mirror of
https://github.com/AsahiLinux/u-boot
synced 2024-12-02 09:30:10 +00:00
5aeac5c4d5
Import octeon_qlm.c from 2013 U-Boot. It will be used by the later added drivers to support PCIe and networking on the MIPS Octeon II / III platforms. Signed-off-by: Aaron Williams <awilliams@marvell.com> Signed-off-by: Stefan Roese <sr@denx.de>
5853 lines
179 KiB
C
5853 lines
179 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* Copyright (C) 2020 Marvell International Ltd.
|
|
*/
|
|
|
|
#include <dm.h>
|
|
#include <time.h>
|
|
#include <linux/delay.h>
|
|
|
|
#include <mach/cvmx-regs.h>
|
|
#include <mach/octeon-model.h>
|
|
#include <mach/cvmx-fuse.h>
|
|
#include <mach/cvmx-qlm.h>
|
|
#include <mach/octeon_qlm.h>
|
|
#include <mach/cvmx-pcie.h>
|
|
|
|
#include <mach/cvmx-bgxx-defs.h>
|
|
#include <mach/cvmx-ciu-defs.h>
|
|
#include <mach/cvmx-gmxx-defs.h>
|
|
#include <mach/cvmx-gserx-defs.h>
|
|
#include <mach/cvmx-mio-defs.h>
|
|
#include <mach/cvmx-pciercx-defs.h>
|
|
#include <mach/cvmx-pemx-defs.h>
|
|
#include <mach/cvmx-pexp-defs.h>
|
|
#include <mach/cvmx-rst-defs.h>
|
|
#include <mach/cvmx-sata-defs.h>
|
|
#include <mach/cvmx-sli-defs.h>
|
|
#include <mach/cvmx-sriomaintx-defs.h>
|
|
#include <mach/cvmx-sriox-defs.h>
|
|
|
|
DECLARE_GLOBAL_DATA_PTR;
|
|
|
|
/** 2.5GHz with 100MHz reference clock */
|
|
#define R_2_5G_REFCLK100 0x0
|
|
/** 5.0GHz with 100MHz reference clock */
|
|
#define R_5G_REFCLK100 0x1
|
|
/** 8.0GHz with 100MHz reference clock */
|
|
#define R_8G_REFCLK100 0x2
|
|
/** 1.25GHz with 156.25MHz reference clock */
|
|
#define R_125G_REFCLK15625_KX 0x3
|
|
/** 3.125Ghz with 156.25MHz reference clock (XAUI) */
|
|
#define R_3125G_REFCLK15625_XAUI 0x4
|
|
/** 10.3125GHz with 156.25MHz reference clock (XFI/XLAUI) */
|
|
#define R_103125G_REFCLK15625_KR 0x5
|
|
/** 1.25GHz with 156.25MHz reference clock (SGMII) */
|
|
#define R_125G_REFCLK15625_SGMII 0x6
|
|
/** 5GHz with 156.25MHz reference clock (QSGMII) */
|
|
#define R_5G_REFCLK15625_QSGMII 0x7
|
|
/** 6.25GHz with 156.25MHz reference clock (RXAUI/25G) */
|
|
#define R_625G_REFCLK15625_RXAUI 0x8
|
|
/** 2.5GHz with 125MHz reference clock */
|
|
#define R_2_5G_REFCLK125 0x9
|
|
/** 5GHz with 125MHz reference clock */
|
|
#define R_5G_REFCLK125 0xa
|
|
/** 8GHz with 125MHz reference clock */
|
|
#define R_8G_REFCLK125 0xb
|
|
/** Must be last, number of modes */
|
|
#define R_NUM_LANE_MODES 0xc
|
|
|
|
int cvmx_qlm_is_ref_clock(int qlm, int reference_mhz)
|
|
{
|
|
int ref_clock = cvmx_qlm_measure_clock(qlm);
|
|
