(eddrtqcr1, 0x63b30002);
#endif
#ifdef CFG_SYS_FSL_DCSR_DDR2_ADDR
eddrtqcr1 = (void *)CFG_SYS_FSL_DCSR_DDR2_ADDR + 0x800;
if (fsl_ddr_get_version(0) == 0x50200)
out_le32(eddrtqcr1, 0x63b30002);
#endif
#endif
}
/*
* This erratum requires a register write before being Memory
* controller 3 being enabled.
*/
static void erratum_a008514(void)
{
#ifdef CONFIG_SYS_FSL_ERRATUM_A008514
u32 *eddrtqcr1;
#ifdef CFG_SYS_FSL_DCSR_DDR3_ADDR
eddrtqcr1 = (void *)CFG_SYS_FSL_DCSR_DDR3_ADDR + 0x800;
out_le32(eddrtqcr1, 0x63b20002);
#endif
#endif
}
#ifdef CONFIG_SYS_FSL_ERRATUM_A009635
#define PLATFORM_CYCLE_ENV_VAR "a009635_interval_val"
static unsigned long get_internval_val_mhz(void)
{
char *interval = env_get(PLATFORM_CYCLE_ENV_VAR);
/*
* interval is the number of platform cycles(MHz) between
* wake up events generated by EPU.
*/
ulong interval_mhz = get_bus_freq(0) / (1000 * 1000);
if (interval)
interval_mhz = dectoul(interval, NULL);
return interval_mhz;
}
void erratum_a009635(void)
{
u32 val;
unsigned long interval_mhz = get_internval_val_mhz();
if (!interval_mhz)
return;
val = in_le32(DCSR_CGACRE5);
writel(val | 0x00000200, DCSR_CGACRE5);
val = in_le32(EPU_EPCMPR5);
writel(interval_mhz, EPU_EPCMPR5);
val = in_le32(EPU_EPCCR5);
writel(val | 0x82820000, EPU_EPCCR5);
val = in_le32(EPU_EPSMCR5);
writel(val | 0x002f0000, EPU_EPSMCR5);
val = in_le32(EPU_EPECR5);
writel(val | 0x20000000, EPU_EPECR5);
val = in_le32(EPU_EPGCR);
writel(val | 0x80000000, EPU_EPGCR);
}
#endif /* CONFIG_SYS_FSL_ERRATUM_A009635 */
static void erratum_rcw_src(void)
{
#if defined(CONFIG_SPL) && defined(CONFIG_NAND_BOOT)
u32 __iomem *dcfg_ccsr = (u32 __iomem *)DCFG_BASE;
u32 __iomem *dcfg_dcsr = (u32 __iomem *)DCFG_DCSR_BASE;
u32 val;
val = in_le32(dcfg_ccsr + DCFG_PORSR1 / 4);
val &= ~DCFG_PORSR1_RCW_SRC;
val |= DCFG_PORSR1_RCW_SRC_NOR;
out_le32(dcfg_dcsr + DCFG_DCSR_PORCR1 / 4, val);
#endif
}
#define I2C_DEBUG_REG 0x6
#define I2C_GLITCH_EN 0x8
/*
* This erratum requires setting glitch_en bit to enable
* digital glitch filter to improve clock stability.
