u-boot/drivers/spi/atmel-quadspi.c
Tudor Ambarus 2fd1b97f33 spi: atmel-quadspi: Add support for SAMA7G5 QSPI
sama7g5 QSPI has:
1/ One Octal Serial Peripheral Interfaces (QSPI0) Supporting Up to
   200 MHz DDR. Octal, TwinQuad, Hyperflash and OctaFlash Protocols Supported
2/ One Quad Serial Peripheral Interfaces (QSPI1) Supporting Up to
   90 MHz DDR/133 MHz SDR

The QSPI controller of SAMA7G5 uses different clock domains, hence extra
synchronization operations must be performed before accessing some
registers. Differentiate between the versions of the IP using has_gclk.
Differentiate between QSPI0 and QSPI1 with has_octal.

Signed-off-by: Tudor Ambarus <tudor.ambarus@microchip.com>
Reviewed-by: Jagan Teki <jagan@amarulasolutions.com>
2021-12-07 08:55:22 +02:00

1176 lines
31 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Driver for Atmel QSPI Controller
*
* Copyright (C) 2015 Atmel Corporation
* Copyright (C) 2018 Cryptera A/S
*
* Author: Cyrille Pitchen <cyrille.pitchen@atmel.com>
* Author: Piotr Bugalski <bugalski.piotr@gmail.com>
*/
#include <malloc.h>
#include <asm/io.h>
#include <clk.h>
#include <common.h>
#include <dm.h>
#include <errno.h>
#include <fdtdec.h>
#include <dm/device_compat.h>
#include <linux/bitfield.h>
#include <linux/bitops.h>
#include <linux/err.h>
#include <linux/io.h>
#include <linux/iopoll.h>
#include <linux/ioport.h>
#include <mach/clk.h>
#include <spi.h>
#include <spi-mem.h>
/* QSPI register offsets */
#define QSPI_CR 0x0000 /* Control Register */
#define QSPI_MR 0x0004 /* Mode Register */
#define QSPI_RD 0x0008 /* Receive Data Register */
#define QSPI_TD 0x000c /* Transmit Data Register */
#define QSPI_SR 0x0010 /* Status Register */
#define QSPI_SR2 0x0024 /* SAMA7G5 Status Register */
#define QSPI_IER 0x0014 /* Interrupt Enable Register */
#define QSPI_IDR 0x0018 /* Interrupt Disable Register */
#define QSPI_IMR 0x001c /* Interrupt Mask Register */
#define QSPI_SCR 0x0020 /* Serial Clock Register */
#define QSPI_IAR 0x0030 /* Instruction Address Register */
#define QSPI_ICR 0x0034 /* Instruction Code Register */
#define QSPI_WICR 0x0034 /* Write Instruction Code Register */
#define QSPI_IFR 0x0038 /* Instruction Frame Register */
#define QSPI_RICR 0x003C /* Read Instruction Code Register */
#define QSPI_SMR 0x0040 /* Scrambling Mode Register */
#define QSPI_SKR 0x0044 /* Scrambling Key Register */
#define QSPI_REFRESH 0x0050 /* Refresh Register */
#define QSPI_WRACNT 0x0054 /* Write Access Counter Register */
#define QSPI_DLLCFG 0x0058 /* DLL Configuration Register */
#define QSPI_PCALCFG 0x005C /* Pad Calibration Configuration Register */
#define QSPI_PCALBP 0x0060 /* Pad Calibration Bypass Register */
#define QSPI_TOUT 0x0064 /* Timeout Register */
#define QSPI_WPMR 0x00E4 /* Write Protection Mode Register */
#define QSPI_WPSR 0x00E8 /* Write Protection Status Register */
#define QSPI_VERSION 0x00FC /* Version Register */
/* Bitfields in QSPI_CR (Control Register) */
#define QSPI_CR_QSPIEN BIT(0)
#define QSPI_CR_QSPIDIS BIT(1)
#define QSPI_CR_DLLON BIT(2)
#define QSPI_CR_DLLOFF BIT(3)
#define QSPI_CR_STPCAL BIT(4)
#define QSPI_CR_SRFRSH BIT(5)
#define QSPI_CR_SWRST BIT(7)
#define QSPI_CR_UPDCFG BIT(8)
#define QSPI_CR_STTFR BIT(9)
#define QSPI_CR_RTOUT BIT(10)
#define QSPI_CR_LASTXFER BIT(24)
/* Bitfields in QSPI_MR (Mode Register) */
#define QSPI_MR_SMM BIT(0)
#define QSPI_MR_LLB BIT(1)
#define QSPI_MR_WDRBT BIT(2)
#define QSPI_MR_SMRM BIT(3)
#define QSPI_MR_DQSDLYEN BIT(3)
#define QSPI_MR_CSMODE_MASK GENMASK(5, 4)
#define QSPI_MR_CSMODE_NOT_RELOADED (0 << 4)
#define QSPI_MR_CSMODE_LASTXFER (1 << 4)
#define QSPI_MR_CSMODE_SYSTEMATICALLY (2 << 4)