int mhz = ref_clock / 1000000;
|
|
int range = reference_mhz / 10;
|
|
|
|
return ((mhz >= reference_mhz - range) && (mhz <= reference_mhz + range));
|
|
}
|
|
|
|
static int __get_qlm_spd(int qlm, int speed)
|
|
{
|
|
int qlm_spd = 0xf;
|
|
|
|
if (cvmx_qlm_is_ref_clock(qlm, 100)) {
|
|
if (speed == 1250)
|
|
qlm_spd = 0x3;
|
|
else if (speed == 2500)
|
|
qlm_spd = 0x2;
|
|
else if (speed == 5000)
|
|
qlm_spd = 0x0;
|
|
else
|
|
qlm_spd = 0xf;
|
|
} else if (cvmx_qlm_is_ref_clock(qlm, 125)) {
|
|
if (speed == 1250)
|
|
qlm_spd = 0xa;
|
|
else if (speed == 2500)
|
|
qlm_spd = 0x9;
|
|
else if (speed == 3125)
|
|
qlm_spd = 0x8;
|
|
else if (speed == 5000)
|
|
qlm_spd = 0x6;
|
|
else if (speed == 6250)
|
|
qlm_spd = 0x5;
|
|
else
|
|
qlm_spd = 0xf;
|
|
} else if (cvmx_qlm_is_ref_clock(qlm, 156)) {
|
|
if (speed == 1250)
|
|
qlm_spd = 0x4;
|
|
else if (speed == 2500)
|
|
qlm_spd = 0x7;
|
|
else if (speed == 3125)
|
|
qlm_spd = 0xe;
|
|
else if (speed == 3750)
|
|
qlm_spd = 0xd;
|
|
else if (speed == 5000)
|
|
qlm_spd = 0xb;
|
|
else if (speed == 6250)
|
|
qlm_spd = 0xc;
|
|
else
|
|
qlm_spd = 0xf;
|
|
} else if (cvmx_qlm_is_ref_clock(qlm, 161)) {
|
|
if (speed == 6316)
|
|
qlm_spd = 0xc;
|
|
}
|
|
return qlm_spd;
|
|
}
|
|
|
|
static void __set_qlm_pcie_mode_61xx(int pcie_port, int root_complex)
|
|
{
|
|
int rc = root_complex ? 1 : 0;
|
|
int ep = root_complex ? 0 : 1;
|
|
cvmx_ciu_soft_prst1_t soft_prst1;
|
|
cvmx_ciu_soft_prst_t soft_prst;
|
|
cvmx_mio_rst_ctlx_t rst_ctl;
|
|
|
|
if (pcie_port) {
|
|
soft_prst1.u64 = csr_rd(CVMX_CIU_SOFT_PRST1);
|
|
soft_prst1.s.soft_prst = 1;
|
|
csr_wr(CVMX_CIU_SOFT_PRST1, soft_prst1.u64);
|
|
} else {
|
|
soft_prst.u64 = csr_rd(CVMX_CIU_SOFT_PRST);
|
|
soft_prst.s.soft_prst = 1;
|
|
csr_wr(CVMX_CIU_SOFT_PRST, soft_prst.u64);
|
|
}
|
|
|
|
rst_ctl.u64 = csr_rd(CVMX_MIO_RST_CTLX(pcie_port));
|
|
|
|
rst_ctl.s.prst_link = rc;
|
|
rst_ctl.s.rst_link = ep;
|
|
rst_ctl.s.prtmode = rc;
|
|
rst_ctl.s.rst_drv = rc;
|
|
rst_ctl.s.rst_rcv = 0;
|
|
rst_ctl.s.rst_chip = ep;
|
|
csr_wr(CVMX_MIO_RST_CTLX(pcie_port), rst_ctl.u64);
|
|
|
|
if (root_complex == 0) {
|
|
if (pcie_port) {
|
|
soft_prst1.u64 = csr_rd(CVMX_CIU_SOFT_PRST1);
|
|
soft_prst1.s.soft_prst = 0;
|
|
csr_wr(CVMX_CIU_SOFT_PRST1, soft_prst1.u64);
|
|
} else {
|
|
soft_prst.u64 = csr_rd(CVMX_CIU_SOFT_PRST);
|
|
soft_prst.s.soft_prst = 0;
|
|
csr_wr(CVMX_CIU_SOFT_PRST, soft_prst.u64);
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Configure qlm speed and mode. MIO_QLMX_CFG[speed,mode] are not set
|
|
* for CN61XX.