*/
#ifdef CONFIG_SYS_FSL_ERRATUM_A009203
static void erratum_a009203(void)
{
#if CONFIG_IS_ENABLED(SYS_I2C_LEGACY)
u8 __iomem *ptr;
#ifdef I2C1_BASE_ADDR
ptr = (u8 __iomem *)(I2C1_BASE_ADDR + I2C_DEBUG_REG);
writeb(I2C_GLITCH_EN, ptr);
#endif
#ifdef I2C2_BASE_ADDR
ptr = (u8 __iomem *)(I2C2_BASE_ADDR + I2C_DEBUG_REG);
writeb(I2C_GLITCH_EN, ptr);
#endif
#ifdef I2C3_BASE_ADDR
ptr = (u8 __iomem *)(I2C3_BASE_ADDR + I2C_DEBUG_REG);
writeb(I2C_GLITCH_EN, ptr);
#endif
#ifdef I2C4_BASE_ADDR
ptr = (u8 __iomem *)(I2C4_BASE_ADDR + I2C_DEBUG_REG);
writeb(I2C_GLITCH_EN, ptr);
#endif
#endif
}
#endif
void bypass_smmu(void)
{
u32 val;
val = (in_le32(SMMU_SCR0) | SCR0_CLIENTPD_MASK) & ~(SCR0_USFCFG_MASK);
out_le32(SMMU_SCR0, val);
val = (in_le32(SMMU_NSCR0) | SCR0_CLIENTPD_MASK) & ~(SCR0_USFCFG_MASK);
out_le32(SMMU_NSCR0, val);
}
void fsl_lsch3_early_init_f(void)
{
erratum_rcw_src();
#ifdef CONFIG_FSL_IFC
init_early_memctl_regs(); /* tighten IFC timing */
#endif
#ifdef CONFIG_SYS_FSL_ERRATUM_A009203
erratum_a009203();
#endif
erratum_a008514();
erratum_a008336();
erratum_a009008();
erratum_a009798();
erratum_a008997();
erratum_a009007();
erratum_a050204();
#ifdef CONFIG_CHAIN_OF_TRUST
/* In case of Secure Boot, the IBR configures the SMMU
* to allow only Secure transactions.
* SMMU must be reset in bypass mode.
* Set the ClientPD bit and Clear the USFCFG Bit
*/
if (fsl_check_boot_mode_secure() == 1)
bypass_smmu();
#endif
#if defined(CONFIG_ARCH_LS1088A) || defined(CONFIG_ARCH_LS1028A) || \
defined(CONFIG_ARCH_LS2080A) || defined(CONFIG_ARCH_LX2160A) || \
defined(CONFIG_ARCH_LX2162A)
set_icids();
#endif
}
/* Get VDD in the unit mV from voltage ID */
int get_core_volt_from_fuse(void)
{
struct ccsr_gur *gur = (void *)(CFG_SYS_FSL_GUTS_ADDR);
int vdd;
u32 fusesr;
u8 vid;
/* get the voltage ID from fuse status register */
fusesr = in_le32(&gur->dcfg_fusesr);
debug("%s: fusesr = 0x%x\n", __func__, fusesr);
vid = (fusesr >> FSL_CHASSIS3_DCFG_FUSESR_ALTVID_SHIFT) &
FSL_CHASSIS3_DCFG_FUSESR_ALTVID_MASK;
if ((vid == 0) || (vid == FSL_CHASSIS3_DCFG_FUSESR_ALTVID_MASK)) {
vid = (fusesr >> FSL_CHASSIS3_DCFG_FUSESR_VID_SHIFT) &
FSL_CHASSIS3_DCFG_FUSESR_VID_MASK;
}
debug("%s: VID = 0x%x\n", __func__, vid);
switch (vid) {
case 0x00: /* VID isn't supported */
vdd = -EINVAL;
debug("%s: The VID feature is not supported\n", __func__);
break;
case 0x08: /* 0.9V silicon */
vdd = 900;
break;
case 0x10: /* 1.0V silicon */
vdd = 1000;
break;
default: /* Other core voltage */
vdd = -EINVAL;
debug("%s: The VID(%x) isn't supported\n", __func__, vid);
break;
}
debug("%s: The required minimum volt of CORE is %dmV\n", __func__, vdd);
return vdd;
}
#elif defined(CONFIG_FSL_LSCH2)
/*
* This erratum requires setting a value to eddrtqcr1 to optimal
* the DDR performance. The eddrtqcr1 register is in SCFG space
* of LS1043A and the offset is 0x157_020c.
*/
#if defined(CONFIG_SYS_FSL_ERRATUM_A009660) \
&& defined(CONFIG_SYS_FSL_ERRATUM_A008514)
#error A009660 and A008514 can not be both enabled.