#define QSPI_MR_NBBITS_MASK GENMASK(11, 8)
#define QSPI_MR_NBBITS(n) ((((n) - 8) << 8) & QSPI_MR_NBBITS_MASK)
#define QSPI_MR_OENSD BIT(15)
#define QSPI_MR_DLYBCT_MASK GENMASK(23, 16)
#define QSPI_MR_DLYBCT(n) (((n) << 16) & QSPI_MR_DLYBCT_MASK)
#define QSPI_MR_DLYCS_MASK GENMASK(31, 24)
#define QSPI_MR_DLYCS(n) (((n) << 24) & QSPI_MR_DLYCS_MASK)
/* Bitfields in QSPI_SR/QSPI_IER/QSPI_IDR/QSPI_IMR */
#define QSPI_SR_RDRF BIT(0)
#define QSPI_SR_TDRE BIT(1)
#define QSPI_SR_TXEMPTY BIT(2)
#define QSPI_SR_OVRES BIT(3)
#define QSPI_SR_CSR BIT(8)
#define QSPI_SR_CSS BIT(9)
#define QSPI_SR_INSTRE BIT(10)
#define QSPI_SR_LWRA BIT(11)
#define QSPI_SR_QITF BIT(12)
#define QSPI_SR_QITR BIT(13)
#define QSPI_SR_CSFA BIT(14)
#define QSPI_SR_CSRA BIT(15)
#define QSPI_SR_RFRSHD BIT(16)
#define QSPI_SR_TOUT BIT(17)
#define QSPI_SR_QSPIENS BIT(24)
#define QSPI_SR_CMD_COMPLETED (QSPI_SR_INSTRE | QSPI_SR_CSR)
/* Bitfields in QSPI_SCR (Serial Clock Register) */
#define QSPI_SCR_CPOL BIT(0)
#define QSPI_SCR_CPHA BIT(1)
#define QSPI_SCR_SCBR_MASK GENMASK(15, 8)
#define QSPI_SCR_SCBR(n) (((n) << 8) & QSPI_SCR_SCBR_MASK)
#define QSPI_SCR_DLYBS_MASK GENMASK(23, 16)
#define QSPI_SCR_DLYBS(n) (((n) << 16) & QSPI_SCR_DLYBS_MASK)
/* Bitfields in QSPI_SR2 (SAMA7G5 Status Register) */
#define QSPI_SR2_SYNCBSY BIT(0)
#define QSPI_SR2_QSPIENS BIT(1)
#define QSPI_SR2_CSS BIT(2)
#define QSPI_SR2_RBUSY BIT(3)
#define QSPI_SR2_HIDLE BIT(4)
#define QSPI_SR2_DLOCK BIT(5)
#define QSPI_SR2_CALBSY BIT(6)
/* Bitfields in QSPI_IAR (Instruction Address Register) */
#define QSPI_IAR_ADDR GENMASK(31, 0)
/* Bitfields in QSPI_ICR (Read/Write Instruction Code Register) */
#define QSPI_ICR_INST_MASK GENMASK(7, 0)
#define QSPI_ICR_INST(inst) (((inst) << 0) & QSPI_ICR_INST_MASK)
#define QSPI_ICR_INST_MASK_SAMA7G5 GENMASK(15, 0)
#define QSPI_ICR_OPT_MASK GENMASK(23, 16)
#define QSPI_ICR_OPT(opt) (((opt) << 16) & QSPI_ICR_OPT_MASK)
/* Bitfields in QSPI_IFR (Instruction Frame Register) */
#define QSPI_IFR_WIDTH_MASK GENMASK(2, 0)
#define QSPI_IFR_WIDTH_SINGLE_BIT_SPI (0 << 0)
#define QSPI_IFR_WIDTH_DUAL_OUTPUT (1 << 0)
#define QSPI_IFR_WIDTH_QUAD_OUTPUT (2 << 0)
#define QSPI_IFR_WIDTH_DUAL_IO (3 << 0)
#define QSPI_IFR_WIDTH_QUAD_IO (4 << 0)
#define QSPI_IFR_WIDTH_DUAL_CMD (5 << 0)
#define QSPI_IFR_WIDTH_QUAD_CMD (6 << 0)
#define QSPI_IFR_WIDTH_OCT_OUTPUT (7 << 0)
#define QSPI_IFR_WIDTH_OCT_IO (8 << 0)
#define QSPI_IFR_WIDTH_OCT_CMD (9 << 0)
#define QSPI_IFR_INSTEN BIT(4)
#define QSPI_IFR_ADDREN BIT(5)
#define QSPI_IFR_OPTEN BIT(6)
#define QSPI_IFR_DATAEN BIT(7)
#define QSPI_IFR_OPTL_MASK GENMASK(9, 8)
#define QSPI_IFR_OPTL_1BIT (0 << 8)
#define QSPI_IFR_OPTL_2BIT (1 << 8)
#define QSPI_IFR_OPTL_4BIT (2 << 8)
#define QSPI_IFR_OPTL_8BIT (3 << 8)
#define QSPI_IFR_ADDRL BIT(10)
#define QSPI_IFR_ADDRL_SAMA7G5 GENMASK(11, 10)
#define QSPI_IFR_TFRTYP_MEM BIT(12)
#define QSPI_IFR_SAMA5D2_WRITE_TRSFR BIT(13)
#define QSPI_IFR_CRM BIT(14)
#define QSPI_IFR_DDREN BIT(15)
#define QSPI_IFR_NBDUM_MASK GENMASK(20, 16)
#define QSPI_IFR_NBDUM(n) (((n) << 16) & QSPI_IFR_NBDUM_MASK)
#define QSPI_IFR_END BIT(22)
#define QSPI_IFR_SMRM BIT(23)
#define QSPI_IFR_APBTFRTYP_READ BIT(24) /* Defined in SAM9X60 */
#define QSPI_IFR_DQSEN BIT(25)
#define QSPI_IFR_DDRCMDEN BIT(26)
#define QSPI_IFR_HFWBEN BIT(27)
#define QSPI_IFR_PROTTYP GENMASK(29, 28)
#define QSPI_IFR_PROTTYP_STD_SPI 0
#define QSPI_IFR_PROTTYP_TWIN_QUAD 1
#define QSPI_IFR_PROTTYP_OCTAFLASH 2
#define QSPI_IFR_PROTTYP_HYPERFLASH 3
/* Bitfields in QSPI_SMR (Scrambling Mode Register) */
#define QSPI_SMR_SCREN BIT(0)
#define QSPI_SMR_RVDIS BIT(1)
#define QSPI_SMR_SCRKL BIT(2)
/* Bitfields in QSPI_REFRESH (Refresh Register) */
