mirror of
https://github.com/AsahiLinux/u-boot
synced 2024-11-26 06:30:39 +00:00
a47a12becf
As discussed on the list, move "arch/ppc" to "arch/powerpc" to better match the Linux directory structure. Please note that this patch also changes the "ppc" target in MAKEALL to "powerpc" to match this new infrastructure. But "ppc" is kept as an alias for now, to not break compatibility with scripts using this name. Signed-off-by: Stefan Roese <sr@denx.de> Acked-by: Wolfgang Denk <wd@denx.de> Acked-by: Detlev Zundel <dzu@denx.de> Acked-by: Kim Phillips <kim.phillips@freescale.com> Cc: Peter Tyser <ptyser@xes-inc.com> Cc: Anatolij Gustschin <agust@denx.de>
196 lines
6.1 KiB
C
196 lines
6.1 KiB
C
/*
|
|
* (C) Copyright 2000
|
|
* Sysgo Real-Time Solutions, GmbH <www.elinos.com>
|
|
* Marius Groeger <mgroeger@sysgo.de>
|
|
*
|
|
* Code in faintly related to linux/arch/powerpc/8xx_io:
|
|
* MPC8xx CPM I2C interface. Copyright (c) 1999 Dan Malek (dmalek@jlc.net).
|
|
*
|
|
* This file implements functions to read the MBX's Vital Product Data
|
|
* (VPD). I can't use the more general i2c code in mpc8xx/... since I need
|
|
* the VPD at a time where there is no RAM available yet. Hence the VPD is
|
|
* read into a special area in the DPRAM (see config_MBX.h::CFG_DPRAMVPD).
|
|
*
|
|
* -----------------------------------------------------------------
|
|
* See file CREDITS for list of people who contributed to this
|
|
* project.
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License as
|
|
* published by the Free Software Foundation; either version 2 of
|
|
* the License, or (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software
|
|
* Foundation, Inc., 59 Temple Place, Suite 330, Boston,
|
|
* MA 02111-1307 USA
|
|
*/
|
|
|
|
#include <common.h>
|
|
#ifdef CONFIG_8xx
|
|
#include <commproc.h>
|
|
#endif
|
|
#include "vpd.h"
|
|
|
|
/* Location of receive/transmit buffer descriptors
|
|
* Allocate one transmit bd and one receive bd.
|
|
* IIC_BD_FREE points to free bd space which we'll use as tx buffer.
|
|
*/
|
|
#define IIC_BD_TX1 (BD_IIC_START + 0*sizeof(cbd_t))
|
|
#define IIC_BD_TX2 (BD_IIC_START + 1*sizeof(cbd_t))
|
|
#define IIC_BD_RX (BD_IIC_START + 2*sizeof(cbd_t))
|
|
#define IIC_BD_FREE (BD_IIC_START + 3*sizeof(cbd_t))
|
|
|
|
/* FIXME -- replace 0x2000 with offsetof */
|
|
#define VPD_P ((vpd_t *)(CONFIG_SYS_IMMR + 0x2000 + CONFIG_SYS_DPRAMVPD))
|
|
|
|
/* transmit/receive buffers */
|
|
#define IIC_RX_LENGTH 128
|
|
|
|
#define WITH_MICROCODE_PATCH
|
|
|
|
vpd_packet_t * vpd_find_packet(u_char ident)
|
|
{
|
|
vpd_packet_t *packet;
|
|
vpd_t *vpd = VPD_P;
|
|
|
|
packet = (vpd_packet_t *)&vpd->packets;
|
|
while ((packet->identifier != ident) && packet->identifier != 0xFF)
|
|
{
|
|
packet = (vpd_packet_t *)((char *)packet + packet->size + 2);
|
|
}
|
|
return packet;
|
|
}
|
|
|
|
void vpd_init(void)
|
|
{
|
|
volatile immap_t *im = (immap_t *)CONFIG_SYS_IMMR;
|
|
volatile cpm8xx_t *cp = &(im->im_cpm);
|
|
volatile i2c8xx_t *i2c = (i2c8xx_t *)&(im->im_i2c);
|
|
volatile iic_t *iip;
|
|
#ifdef WITH_MICROCODE_PATCH
|
|
ulong reloc = 0;
|
|
#endif
|
|
|
|
iip = (iic_t *)&cp->cp_dparam[PROFF_IIC];
|
|
|
|
/*
|
|
* kludge: when running from flash, no microcode patch can be
|
|
* installed. However, the DPMEM usually contains non-zero
|
|
* garbage at the relocatable patch base location, so lets clear
|
|
* it now. This way the rest of the code can support the microcode
|
|
* patch dynamically.