#endif
static void erratum_a009660(void)
{
#ifdef CONFIG_SYS_FSL_ERRATUM_A009660
u32 *eddrtqcr1 = (void *)CFG_SYS_FSL_SCFG_ADDR + 0x20c;
out_be32(eddrtqcr1, 0x63b20042);
#endif
}
static void erratum_a008850_early(void)
{
#ifdef CONFIG_SYS_FSL_ERRATUM_A008850
/* part 1 of 2 */
struct ccsr_cci400 __iomem *cci = (void *)(CONFIG_SYS_IMMR +
CONFIG_SYS_CCI400_OFFSET);
struct ccsr_ddr __iomem *ddr = (void *)CFG_SYS_FSL_DDR_ADDR;
/* Skip if running at lower exception level */
if (current_el() < 3)
return;
/* disables propagation of barrier transactions to DDRC from CCI400 */
out_le32(&cci->ctrl_ord, CCI400_CTRLORD_TERM_BARRIER);
/* disable the re-ordering in DDRC */
ddr_out32(&ddr->eor, DDR_EOR_RD_REOD_DIS | DDR_EOR_WD_REOD_DIS);
#endif
}
void erratum_a008850_post(void)
{
#ifdef CONFIG_SYS_FSL_ERRATUM_A008850
/* part 2 of 2 */
struct ccsr_cci400 __iomem *cci = (void *)(CONFIG_SYS_IMMR +
CONFIG_SYS_CCI400_OFFSET);
struct ccsr_ddr __iomem *ddr = (void *)CFG_SYS_FSL_DDR_ADDR;
u32 tmp;
/* Skip if running at lower exception level */
if (current_el() < 3)
return;
/* enable propagation of barrier transactions to DDRC from CCI400 */
out_le32(&cci->ctrl_ord, CCI400_CTRLORD_EN_BARRIER);
/* enable the re-ordering in DDRC */
tmp = ddr_in32(&ddr->eor);
tmp &= ~(DDR_EOR_RD_REOD_DIS | DDR_EOR_WD_REOD_DIS);
ddr_out32(&ddr->eor, tmp);
#endif
}
#ifdef CONFIG_SYS_FSL_ERRATUM_A010315
void erratum_a010315(void)
{
int i;
for (i = PCIE1; i <= PCIE4; i++)
if (!is_serdes_configured(i)) {
debug("PCIe%d: disabled all R/W permission!\n", i);
set_pcie_ns_access(i, 0);
}
}
#endif
static void erratum_a010539(void)
{
#if defined(CONFIG_SYS_FSL_ERRATUM_A010539) && defined(CONFIG_QSPI_BOOT)
struct ccsr_gur __iomem *gur = (void *)(CFG_SYS_FSL_GUTS_ADDR);
u32 porsr1;
porsr1 = in_be32(&gur->porsr1);
porsr1 &= ~FSL_CHASSIS2_CCSR_PORSR1_RCW_MASK;
out_be32((void *)(CFG_SYS_DCSR_DCFG_ADDR + DCFG_DCSR_PORCR1),
porsr1);
out_be32((void *)(CFG_SYS_FSL_SCFG_ADDR + 0x1a8), 0xffffffff);
#endif
}
/* Get VDD in the unit mV from voltage ID */
int get_core_volt_from_fuse(void)
{
struct ccsr_gur *gur = (void *)(CFG_SYS_FSL_GUTS_ADDR);
int vdd;
u32 fusesr;
u8 vid;
fusesr = in_be32(&gur->dcfg_fusesr);
debug("%s: fusesr = 0x%x\n", __func__, fusesr);
vid = (fusesr >> FSL_CHASSIS2_DCFG_FUSESR_ALTVID_SHIFT) &
FSL_CHASSIS2_DCFG_FUSESR_ALTVID_MASK;
if ((vid == 0) || (vid == FSL_CHASSIS2_DCFG_FUSESR_ALTVID_MASK)) {
vid = (fusesr >> FSL_CHASSIS2_DCFG_FUSESR_VID_SHIFT) &
FSL_CHASSIS2_DCFG_FUSESR_VID_MASK;
}