#define QSPI_REFRESH_DELAY_COUNTER GENMASK(31, 0)
/* Bitfields in QSPI_WRACNT (Write Access Counter Register) */
#define QSPI_WRACNT_NBWRA GENMASK(31, 0)
/* Bitfields in QSPI_DLLCFG (DLL Configuration Register) */
#define QSPI_DLLCFG_RANGE BIT(0)
/* Bitfields in QSPI_PCALCFG (DLL Pad Calibration Configuration Register) */
#define QSPI_PCALCFG_AAON BIT(0)
#define QSPI_PCALCFG_DAPCAL BIT(1)
#define QSPI_PCALCFG_DIFFPM BIT(2)
#define QSPI_PCALCFG_CLKDIV GENMASK(6, 4)
#define QSPI_PCALCFG_CALCNT GENMASK(16, 8)
#define QSPI_PCALCFG_CALP GENMASK(27, 24)
#define QSPI_PCALCFG_CALN GENMASK(31, 28)
/* Bitfields in QSPI_PCALBP (DLL Pad Calibration Bypass Register) */
#define QSPI_PCALBP_BPEN BIT(0)
#define QSPI_PCALBP_CALPBP GENMASK(11, 8)
#define QSPI_PCALBP_CALNBP GENMASK(19, 16)
/* Bitfields in QSPI_TOUT (Timeout Register) */
#define QSPI_TOUT_TCNTM GENMASK(15, 0)
/* Bitfields in QSPI_WPMR (Write Protection Mode Register) */
#define QSPI_WPMR_WPEN BIT(0)
#define QSPI_WPMR_WPITEN BIT(1)
#define QSPI_WPMR_WPCREN BIT(2)
#define QSPI_WPMR_WPKEY_MASK GENMASK(31, 8)
#define QSPI_WPMR_WPKEY(wpkey) (((wpkey) << 8) & QSPI_WPMR_WPKEY_MASK)
/* Bitfields in QSPI_WPSR (Write Protection Status Register) */
#define QSPI_WPSR_WPVS BIT(0)
#define QSPI_WPSR_WPVSRC_MASK GENMASK(15, 8)
#define QSPI_WPSR_WPVSRC(src) (((src) << 8) & QSPI_WPSR_WPVSRC)
#define ATMEL_QSPI_TIMEOUT 1000000 /* us */
#define ATMEL_QSPI_SYNC_TIMEOUT 300000 /* us */
#define QSPI_DLLCFG_THRESHOLD_FREQ 90000000U
#define QSPI_TOUT_MAX 0xffff
/**
* struct atmel_qspi_pcal - Pad Calibration Clock Division
* @pclk_rate: peripheral clock rate.
* @pclkdiv: calibration clock division. The clock applied to the calibration
* cell is divided by pclkdiv + 1.
*/
struct atmel_qspi_pcal {
u32 pclk_rate;
u8 pclk_div;
};
#define ATMEL_QSPI_PCAL_ARRAY_SIZE 8
static const struct atmel_qspi_pcal pcal[ATMEL_QSPI_PCAL_ARRAY_SIZE] = {
{25000000, 0},
{50000000, 1},
{75000000, 2},
{100000000, 3},
{125000000, 4},
{150000000, 5},
{175000000, 6},
{200000000, 7},
};
struct atmel_qspi_caps {
bool has_qspick;
bool has_gclk;
bool has_ricr;
bool octal;
};
struct atmel_qspi_priv_ops;
struct atmel_qspi {
void __iomem *regs;
void __iomem *mem;
resource_size_t mmap_size;
const struct atmel_qspi_caps *caps;
const struct atmel_qspi_priv_ops *ops;
struct udevice *dev;
ulong bus_clk_rate;
u32 mr;
};
struct atmel_qspi_priv_ops {
int (*set_cfg)(struct atmel_qspi *aq, const struct spi_mem_op *op,
u32 *offset);
int (*transfer)(struct atmel_qspi *aq, const struct spi_mem_op *op,
u32 offset);
};
struct atmel_qspi_mode {
u8 cmd_buswidth;
u8 addr_buswidth;
u8 data_buswidth;
u32 config;
};
static const struct atmel_qspi_mode atmel_qspi_modes[] = {
{ 1, 1, 1, QSPI_IFR_WIDTH_SINGLE_BIT_SPI },
{ 1, 1, 2, QSPI_IFR_WIDTH_DUAL_OUTPUT },
{ 1, 1, 4, QSPI_IFR_WIDTH_QUAD_OUTPUT },
{ 1, 2, 2, QSPI_IFR_WIDTH_DUAL_IO },
{ 1, 4, 4, QSPI_IFR_WIDTH_QUAD_IO },
{ 2, 2, 2, QSPI_IFR_WIDTH_DUAL_CMD },
{ 4, 4, 4, QSPI_IFR_WIDTH_QUAD_CMD },
};
static const struct atmel_qspi_mode atmel_qspi_sama7g5_modes[] = {
{ 1, 1, 1, QSPI_IFR_WIDTH_SINGLE_BIT_SPI },
{ 1, 1, 2, QSPI_IFR_WIDTH_DUAL_OUTPUT },
{ 1, 1, 4, QSPI_IFR_WIDTH_QUAD_OUTPUT },
{ 1, 2, 2, QSPI_IFR_WIDTH_DUAL_IO },
{ 1, 4, 4, QSPI_IFR_WIDTH_QUAD_IO },
{ 2, 2, 2, QSPI_IFR_WIDTH_DUAL_CMD },
{ 4, 4, 4, QSPI_IFR_WIDTH_QUAD_CMD },
{ 1, 1, 8, QSPI_IFR_WIDTH_OCT_OUTPUT },
{ 1, 8, 8, QSPI_IFR_WIDTH_OCT_IO },
{ 8, 8, 8, QSPI_IFR_WIDTH_OCT_CMD },
};
#ifdef VERBOSE_DEBUG
static const char *atmel_qspi_reg_name(u32 offset, char *tmp, size_t sz)
{
switch (offset) {
case QSPI_CR:
return "CR";
case QSPI_MR:
return "MR";
case QSPI_RD:
return "RD";