|
|
*
|
|
* @param qlm The QLM to configure
|
|
* @param speed The speed the QLM needs to be configured in Mhz.
|
|
* @param mode The QLM to be configured as SGMII/XAUI/PCIe.
|
|
* QLM 0: 0 = PCIe0 1X4, 1 = Reserved, 2 = SGMII1, 3 = XAUI1
|
|
* QLM 1: 0 = PCIe1 1x2, 1 = PCIe(0/1) 2x1, 2 - 3 = Reserved
|
|
* QLM 2: 0 - 1 = Reserved, 2 = SGMII0, 3 = XAUI0
|
|
* @param rc Only used for PCIe, rc = 1 for root complex mode, 0 for EP
|
|
* mode.
|
|
* @param pcie2x1 Only used when QLM1 is in PCIE2x1 mode. The QLM_SPD has a
|
|
* different value on how PEMx needs to be configured:
|
|
* 0x0 - both PEM0 & PEM1 are in gen1 mode.
|
|
* 0x1 - PEM0 in gen2 and PEM1 in gen1 mode.
|
|
* 0x2 - PEM0 in gen1 and PEM1 in gen2 mode.
|
|
* 0x3 - both PEM0 & PEM1 are in gen2 mode.
|
|
* SPEED value is ignored in this mode. QLM_SPD is set based on
|
|
* pcie2x1 value in this mode.
|
|
*
|
|
* @return Return 0 on success or -1.
|
|
*/
|
|
static int octeon_configure_qlm_cn61xx(int qlm, int speed, int mode, int rc, int pcie2x1)
|
|
{
|
|
cvmx_mio_qlmx_cfg_t qlm_cfg;
|
|
|
|
/* The QLM speed varies for SGMII/XAUI and PCIe mode. And depends on
|
|
* reference clock.
|
|
*/
|
|
if (!OCTEON_IS_MODEL(OCTEON_CN61XX))
|
|
return -1;
|
|
|
|
if (qlm < 3) {
|
|
qlm_cfg.u64 = csr_rd(CVMX_MIO_QLMX_CFG(qlm));
|
|
} else {
|
|
debug("WARNING: Invalid QLM(%d) passed\n", qlm);
|
|
return -1;
|
|
}
|
|
|
|
switch (qlm) {
|
|
/* SGMII/XAUI mode */
|
|
case 2: {
|
|
if (mode < 2) {
|
|
qlm_cfg.s.qlm_spd = 0xf;
|
|
break;
|
|
}
|
|
qlm_cfg.s.qlm_spd = __get_qlm_spd(qlm, speed);
|
|
qlm_cfg.s.qlm_cfg = mode;
|
|
break;
|
|
}
|
|
case 1: {
|
|
if (mode == 1) { /* 2x1 mode */
|
|
cvmx_mio_qlmx_cfg_t qlm0;
|
|
|
|
/* When QLM0 is configured as PCIe(QLM_CFG=0x0)
|
|
* and enabled (QLM_SPD != 0xf), QLM1 cannot be
|
|
* configured as PCIe 2x1 mode (QLM_CFG=0x1)
|
|
* and enabled (QLM_SPD != 0xf).