debug("%s: VID = 0x%x\n", __func__, vid);
switch (vid) {
case 0x00: /* VID isn't supported */
vdd = -EINVAL;
debug("%s: The VID feature is not supported\n", __func__);
break;
case 0x08: /* 0.9V silicon */
vdd = 900;
break;
case 0x10: /* 1.0V silicon */
vdd = 1000;
break;
default: /* Other core voltage */
vdd = -EINVAL;
printf("%s: The VID(%x) isn't supported\n", __func__, vid);
break;
}
debug("%s: The required minimum volt of CORE is %dmV\n", __func__, vdd);
return vdd;
}
__weak int board_switch_core_volt(u32 vdd)
{
return 0;
}
static int setup_core_volt(u32 vdd)
{
return board_setup_core_volt(vdd);
}
#ifdef CONFIG_SYS_FSL_DDR
static void ddr_enable_0v9_volt(bool en)
{
struct ccsr_ddr __iomem *ddr = (void *)CFG_SYS_FSL_DDR_ADDR;
u32 tmp;
tmp = ddr_in32(&ddr->ddr_cdr1);
if (en)
tmp |= DDR_CDR1_V0PT9_EN;
else
tmp &= ~DDR_CDR1_V0PT9_EN;
ddr_out32(&ddr->ddr_cdr1, tmp);
}
#endif
int setup_chip_volt(void)
{
int vdd;
vdd = get_core_volt_from_fuse();
/* Nothing to do for silicons doesn't support VID */
if (vdd < 0)
return vdd;
if (setup_core_volt(vdd))
printf("%s: Switch core VDD to %dmV failed\n", __func__, vdd);
#ifdef CONFIG_SYS_HAS_SERDES
if (setup_serdes_volt(vdd))
printf("%s: Switch SVDD to %dmV failed\n", __func__, vdd);
#endif
#ifdef CONFIG_SYS_FSL_DDR
if (vdd == 900)
ddr_enable_0v9_volt(true);
#endif
return 0;
}
#ifdef CONFIG_FSL_PFE
void init_pfe_scfg_dcfg_regs(void)
{
struct ccsr_scfg *scfg = (struct ccsr_scfg *)CFG_SYS_FSL_SCFG_ADDR;
u32 ecccr2;
out_be32(&scfg->pfeasbcr,
in_be32(&scfg->pfeasbcr) | SCFG_PFEASBCR_AWCACHE0);
out_be32(&scfg->pfebsbcr,
in_be32(&scfg->pfebsbcr) | SCFG_PFEASBCR_AWCACHE0);
/* CCI-400 QoS settings for PFE */
out_be32(&scfg->wr_qos1, (unsigned int)(SCFG_WR_QOS1_PFE1_QOS
| SCFG_WR_QOS1_PFE2_QOS));
out_be32(&scfg->rd_qos1, (unsigned int)(SCFG_RD_QOS1_PFE1_QOS
| SCFG_RD_QOS1_PFE2_QOS));
ecccr2 = in_be32(CFG_SYS_DCSR_DCFG_ADDR + DCFG_DCSR_ECCCR2);
out_be32((void *)CFG_SYS_DCSR_DCFG_ADDR + DCFG_DCSR_ECCCR2,
ecccr2 | (unsigned int)DISABLE_PFE_ECC);
}
#endif
void fsl_lsch2_early_init_f(void)
{
struct ccsr_cci400 *cci = (struct ccsr_cci400 *)(CONFIG_SYS_IMMR +
CONFIG_SYS_CCI400_OFFSET);
struct ccsr_scfg *scfg = (struct ccsr_scfg *)CFG_SYS_FSL_SCFG_ADDR;
#if defined(CONFIG_FSL_QSPI) && defined(CONFIG_TFABOOT)
enum boot_src src;
#endif
#ifdef CONFIG_LAYERSCAPE_NS_ACCESS
enable_layerscape_ns_access();
#endif
#ifdef CONFIG_FSL_IFC
init_early_memctl_regs(); /* tighten IFC timing */
#endif
#if defined(CONFIG_FSL_QSPI) && defined(CONFIG_TFABOOT)