case QSPI_TD:
return "TD";
case QSPI_SR:
return "SR";
case QSPI_IER:
return "IER";
case QSPI_IDR:
return "IDR";
case QSPI_IMR:
return "IMR";
case QSPI_SCR:
return "SCR";
case QSPI_SR2:
return "SR2";
case QSPI_IAR:
return "IAR";
case QSPI_ICR:
return "ICR/WICR";
case QSPI_IFR:
return "IFR";
case QSPI_RICR:
return "RICR";
case QSPI_SMR:
return "SMR";
case QSPI_SKR:
return "SKR";
case QSPI_REFRESH:
return "REFRESH";
case QSPI_WRACNT:
return "WRACNT";
case QSPI_DLLCFG:
return "DLLCFG";
case QSPI_PCALCFG:
return "PCALCFG";
case QSPI_PCALBP:
return "PCALBP";
case QSPI_TOUT:
return "TOUT";
case QSPI_WPMR:
return "WPMR";
case QSPI_WPSR:
return "WPSR";
case QSPI_VERSION:
return "VERSION";
default:
snprintf(tmp, sz, "0x%02x", offset);
break;
}
return tmp;
}
#endif /* VERBOSE_DEBUG */
static u32 atmel_qspi_read(struct atmel_qspi *aq, u32 offset)
{
u32 value = readl(aq->regs + offset);
#ifdef VERBOSE_DEBUG
char tmp[16];
dev_vdbg(aq->dev, "read 0x%08x from %s\n", value,
atmel_qspi_reg_name(offset, tmp, sizeof(tmp)));
#endif /* VERBOSE_DEBUG */
return value;
}
static void atmel_qspi_write(u32 value, struct atmel_qspi *aq, u32 offset)
{
#ifdef VERBOSE_DEBUG
char tmp[16];
dev_vdbg(aq->dev, "write 0x%08x into %s\n", value,
atmel_qspi_reg_name(offset, tmp, sizeof(tmp)));
#endif /* VERBOSE_DEBUG */
writel(value, aq->regs + offset);
}
static inline bool atmel_qspi_is_compatible(const struct spi_mem_op *op,
const struct atmel_qspi_mode *mode)
{
if (op->cmd.buswidth != mode->cmd_buswidth)
return false;
if (op->addr.nbytes && op->addr.buswidth != mode->addr_buswidth)
return false;
if (op->data.nbytes && op->data.buswidth != mode->data_buswidth)
return false;
return true;
}
static int atmel_qspi_find_mode(const struct spi_mem_op *op)
{
u32 i;
for (i = 0; i < ARRAY_SIZE(atmel_qspi_modes); i++)
if (atmel_qspi_is_compatible(op, &atmel_qspi_modes[i]))
return i;
return -ENOTSUPP;
}
static int atmel_qspi_sama7g5_find_mode(const struct spi_mem_op *op)
{
u32 i;
for (i = 0; i < ARRAY_SIZE(atmel_qspi_sama7g5_modes); i++)
if (atmel_qspi_is_compatible(op, &atmel_qspi_sama7g5_modes[i]))
return i;
return -EOPNOTSUPP;
}
static bool atmel_qspi_supports_op(struct spi_slave *slave,
const struct spi_mem_op *op)
{
struct atmel_qspi *aq = dev_get_priv(slave->dev->parent);
if (aq->caps->octal) {
if (atmel_qspi_sama7g5_find_mode(op) < 0)
return false;
else
return true;
}
if (atmel_qspi_find_mode(op) < 0)
return false;
/* special case not supported by hardware */
if (op->addr.nbytes == 2 && op->cmd.buswidth != op->addr.buswidth &&
op->dummy.nbytes == 0)
return false;
return true;
}
static int atmel_qspi_set_cfg(struct atmel_qspi *aq,
const struct spi_mem_op *op, u32 *offset)
{
u32 iar, icr, ifr;
u32 dummy_cycles = 0;
int mode;
iar = 0;
icr = QSPI_ICR_INST(op->cmd.opcode);
ifr = QSPI_IFR_INSTEN;
mode = atmel_qspi_find_mode(op);
if (mode < 0)
return mode;
ifr |= atmel_qspi_modes[mode].config;
if (op->dummy.buswidth && op->dummy.nbytes)
dummy_cycles = op->dummy.nbytes * 8 / op->dummy.buswidth;
/*
* The controller allows 24 and 32-bit addressing while NAND-flash
* requires 16-bit long. Handling 8-bit long addresses is done using
* the option field. For the 16-bit addresses, the workaround depends
* of the number of requested dummy bits. If there are 8 or more dummy
* cycles, the address is shifted and sent with the first dummy byte.
* Otherwise opcode is disabled and the first byte of the address
* contains the command opcode (works only if the opcode and address
* use the same buswidth). The limitation is when the 16-bit address is
* used without enough dummy cycles and the opcode is using a different
* buswidth than the address.