|
|
*/
|
|
qlm0.u64 = csr_rd(CVMX_MIO_QLMX_CFG(0));
|
|
if (qlm0.s.qlm_spd != 0xf && qlm0.s.qlm_cfg == 0) {
|
|
debug("Invalid mode(%d) for QLM(%d) as QLM1 is PCIe mode\n",
|
|
mode, qlm);
|
|
qlm_cfg.s.qlm_spd = 0xf;
|
|
break;
|
|
}
|
|
|
|
/* Set QLM_SPD based on reference clock and mode */
|
|
if (cvmx_qlm_is_ref_clock(qlm, 100)) {
|
|
if (pcie2x1 == 0x3)
|
|
qlm_cfg.s.qlm_spd = 0x0;
|
|
else if (pcie2x1 == 0x1)
|
|
qlm_cfg.s.qlm_spd = 0x2;
|
|
else if (pcie2x1 == 0x2)
|
|
qlm_cfg.s.qlm_spd = 0x1;
|
|
else if (pcie2x1 == 0x0)
|
|
qlm_cfg.s.qlm_spd = 0x3;
|
|
else
|
|
qlm_cfg.s.qlm_spd = 0xf;
|
|
} else if (cvmx_qlm_is_ref_clock(qlm, 125)) {
|
|
if (pcie2x1 == 0x3)
|
|
qlm_cfg.s.qlm_spd = 0x4;
|
|
else if (pcie2x1 == 0x1)
|
|
qlm_cfg.s.qlm_spd = 0x6;
|
|
else if (pcie2x1 == 0x2)
|
|
qlm_cfg.s.qlm_spd = 0x9;
|
|
else if (pcie2x1 == 0x0)
|
|
qlm_cfg.s.qlm_spd = 0x7;
|
|
else
|
|
qlm_cfg.s.qlm_spd = 0xf;
|
|
}
|
|
qlm_cfg.s.qlm_cfg = mode;
|
|
csr_wr(CVMX_MIO_QLMX_CFG(qlm), qlm_cfg.u64);
|
|
|
|
/* Set PCIe mode bits */
|
|
__set_qlm_pcie_mode_61xx(0, rc);
|
|
__set_qlm_pcie_mode_61xx(1, rc);
|
|
return 0;
|
|
} else if (mode > 1) {
|
|
debug("Invalid mode(%d) for QLM(%d).\n", mode, qlm);
|
|
qlm_cfg.s.qlm_spd = 0xf;
|
|
break;
|
|
}
|
|
|
|
/* Set speed and mode for PCIe 1x2 mode. */
|
|
if (cvmx_qlm_is_ref_clock(qlm, 100)) {
|
|
if (speed == 5000)
|
|
qlm_cfg.s.qlm_spd = 0x1;
|
|
else if (speed == 2500)
|
|
qlm_cfg.s.qlm_spd = 0x2;
|
|
else
|
|
qlm_cfg.s.qlm_spd = 0xf;
|
|
} else if (cvmx_qlm_is_ref_clock(qlm, 125)) {
|
|
if (speed == 5000)
|
|
qlm_cfg.s.qlm_spd = 0x4;
|
|
else if (speed == 2500)
|
|
qlm_cfg.s.qlm_spd = 0x6;
|
|
else
|
|
qlm_cfg.s.qlm_spd = 0xf;
|
|
} else {
|
|
qlm_cfg.s.qlm_spd = 0xf;
|
|
}
|
|
|
|
qlm_cfg.s.qlm_cfg = mode;
|
|
csr_wr(CVMX_MIO_QLMX_CFG(qlm), qlm_cfg.u64);
|
|
|
|
/* Set PCIe mode bits */
|
|
__set_qlm_pcie_mode_61xx(1, rc);
|
|
return 0;
|
|
}
|
|
case 0: {
|
|
/* QLM_CFG = 0x1 - Reserved */
|
|
if (mode == 1) {
|
|
qlm_cfg.s.qlm_spd = 0xf;
|
|
break;
|
|
}
|
|
/* QLM_CFG = 0x0 - PCIe 1x4(PEM0) */
|
|
if (mode == 0 && speed != 5000 && speed != 2500) {
|
|
qlm_cfg.s.qlm_spd = 0xf;
|
|
break;
|
|
}
|
|
|
|
/* Set speed and mode */
|
|
qlm_cfg.s.qlm_spd = __get_qlm_spd(qlm, speed);
|
|
qlm_cfg.s.qlm_cfg = mode;
|
|
csr_wr(CVMX_MIO_QLMX_CFG(qlm), qlm_cfg.u64);
|
|
|
|
/* Set PCIe mode bits */
|
|
if (mode == 0)
|
|
__set_qlm_pcie_mode_61xx(0, rc);
|
|
|
|
return 0;
|
|
}
|
|
default:
|
|
debug("WARNING: Invalid QLM(%d) passed\n", qlm);
|
|
qlm_cfg.s.qlm_spd = 0xf;
|
|
}
|
|
csr_wr(CVMX_MIO_QLMX_CFG(qlm), qlm_cfg.u64);
|
|
return 0;
|
|
}
|
|
|
|