src = get_boot_src();
if (src != BOOT_SOURCE_QSPI_NOR)
out_be32(&scfg->qspi_cfg, SCFG_QSPI_CLKSEL);
#else
#if defined(CONFIG_FSL_QSPI) && !defined(CONFIG_QSPI_BOOT)
out_be32(&scfg->qspi_cfg, SCFG_QSPI_CLKSEL);
#endif
#endif
/* Make SEC reads and writes snoopable */
#if defined(CONFIG_ARCH_LS1043A) || defined(CONFIG_ARCH_LS1046A)
setbits_be32(&scfg->snpcnfgcr, SCFG_SNPCNFGCR_SECRDSNP |
SCFG_SNPCNFGCR_SECWRSNP | SCFG_SNPCNFGCR_USB1RDSNP |
SCFG_SNPCNFGCR_USB1WRSNP | SCFG_SNPCNFGCR_USB2RDSNP |
SCFG_SNPCNFGCR_USB2WRSNP | SCFG_SNPCNFGCR_USB3RDSNP |
SCFG_SNPCNFGCR_USB3WRSNP | SCFG_SNPCNFGCR_SATARDSNP |
SCFG_SNPCNFGCR_SATAWRSNP | SCFG_SNPCNFGCR_EDMASNP);
#elif defined(CONFIG_ARCH_LS1012A)
setbits_be32(&scfg->snpcnfgcr, SCFG_SNPCNFGCR_SECRDSNP |
SCFG_SNPCNFGCR_SECWRSNP | SCFG_SNPCNFGCR_USB1RDSNP |
SCFG_SNPCNFGCR_USB1WRSNP | SCFG_SNPCNFGCR_SATARDSNP |
SCFG_SNPCNFGCR_SATAWRSNP);
#else
setbits_be32(&scfg->snpcnfgcr, SCFG_SNPCNFGCR_SECRDSNP |
SCFG_SNPCNFGCR_SECWRSNP |
SCFG_SNPCNFGCR_SATARDSNP |
SCFG_SNPCNFGCR_SATAWRSNP);
#endif
/*
* Enable snoop requests and DVM message requests for
* Slave insterface S4 (A53 core cluster)
*/
if (current_el() == 3) {
out_le32(&cci->slave[4].snoop_ctrl,
CCI400_DVM_MESSAGE_REQ_EN | CCI400_SNOOP_REQ_EN);
}
/*
* Program Central Security Unit (CSU) to grant access
* permission for USB 2.0 controller
*/
#if defined(CONFIG_ARCH_LS1012A) && defined(CONFIG_USB_EHCI_FSL)
if (current_el() == 3)
set_devices_ns_access(CSU_CSLX_USB_2, CSU_ALL_RW);
#endif
/* Erratum */
erratum_a008850_early(); /* part 1 of 2 */
erratum_a009660();
erratum_a010539();
erratum_a009008();
erratum_a009798();
erratum_a008997();
erratum_a009007();
#if defined(CONFIG_ARCH_LS1043A) || defined(CONFIG_ARCH_LS1046A)
set_icids();
#endif
}
#endif
#ifdef CONFIG_FSPI_AHB_EN_4BYTE
int fspi_ahb_init(void)
{
/* Enable 4bytes address support and fast read */
u32 *fspi_lut, lut_key, *fspi_key;
fspi_key = (void *)SYS_NXP_FSPI_ADDR + SYS_NXP_FSPI_LUTKEY_BASE_ADDR;
fspi_lut = (void *)SYS_NXP_FSPI_ADDR + SYS_NXP_FSPI_LUT_BASE_ADDR;
lut_key = in_be32(fspi_key);
if (lut_key == SYS_NXP_FSPI_LUTKEY) {
/* That means the register is BE */
out_be32(fspi_key, SYS_NXP_FSPI_LUTKEY);
/* Unlock the lut table */
out_be32(fspi_key + 1, SYS_NXP_FSPI_LUTCR_UNLOCK);
/* Create READ LUT */
out_be32(fspi_lut, 0x0820040c);
out_be32(fspi_lut + 1, 0x24003008);
out_be32(fspi_lut + 2, 0x00000000);
/* Lock the lut table */
out_be32(fspi_key, SYS_NXP_FSPI_LUTKEY);
out_be32(fspi_key + 1, SYS_NXP_FSPI_LUTCR_LOCK);