*/
if (op->addr.buswidth) {
switch (op->addr.nbytes) {
case 0:
break;
case 1:
ifr |= QSPI_IFR_OPTEN | QSPI_IFR_OPTL_8BIT;
icr |= QSPI_ICR_OPT(op->addr.val & 0xff);
break;
case 2:
if (dummy_cycles < 8 / op->addr.buswidth) {
ifr &= ~QSPI_IFR_INSTEN;
ifr |= QSPI_IFR_ADDREN;
iar = (op->cmd.opcode << 16) |
(op->addr.val & 0xffff);
} else {
ifr |= QSPI_IFR_ADDREN;
iar = (op->addr.val << 8) & 0xffffff;
dummy_cycles -= 8 / op->addr.buswidth;
}
break;
case 3:
ifr |= QSPI_IFR_ADDREN;
iar = op->addr.val & 0xffffff;
break;
case 4:
ifr |= QSPI_IFR_ADDREN | QSPI_IFR_ADDRL;
iar = op->addr.val & 0x7ffffff;
break;
default:
return -ENOTSUPP;
}
}
/* offset of the data access in the QSPI memory space */
*offset = iar;
/* Set number of dummy cycles */
if (dummy_cycles)
ifr |= QSPI_IFR_NBDUM(dummy_cycles);
/* Set data enable */
if (op->data.nbytes)
ifr |= QSPI_IFR_DATAEN;
/*
* If the QSPI controller is set in regular SPI mode, set it in
* Serial Memory Mode (SMM).
*/
if (aq->mr != QSPI_MR_SMM) {
atmel_qspi_write(QSPI_MR_SMM, aq, QSPI_MR);
aq->mr = QSPI_MR_SMM;
}
/* Clear pending interrupts */
(void)atmel_qspi_read(aq, QSPI_SR);
if (aq->caps->has_ricr) {
if (!op->addr.nbytes && op->data.dir == SPI_MEM_DATA_IN)
ifr |= QSPI_IFR_APBTFRTYP_READ;
/* Set QSPI Instruction Frame registers */
atmel_qspi_write(iar, aq, QSPI_IAR);
if (op->data.dir == SPI_MEM_DATA_IN)
atmel_qspi_write(icr, aq, QSPI_RICR);
else
atmel_qspi_write(icr, aq, QSPI_WICR);
atmel_qspi_write(ifr, aq, QSPI_IFR);
} else {
if (op->data.dir == SPI_MEM_DATA_OUT)
ifr |= QSPI_IFR_SAMA5D2_WRITE_TRSFR;
/* Set QSPI Instruction Frame registers */
atmel_qspi_write(iar, aq, QSPI_IAR);
atmel_qspi_write(icr, aq, QSPI_ICR);
atmel_qspi_write(ifr, aq, QSPI_IFR);
}
return 0;
}
static int atmel_qspi_transfer(struct atmel_qspi *aq,
const struct spi_mem_op *op, u32 offset)
{
u32 sr, imr;
/* Skip to the final steps if there is no data */
if (op->data.nbytes) {
/* Dummy read of QSPI_IFR to synchronize APB and AHB accesses */
(void)atmel_qspi_read(aq, QSPI_IFR);
/* Send/Receive data */
if (op->data.dir == SPI_MEM_DATA_IN)
memcpy_fromio(op->data.buf.in, aq->mem + offset,
op->data.nbytes);
else
memcpy_toio(aq->mem + offset, op->data.buf.out,
op->data.nbytes);
/* Release the chip-select */
atmel_qspi_write(QSPI_CR_LASTXFER, aq, QSPI_CR);
}
/* Poll INSTruction End and Chip Select Rise flags. */
imr = QSPI_SR_INSTRE | QSPI_SR_CSR;
return readl_poll_timeout(aq->regs + QSPI_SR, sr, (sr & imr) == imr,
ATMEL_QSPI_TIMEOUT);
}
static int atmel_qspi_reg_sync(struct atmel_qspi *aq)
{
u32 val;
return readl_poll_timeout(aq->regs + QSPI_SR2, val,
!(val & QSPI_SR2_SYNCBSY),
ATMEL_QSPI_SYNC_TIMEOUT);
}
static int atmel_qspi_update_config(struct atmel_qspi *aq)
{
int ret;
ret = atmel_qspi_reg_sync(aq);
if (ret)
return ret;
atmel_qspi_write(QSPI_CR_UPDCFG, aq, QSPI_CR);
return atmel_qspi_reg_sync(aq);
}
static int atmel_qspi_sama7g5_set_cfg(struct atmel_qspi *aq,
const struct spi_mem_op *op, u32 *offset)
{
u32 iar, icr, ifr;
int mode, ret;
iar = 0;
icr = FIELD_PREP(QSPI_ICR_INST_MASK_SAMA7G5, op->cmd.opcode);
ifr = QSPI_IFR_INSTEN;
mode = atmel_qspi_sama7g5_find_mode(op);
if (mode < 0)
return mode;
ifr |= atmel_qspi_sama7g5_modes[mode].config;
if (op->dummy.buswidth && op->dummy.nbytes) {
if (op->addr.dtr && op->dummy.dtr && op->data.dtr)
ifr |= QSPI_IFR_NBDUM(op->dummy.nbytes * 8 /
(2 * op->dummy.buswidth));
else
ifr |= QSPI_IFR_NBDUM(op->dummy.nbytes * 8 /
op->dummy.buswidth);
}
if (op->addr.buswidth && op->addr.nbytes) {
ifr |= FIELD_PREP(QSPI_IFR_ADDRL_SAMA7G5, op->addr.nbytes - 1) |
QSPI_IFR_ADDREN;
iar = FIELD_PREP(QSPI_IAR_ADDR, op->addr.val);
}
if (op->addr.dtr && op->dummy.dtr && op->data.dtr) {
ifr |= QSPI_IFR_DDREN;
if (op->cmd.dtr)
ifr |= QSPI_IFR_DDRCMDEN;
ifr |= QSPI_IFR_DQSEN;
}
if (op->cmd.buswidth == 8 || op->addr.buswidth == 8 ||
op->data.buswidth == 8)
ifr |= FIELD_PREP(QSPI_IFR_PROTTYP, QSPI_IFR_PROTTYP_OCTAFLASH);
/* offset of the data access in the QSPI memory space */
*offset = iar;
/* Set data enable */
if (op->data.nbytes) {
ifr |= QSPI_IFR_DATAEN;
if (op->addr.nbytes)
ifr |= QSPI_IFR_TFRTYP_MEM;
}
/*
* If the QSPI controller is set in regular SPI mode, set it in
* Serial Memory Mode (SMM).