/* qlm : DLM to configure
|
|
* baud_mhz : speed of the DLM
|
|
* ref_clk_sel : reference clock speed selection where:
|
|
* 0: 100MHz
|
|
* 1: 125MHz
|
|
* 2: 156.25MHz
|
|
*
|
|
* ref_clk_input: reference clock input where:
|
|
* 0: DLMC_REF_CLK0_[P,N]
|
|
* 1: DLMC_REF_CLK1_[P,N]
|
|
* 2: DLM0_REF_CLK_[P,N] (only valid for QLM 0)
|
|
* is_sff7000_rxaui : boolean to indicate whether qlm is RXAUI on SFF7000
|
|
*/
|
|
static int __dlm_setup_pll_cn70xx(int qlm, int baud_mhz, int ref_clk_sel, int ref_clk_input,
|
|
int is_sff7000_rxaui)
|
|
{
|
|
cvmx_gserx_dlmx_test_powerdown_t dlmx_test_powerdown;
|
|
cvmx_gserx_dlmx_ref_ssp_en_t dlmx_ref_ssp_en;
|
|
cvmx_gserx_dlmx_mpll_en_t dlmx_mpll_en;
|
|
cvmx_gserx_dlmx_phy_reset_t dlmx_phy_reset;
|
|
cvmx_gserx_dlmx_tx_amplitude_t tx_amplitude;
|
|
cvmx_gserx_dlmx_tx_preemph_t tx_preemph;
|
|
cvmx_gserx_dlmx_rx_eq_t rx_eq;
|
|
cvmx_gserx_dlmx_ref_clkdiv2_t ref_clkdiv2;
|
|
cvmx_gserx_dlmx_mpll_multiplier_t mpll_multiplier;
|
|
int gmx_ref_clk = 100;
|
|
|
|
debug("%s(%d, %d, %d, %d, %d)\n", __func__, qlm, baud_mhz, ref_clk_sel, ref_clk_input,
|
|
is_sff7000_rxaui);
|
|
if (ref_clk_sel == 1)
|
|
gmx_ref_clk = 125;
|
|
else if (ref_clk_sel == 2)
|
|
gmx_ref_clk = 156;
|
|
|
|
if (qlm != 0 && ref_clk_input == 2) {
|
|
printf("%s: Error: can only use reference clock inputs 0 or 1 for DLM %d\n",
|
|
__func__, qlm);
|
|
return -1;
|
|
}
|
|
|
|
/* Hardware defaults are invalid */
|
|
tx_amplitude.u64 = csr_rd(CVMX_GSERX_DLMX_TX_AMPLITUDE(qlm, 0));
|
|
if (is_sff7000_rxaui) {
|
|
tx_amplitude.s.tx0_amplitude = 100;
|
|
tx_amplitude.s.tx1_amplitude = 100;
|
|
} else {
|
|
tx_amplitude.s.tx0_amplitude = 65;
|
|
tx_amplitude.s.tx1_amplitude = 65;
|
|
}
|
|
|
|
csr_wr(CVMX_GSERX_DLMX_TX_AMPLITUDE(qlm, 0), tx_amplitude.u64);
|
|
|
|
tx_preemph.u64 = csr_rd(CVMX_GSERX_DLMX_TX_PREEMPH(qlm, 0));
|
|
|
|
if (is_sff7000_rxaui) {
|
|
tx_preemph.s.tx0_preemph = 0;
|
|
tx_preemph.s.tx1_preemph = 0;
|
|
} else {
|
|
tx_preemph.s.tx0_preemph = 22;
|
|
tx_preemph.s.tx1_preemph = 22;
|
|
}
|
|
csr_wr(CVMX_GSERX_DLMX_TX_PREEMPH(qlm, 0), tx_preemph.u64);
|
|
|
|
rx_eq.u64 = csr_rd(CVMX_GSERX_DLMX_RX_EQ(qlm, 0));
|
|
rx_eq.s.rx0_eq = 0;
|
|
rx_eq.s.rx1_eq = 0;
|
|
csr_wr(CVMX_GSERX_DLMX_RX_EQ(qlm, 0), rx_eq.u64);
|
|
|
|
/* 1. Write GSER0_DLM0_REF_USE_PAD[REF_USE_PAD] = 1 (to select
|
|
* reference-clock input)
|
|
* The documentation for this register in the HRM is useless since
|
|
* it says it selects between two different clocks that are not
|
|
* documented anywhere. What it really does is select between
|
|
* DLM0_REF_CLK_[P,N] if 1 and DLMC_REF_CLK[0,1]_[P,N] if 0.