} else {
/* That means the register is LE */
out_le32(fspi_key, SYS_NXP_FSPI_LUTKEY);
/* Unlock the lut table */
out_le32(fspi_key + 1, SYS_NXP_FSPI_LUTCR_UNLOCK);
/* Create READ LUT */
out_le32(fspi_lut, 0x0820040c);
out_le32(fspi_lut + 1, 0x24003008);
out_le32(fspi_lut + 2, 0x00000000);
/* Lock the lut table */
out_le32(fspi_key, SYS_NXP_FSPI_LUTKEY);
out_le32(fspi_key + 1, SYS_NXP_FSPI_LUTCR_LOCK);
}
return 0;
}
#endif
#ifdef CONFIG_QSPI_AHB_INIT
/* Enable 4bytes address support and fast read */
int qspi_ahb_init(void)
{
u32 *qspi_lut, lut_key, *qspi_key;
qspi_key = (void *)SYS_FSL_QSPI_ADDR + 0x300;
qspi_lut = (void *)SYS_FSL_QSPI_ADDR + 0x310;
lut_key = in_be32(qspi_key);
if (lut_key == 0x5af05af0) {
/* That means the register is BE */
out_be32(qspi_key, 0x5af05af0);
/* Unlock the lut table */
out_be32(qspi_key + 1, 0x00000002);
out_be32(qspi_lut, 0x0820040c);
out_be32(qspi_lut + 1, 0x1c080c08);
out_be32(qspi_lut + 2, 0x00002400);
/* Lock the lut table */
out_be32(qspi_key, 0x5af05af0);
out_be32(qspi_key + 1, 0x00000001);
} else {
/* That means the register is LE */
out_le32(qspi_key, 0x5af05af0);
/* Unlock the lut table */
out_le32(qspi_key + 1, 0x00000002);
out_le32(qspi_lut, 0x0820040c);
out_le32(qspi_lut + 1, 0x1c080c08);
out_le32(qspi_lut + 2, 0x00002400);
/* Lock the lut table */
out_le32(qspi_key, 0x5af05af0);
out_le32(qspi_key + 1, 0x00000001);
}
return 0;
}
#endif
#ifdef CONFIG_TFABOOT
#define MAX_BOOTCMD_SIZE 512
__weak int fsl_setenv_bootcmd(void)
{
int ret;
enum boot_src src = get_boot_src();
char bootcmd_str[MAX_BOOTCMD_SIZE];
switch (src) {
#ifdef IFC_NOR_BOOTCOMMAND
case BOOT_SOURCE_IFC_NOR:
sprintf(bootcmd_str, IFC_NOR_BOOTCOMMAND);
break;
#endif
#ifdef QSPI_NOR_BOOTCOMMAND
case BOOT_SOURCE_QSPI_NOR:
sprintf(bootcmd_str, QSPI_NOR_BOOTCOMMAND);
break;
#endif
#ifdef XSPI_NOR_BOOTCOMMAND
case BOOT_SOURCE_XSPI_NOR:
sprintf(bootcmd_str, XSPI_NOR_BOOTCOMMAND);
break;
#endif
#ifdef IFC_NAND_BOOTCOMMAND
case BOOT_SOURCE_IFC_NAND:
sprintf(bootcmd_str, IFC_NAND_BOOTCOMMAND);
break;
#endif
#ifdef QSPI_NAND_BOOTCOMMAND
case BOOT_SOURCE_QSPI_NAND:
sprintf(bootcmd_str, QSPI_NAND_BOOTCOMMAND);
break;
#endif
#ifdef XSPI_NAND_BOOTCOMMAND
case BOOT_SOURCE_XSPI_NAND:
sprintf(bootcmd_str, XSPI_NAND_BOOTCOMMAND);
break;
#endif
#ifdef SD_BOOTCOMMAND
case BOOT_SOURCE_SD_MMC:
sprintf(bootcmd_str, SD_BOOTCOMMAND);
break;
#endif
#ifdef SD2_BOOTCOMMAND
case BOOT_SOURCE_SD_MMC2:
sprintf(bootcmd_str, SD2_BOOTCOMMAND);
break;
#endif
default:
#ifdef QSPI_NOR_BOOTCOMMAND