*/
if (aq->mr != QSPI_MR_SMM) {
atmel_qspi_write(QSPI_MR_SMM | QSPI_MR_DQSDLYEN, aq, QSPI_MR);
ret = atmel_qspi_update_config(aq);
if (ret)
return ret;
aq->mr = QSPI_MR_SMM;
}
/* Clear pending interrupts */
(void)atmel_qspi_read(aq, QSPI_SR);
/* Set QSPI Instruction Frame registers */
if (op->addr.nbytes && !op->data.nbytes)
atmel_qspi_write(iar, aq, QSPI_IAR);
if (op->data.dir == SPI_MEM_DATA_IN) {
atmel_qspi_write(icr, aq, QSPI_RICR);
} else {
atmel_qspi_write(icr, aq, QSPI_WICR);
if (op->data.nbytes)
atmel_qspi_write(FIELD_PREP(QSPI_WRACNT_NBWRA,
op->data.nbytes),
aq, QSPI_WRACNT);
}
atmel_qspi_write(ifr, aq, QSPI_IFR);
return atmel_qspi_update_config(aq);
}
static int atmel_qspi_sama7g5_transfer(struct atmel_qspi *aq,
const struct spi_mem_op *op, u32 offset)
{
int err;
u32 val;
if (!op->data.nbytes) {
/* Start the transfer. */
err = atmel_qspi_reg_sync(aq);
if (err)
return err;
atmel_qspi_write(QSPI_CR_STTFR, aq, QSPI_CR);
return readl_poll_timeout(aq->regs + QSPI_SR, val,
val & QSPI_SR_CSRA,
ATMEL_QSPI_TIMEOUT);
}
/* Send/Receive data. */
if (op->data.dir == SPI_MEM_DATA_IN) {
memcpy_fromio(op->data.buf.in, aq->mem + offset,
op->data.nbytes);
if (op->addr.nbytes) {
err = readl_poll_timeout(aq->regs + QSPI_SR2, val,
!(val & QSPI_SR2_RBUSY),
ATMEL_QSPI_SYNC_TIMEOUT);
if (err)
return err;
}
} else {
memcpy_toio(aq->mem + offset, op->data.buf.out,
op->data.nbytes);
err = readl_poll_timeout(aq->regs + QSPI_SR, val,
val & QSPI_SR_LWRA,
ATMEL_QSPI_TIMEOUT);
if (err)
return err;
}
/* Release the chip-select. */
err = atmel_qspi_reg_sync(aq);
if (err)
return err;
atmel_qspi_write(QSPI_CR_LASTXFER, aq, QSPI_CR);
return readl_poll_timeout(aq->regs + QSPI_SR, val, val & QSPI_SR_CSRA,
ATMEL_QSPI_TIMEOUT);
}
static int atmel_qspi_exec_op(struct spi_slave *slave,
const struct spi_mem_op *op)
{
struct atmel_qspi *aq = dev_get_priv(slave->dev->parent);
u32 offset;
int err;
/*
* Check if the address exceeds the MMIO window size. An improvement
* would be to add support for regular SPI mode and fall back to it
* when the flash memories overrun the controller's memory space.
*/
if (op->addr.val + op->data.nbytes > aq->mmap_size)
return -ENOTSUPP;
if (op->addr.nbytes > 4)
return -EOPNOTSUPP;
err = aq->ops->set_cfg(aq, op, &offset);
if (err)
return err;
return aq->ops->transfer(aq, op, offset);
}
static int atmel_qspi_set_pad_calibration(struct udevice *bus, uint hz)
{
struct atmel_qspi *aq = dev_get_priv(bus);
u32 status, val;
int i, ret;
u8 pclk_div = 0;
for (i = 0; i < ATMEL_QSPI_PCAL_ARRAY_SIZE; i++) {
if (aq->bus_clk_rate <= pcal[i].pclk_rate) {
pclk_div = pcal[i].pclk_div;
break;
}
}
/*
* Use the biggest divider in case the peripheral clock exceeds
* 200MHZ.
*/
if (aq->bus_clk_rate > pcal[ATMEL_QSPI_PCAL_ARRAY_SIZE - 1].pclk_rate)
pclk_div = pcal[ATMEL_QSPI_PCAL_ARRAY_SIZE - 1].pclk_div;
/* Disable QSPI while configuring the pad calibration. */
status = atmel_qspi_read(aq, QSPI_SR2);
if (status & QSPI_SR2_QSPIENS) {
ret = atmel_qspi_reg_sync(aq);
if (ret)
return ret;
atmel_qspi_write(QSPI_CR_QSPIDIS, aq, QSPI_CR);
}
/*
* The analog circuitry is not shut down at the end of the calibration
* and the start-up time is only required for the first calibration
* sequence, thus increasing performance. Set the delay between the Pad
* calibration analog circuitry and the calibration request to 2us.