|
|
*/
|
|
if ((ulong)vpd_init & 0xff000000)
|
|
iip->iic_rpbase = 0;
|
|
|
|
#ifdef WITH_MICROCODE_PATCH
|
|
/* Check for and use a microcode relocation patch. */
|
|
if ((reloc = iip->iic_rpbase))
|
|
iip = (iic_t *)&cp->cp_dpmem[iip->iic_rpbase];
|
|
#endif
|
|
/* Initialize Port B IIC pins */
|
|
cp->cp_pbpar |= 0x00000030;
|
|
cp->cp_pbdir |= 0x00000030;
|
|
cp->cp_pbodr |= 0x00000030;
|
|
|
|
i2c->i2c_i2mod = 0x04; /* filter clock */
|
|
i2c->i2c_i2add = 0x34; /* select an arbitrary (unique) address */
|
|
i2c->i2c_i2brg = 0x07; /* make clock run maximum slow */
|
|
i2c->i2c_i2cmr = 0x00; /* disable interrupts */
|
|
i2c->i2c_i2cer = 0x1f; /* clear events */
|
|
i2c->i2c_i2com = 0x01; /* configure i2c to work as master */
|
|
|
|
if (vpd_read(0xa4, (uchar*)VPD_P, VPD_EEPROM_SIZE, 0) != VPD_EEPROM_SIZE)
|
|
{
|
|
hang();
|
|
}
|
|
}
|
|
|
|
|
|
/* Read from I2C.
|
|
* This is a two step process. First, we send the "dummy" write
|
|
* to set the device offset for the read. Second, we perform
|
|
* the read operation.
|
|
*/
|
|
int vpd_read(uint iic_device, uchar *buf, int count, int offset)
|
|
{
|
|
volatile immap_t *im = (immap_t *)CONFIG_SYS_IMMR;
|
|
volatile cpm8xx_t *cp = &(im->im_cpm);
|
|
volatile i2c8xx_t *i2c = (i2c8xx_t *)&(im->im_i2c);
|
|
volatile iic_t *iip;
|
|
volatile cbd_t *tbdf1, *tbdf2, *rbdf;
|
|
uchar *tb;
|
|
uchar event;
|
|
#ifdef WITH_MICROCODE_PATCH
|
|
ulong reloc = 0;
|
|
#endif
|
|
|
|
iip = (iic_t *)&cp->cp_dparam[PROFF_IIC];
|
|
#ifdef WITH_MICROCODE_PATCH
|
|
/* Check for and use a microcode relocation patch. */
|
|
if ((reloc = iip->iic_rpbase))
|
|
iip = (iic_t *)&cp->cp_dpmem[iip->iic_rpbase];
|
|
#endif
|
|
tbdf1 = (cbd_t *)&cp->cp_dpmem[IIC_BD_TX1];
|
|
tbdf2 = (cbd_t *)&cp->cp_dpmem[IIC_BD_TX2];
|
|
rbdf = (cbd_t *)&cp->cp_dpmem[IIC_BD_RX];
|
|
|
|
/* Send a "dummy write" operation. This is a write request with
|
|
* only the offset sent, followed by another start condition.
|
|
* This will ensure we start reading from the first location
|
|
* of the EEPROM.
|
|
*/
|
|
tb = (uchar*)&cp->cp_dpmem[IIC_BD_FREE];
|
|
tb[0] = iic_device & 0xfe; /* device address */
|
|
tb[1] = offset; /* offset */
|
|
tbdf1->cbd_bufaddr = (uint)tb;
|
|
tbdf1->cbd_datlen = 2;
|
|
tbdf1->cbd_sc = 0x8400;
|
|
|
|
tb += 2;
|
|
tb[0] = iic_device | 1; /* device address */
|
|
tbdf2->cbd_bufaddr = (uint)tb;
|
|
tbdf2->cbd_datlen = count+1;
|
|
tbdf2->cbd_sc = 0xbc00;
|
|
|
|
rbdf->cbd_bufaddr = (uint)buf;
|
|
rbdf->cbd_datlen = 0;
|
|
rbdf->cbd_sc = 0xb000;
|
|
|
|
iip->iic_tbase = IIC_BD_TX1;
|
|
iip->iic_tbptr = IIC_BD_TX1;
|
|
iip->iic_rbase = IIC_BD_RX;
|
|
iip->iic_rbptr = IIC_BD_RX;
|
|
iip->iic_rfcr = 0x15;
|
|
iip->iic_tfcr = 0x15;
|
|
iip->iic_mrblr = count;
|
|
iip->iic_rstate = 0;
|
|
iip->iic_tstate = 0;
|
|
|
|
i2c->i2c_i2cer = 0x1f; /* clear event mask */
|
|
i2c->i2c_i2mod |= 1; /* enable iic operation */
|
|
i2c->i2c_i2com |= 0x80; /* start master */
|
|
|
|
/* wait for IIC transfer */
|
|
do {
|
|
__asm__ volatile ("eieio");
|
|
event = i2c->i2c_i2cer;
|
|
} while (event == 0);
|
|
|
|
if ((event & 0x10) || (event & 0x04)) {
|
|
count = -1;
|
|
goto bailout;
|
|
}
|
|
|
|
bailout:
|
|
i2c->i2c_i2mod &= ~1; /* turn off iic operation */
|
|
i2c->i2c_i2cer = 0x1f; /* clear event mask */
|
|
|
|
return count;
|
|
}
|