sprintf(bootcmd_str, QSPI_NOR_BOOTCOMMAND);
#endif
break;
}
ret = env_set("bootcmd", bootcmd_str);
if (ret) {
printf("Failed to set bootcmd: ret = %d\n", ret);
return ret;
}
return 0;
}
int fsl_setenv_mcinitcmd(void)
{
int ret = 0;
enum boot_src src = get_boot_src();
switch (src) {
#ifdef IFC_MC_INIT_CMD
case BOOT_SOURCE_IFC_NAND:
case BOOT_SOURCE_IFC_NOR:
ret = env_set("mcinitcmd", IFC_MC_INIT_CMD);
break;
#endif
#ifdef QSPI_MC_INIT_CMD
case BOOT_SOURCE_QSPI_NAND:
case BOOT_SOURCE_QSPI_NOR:
ret = env_set("mcinitcmd", QSPI_MC_INIT_CMD);
break;
#endif
#ifdef XSPI_MC_INIT_CMD
case BOOT_SOURCE_XSPI_NAND:
case BOOT_SOURCE_XSPI_NOR:
ret = env_set("mcinitcmd", XSPI_MC_INIT_CMD);
break;
#endif
#ifdef SD_MC_INIT_CMD
case BOOT_SOURCE_SD_MMC:
ret = env_set("mcinitcmd", SD_MC_INIT_CMD);
break;
#endif
#ifdef SD2_MC_INIT_CMD
case BOOT_SOURCE_SD_MMC2:
ret = env_set("mcinitcmd", SD2_MC_INIT_CMD);
break;
#endif
default:
#ifdef QSPI_MC_INIT_CMD
ret = env_set("mcinitcmd", QSPI_MC_INIT_CMD);
#endif
break;
}
if (ret) {
printf("Failed to set mcinitcmd: ret = %d\n", ret);
return ret;
}
return 0;
}
#endif
#ifdef CONFIG_BOARD_LATE_INIT
__weak int fsl_board_late_init(void)
{
return 0;
}
#define DWC3_GSBUSCFG0 0xc100
#define DWC3_GSBUSCFG0_CACHETYPE_SHIFT 16
#define DWC3_GSBUSCFG0_CACHETYPE(n) (((n) & 0xffff) \
<< DWC3_GSBUSCFG0_CACHETYPE_SHIFT)
static void enable_dwc3_snooping(void)
{
static const char * const compatibles[] = {
"fsl,layerscape-dwc3",
"fsl,ls1028a-dwc3",
};
fdt_addr_t dwc3_base;
ofnode node;
u32 val;
int i;
for (i = 0; i < ARRAY_SIZE(compatibles); i++) {
ofnode_for_each_compatible_node(node, compatibles[i]) {
dwc3_base = ofnode_get_addr(node);
if (dwc3_base == FDT_ADDR_T_NONE)
continue;
val = in_le32(dwc3_base + DWC3_GSBUSCFG0);
val &= ~DWC3_GSBUSCFG0_CACHETYPE(~0);
val |= DWC3_GSBUSCFG0_CACHETYPE(0x2222);
writel(val, dwc3_base + DWC3_GSBUSCFG0);
}
}
}
int board_late_init(void)
{
#ifdef CONFIG_CHAIN_OF_TRUST
fsl_setenv_chain_of_trust();
#endif
#ifdef CONFIG_TFABOOT
/*
* Set bootcmd and mcinitcmd if "fsl_bootcmd_mcinitcmd_set" does
* not exists in env
*/
if (env_get_yesno("fsl_bootcmd_mcinitcmd_set") <= 0) {
// Set bootcmd and mcinitcmd as per boot source
fsl_setenv_bootcmd();
fsl_setenv_mcinitcmd();
env_set("fsl_bootcmd_mcinitcmd_set", "y");
}
#endif
#ifdef CONFIG_QSPI_AHB_INIT
qspi_ahb_init();
#endif
#ifdef CONFIG_FSPI_AHB_EN_4BYTE
fspi_ahb_init();
#endif
if (IS_ENABLED(CONFIG_DM))
enable_dwc3_snooping();
return fsl_board_late_init();
}
#endif