*/
atmel_qspi_write(QSPI_PCALCFG_AAON |
FIELD_PREP(QSPI_PCALCFG_CLKDIV, pclk_div) |
FIELD_PREP(QSPI_PCALCFG_CALCNT,
2 * (aq->bus_clk_rate / 1000000)),
aq, QSPI_PCALCFG);
/* DLL On + start calibration. */
atmel_qspi_write(QSPI_CR_DLLON | QSPI_CR_STPCAL, aq, QSPI_CR);
ret = readl_poll_timeout(aq->regs + QSPI_SR2, val,
(val & QSPI_SR2_DLOCK) &&
!(val & QSPI_SR2_CALBSY),
ATMEL_QSPI_TIMEOUT);
/* Refresh analogic blocks every 1 ms.*/
atmel_qspi_write(FIELD_PREP(QSPI_REFRESH_DELAY_COUNTER, hz / 1000),
aq, QSPI_REFRESH);
return ret;
}
static int atmel_qspi_set_gclk(struct udevice *bus, uint hz)
{
struct atmel_qspi *aq = dev_get_priv(bus);
struct clk gclk;
u32 status, val;
int ret;
/* Disable DLL before setting GCLK */
status = atmel_qspi_read(aq, QSPI_SR2);
if (status & QSPI_SR2_DLOCK) {
atmel_qspi_write(QSPI_CR_DLLOFF, aq, QSPI_CR);
ret = readl_poll_timeout(aq->regs + QSPI_SR2, val,
!(val & QSPI_SR2_DLOCK),
ATMEL_QSPI_TIMEOUT);
if (ret)
return ret;
}
if (hz > QSPI_DLLCFG_THRESHOLD_FREQ)
atmel_qspi_write(QSPI_DLLCFG_RANGE, aq, QSPI_DLLCFG);
else
atmel_qspi_write(0, aq, QSPI_DLLCFG);
ret = clk_get_by_name(bus, "gclk", &gclk);
if (ret) {
dev_err(bus, "Missing QSPI generic clock\n");
return ret;
}
ret = clk_disable(&gclk);
if (ret)
dev_err(bus, "Failed to disable QSPI generic clock\n");
ret = clk_set_rate(&gclk, hz);
if (ret < 0) {
dev_err(bus, "Failed to set generic clock rate.\n");
return ret;
}
ret = clk_enable(&gclk);
if (ret)
dev_err(bus, "Failed to enable QSPI generic clock\n");
clk_free(&gclk);
return ret;
}
static int atmel_qspi_sama7g5_set_speed(struct udevice *bus, uint hz)
{
struct atmel_qspi *aq = dev_get_priv(bus);
u32 val;
int ret;
ret = atmel_qspi_set_gclk(bus, hz);
if (ret)
return ret;
if (aq->caps->octal) {
ret = atmel_qspi_set_pad_calibration(bus, hz);
if (ret)
return ret;
} else {
atmel_qspi_write(QSPI_CR_DLLON, aq, QSPI_CR);
ret = readl_poll_timeout(aq->regs + QSPI_SR2, val,
val & QSPI_SR2_DLOCK,
ATMEL_QSPI_TIMEOUT);
}
/* Set the QSPI controller by default in Serial Memory Mode */
atmel_qspi_write(QSPI_MR_SMM | QSPI_MR_DQSDLYEN, aq, QSPI_MR);
ret = atmel_qspi_update_config(aq);
if (ret)
return ret;
aq->mr = QSPI_MR_SMM;
/* Enable the QSPI controller. */
ret = atmel_qspi_reg_sync(aq);
if (ret)
return ret;
atmel_qspi_write(QSPI_CR_QSPIEN, aq, QSPI_CR);
ret = readl_poll_timeout(aq->regs + QSPI_SR2, val,
val & QSPI_SR2_QSPIENS,
ATMEL_QSPI_SYNC_TIMEOUT);
if (ret)
return ret;
if (aq->caps->octal)
ret = readl_poll_timeout(aq->regs + QSPI_SR, val,
val & QSPI_SR_RFRSHD,
ATMEL_QSPI_TIMEOUT);
atmel_qspi_write(FIELD_PREP(QSPI_TOUT_TCNTM, QSPI_TOUT_MAX),
aq, QSPI_TOUT);
return ret;
}
static int atmel_qspi_set_speed(struct udevice *bus, uint hz)
{
struct atmel_qspi *aq = dev_get_priv(bus);
u32 scr, scbr, mask, new_value;
if (aq->caps->has_gclk)
return atmel_qspi_sama7g5_set_speed(bus, hz);
/* Compute the QSPI baudrate */
scbr = DIV_ROUND_UP(aq->bus_clk_rate, hz);
if (scbr > 0)
scbr--;
new_value = QSPI_SCR_SCBR(scbr);
mask = QSPI_SCR_SCBR_MASK;
scr = atmel_qspi_read(aq, QSPI_SCR);
if ((scr & mask) == new_value)
return 0;
scr = (scr & ~mask) | new_value;
atmel_qspi_write(scr, aq, QSPI_SCR);
return 0;
}
static int atmel_qspi_set_mode(struct udevice *bus, uint mode)
{
struct atmel_qspi *aq = dev_get_priv(bus);
u32 scr, mask, new_value = 0;
if (mode & SPI_CPOL)
new_value = QSPI_SCR_CPOL;
if (mode & SPI_CPHA)
new_value = QSPI_SCR_CPHA;
mask = QSPI_SCR_CPOL | QSPI_SCR_CPHA;
scr = atmel_qspi_read(aq, QSPI_SCR);
if ((scr & mask) == new_value)
return 0;
scr = (scr & ~mask) | new_value;
atmel_qspi_write(scr, aq, QSPI_SCR);
if (aq->caps->has_gclk)
return atmel_qspi_update_config(aq);
return 0;
}
static int atmel_qspi_enable_clk(struct udevice *dev)
{
struct atmel_qspi *aq = dev_get_priv(dev);
struct clk pclk, qspick, gclk;
int ret;
ret = clk_get_by_name(dev, "pclk", &pclk);
if (ret)
ret = clk_get_by_index(dev, 0, &pclk);
if (ret) {
dev_err(dev, "Missing QSPI peripheral clock\n");
return ret;
}
ret = clk_enable(&pclk);
if (ret) {
dev_err(dev, "Failed to enable QSPI peripheral clock\n");
goto free_pclk;
}
if (aq->caps->has_qspick) {
/* Get the QSPI system clock */
ret = clk_get_by_name(dev, "qspick", &qspick);
if (ret) {
dev_err(dev, "Missing QSPI peripheral clock\n");
goto free_pclk;
}
ret = clk_enable(&qspick);
if (ret)
dev_err(dev, "Failed to enable QSPI system clock\n");
clk_free(&qspick);
} else if (aq->caps->has_gclk) {
ret = clk_get_by_name(dev, "gclk", &gclk);
if (ret) {
dev_err(dev, "Missing QSPI generic clock\n");
goto free_pclk;
}
ret = clk_enable(&gclk);
if (ret)
dev_err(dev, "Failed to enable QSPI system clock\n");
clk_free(&gclk);
}
aq->bus_clk_rate = clk_get_rate(&pclk);
if (!aq->bus_clk_rate)
ret = -EINVAL;
free_pclk:
clk_free(&pclk);
return ret;
}
static int atmel_qspi_init(struct atmel_qspi *aq)
{
int ret;
if (aq->caps->has_gclk) {
ret = atmel_qspi_reg_sync(aq);
if (ret)
return ret;
atmel_qspi_write(QSPI_CR_SWRST, aq, QSPI_CR);
return 0;
}
/* Reset the QSPI controller */
atmel_qspi_write(QSPI_CR_SWRST, aq, QSPI_CR);
/* Set the QSPI controller by default in Serial Memory Mode */
atmel_qspi_write(QSPI_MR_SMM, aq, QSPI_MR);
aq->mr = QSPI_MR_SMM;
/* Enable the QSPI controller */
atmel_qspi_write(QSPI_CR_QSPIEN, aq, QSPI_CR);
return 0;
}
static const struct atmel_qspi_priv_ops atmel_qspi_priv_ops = {
.set_cfg = atmel_qspi_set_cfg,
.transfer = atmel_qspi_transfer,
};
static const struct atmel_qspi_priv_ops atmel_qspi_sama7g5_priv_ops = {
.set_cfg = atmel_qspi_sama7g5_set_cfg,
.transfer = atmel_qspi_sama7g5_transfer,
};
static int atmel_qspi_probe(struct udevice *dev)
{
struct atmel_qspi *aq = dev_get_priv(dev);
struct resource res;
int ret;
aq->caps = (struct atmel_qspi_caps *)dev_get_driver_data(dev);
if (!aq->caps) {
dev_err(dev, "Could not retrieve QSPI caps\n");
return -EINVAL;
};
if (aq->caps->has_gclk)
aq->ops = &atmel_qspi_sama7g5_priv_ops;
else
aq->ops = &atmel_qspi_priv_ops;
/* Map the registers */
ret = dev_read_resource_byname(dev, "qspi_base", &res);
if (ret) {
dev_err(dev, "missing registers\n");
return ret;
}
aq->regs = devm_ioremap(dev, res.start, resource_size(&res));
if (IS_ERR(aq->regs))
return PTR_ERR(aq->regs);
/* Map the AHB memory */
ret = dev_read_resource_byname(dev, "qspi_mmap", &res);
if (ret) {
dev_err(dev, "missing AHB memory\n");
return ret;
}
aq->mem = devm_ioremap(dev, res.start, resource_size(&res));
if (IS_ERR(aq->mem))
return PTR_ERR(aq->mem);
aq->mmap_size = resource_size(&res);
ret = atmel_qspi_enable_clk(dev);
if (ret)
return ret;
aq->dev = dev;
return atmel_qspi_init(aq);
}
static const struct spi_controller_mem_ops atmel_qspi_mem_ops = {
.supports_op = atmel_qspi_supports_op,
.exec_op = atmel_qspi_exec_op,
};
static const struct dm_spi_ops atmel_qspi_ops = {
.set_speed = atmel_qspi_set_speed,
.set_mode = atmel_qspi_set_mode,
.mem_ops = &atmel_qspi_mem_ops,
};
static const struct atmel_qspi_caps atmel_sama5d2_qspi_caps = {};
static const struct atmel_qspi_caps atmel_sam9x60_qspi_caps = {
.has_qspick = true,
.has_ricr = true,
};
static const struct atmel_qspi_caps atmel_sama7g5_ospi_caps = {
.has_gclk = true,
.octal = true,
};
static const struct atmel_qspi_caps atmel_sama7g5_qspi_caps = {
.has_gclk = true,
};
static const struct udevice_id atmel_qspi_ids[] = {
{
.compatible = "atmel,sama5d2-qspi",
.data = (ulong)&atmel_sama5d2_qspi_caps,
},
{
.compatible = "microchip,sam9x60-qspi",
.data = (ulong)&atmel_sam9x60_qspi_caps,
},
{
.compatible = "microchip,sama7g5-ospi",
.data = (ulong)&atmel_sama7g5_ospi_caps,
},
{
.compatible = "microchip,sama7g5-qspi",
.data = (ulong)&atmel_sama7g5_qspi_caps,
},
{ /* sentinel */ }
};
U_BOOT_DRIVER(atmel_qspi) = {
.name = "atmel_qspi",
.id = UCLASS_SPI,
.of_match = atmel_qspi_ids,
.ops = &atmel_qspi_ops,
.priv_auto = sizeof(struct atmel_qspi),
.probe = atmel_qspi_probe,
};