|
|
*
|
|
* This register must be 0 for DLMs 1 and 2 and can only be 1 for
|
|
* DLM 0.
|
|
*/
|
|
csr_wr(CVMX_GSERX_DLMX_REF_USE_PAD(0, 0), ((ref_clk_input == 2) && (qlm == 0)) ? 1 : 0);
|
|
|
|
/* Reference clock was already chosen before we got here */
|
|
|
|
/* 2. Write GSER0_DLM0_REFCLK_SEL[REFCLK_SEL] if required for
|
|
* reference-clock selection.
|
|
*
|
|
* If GSERX_DLMX_REF_USE_PAD is 1 then this register is ignored.
|
|
*/
|
|
csr_wr(CVMX_GSERX_DLMX_REFCLK_SEL(0, 0), ref_clk_input & 1);
|
|
|
|
/* Reference clock was already chosen before we got here */
|
|
|
|
/* 3. If required, write GSER0_DLM0_REF_CLKDIV2[REF_CLKDIV2] (must be
|
|
* set if reference clock > 100 MHz)
|
|
*/
|
|
/* Apply workaround for Errata (G-20669) MPLL may not come up. */
|
|
ref_clkdiv2.u64 = csr_rd(CVMX_GSERX_DLMX_REF_CLKDIV2(qlm, 0));
|
|
if (gmx_ref_clk == 100)
|
|
ref_clkdiv2.s.ref_clkdiv2 = 0;
|
|
else
|
|
ref_clkdiv2.s.ref_clkdiv2 = 1;
|
|
csr_wr(CVMX_GSERX_DLMX_REF_CLKDIV2(qlm, 0), ref_clkdiv2.u64);
|
|
|
|
/* 1. Ensure GSER(0)_DLM(0..2)_PHY_RESET[PHY_RESET] is set. */
|
|
dlmx_phy_reset.u64 = csr_rd(CVMX_GSERX_DLMX_PHY_RESET(qlm, 0));
|
|
dlmx_phy_reset.s.phy_reset = 1;
|
|
csr_wr(CVMX_GSERX_DLMX_PHY_RESET(qlm, 0), dlmx_phy_reset.u64);
|
|
|
|
/* 2. If SGMII or QSGMII or RXAUI (i.e. if DLM0) set
|
|
* GSER(0)_DLM(0)_MPLL_EN[MPLL_EN] to one.
|
|
*/
|
|
/* 7. Set GSER0_DLM0_MPLL_EN[MPLL_EN] = 1 */
|
|
dlmx_mpll_en.u64 = csr_rd(CVMX_GSERX_DLMX_MPLL_EN(0, 0));
|
|
dlmx_mpll_en.s.mpll_en = 1;
|
|
csr_wr(CVMX_GSERX_DLMX_MPLL_EN(0, 0), dlmx_mpll_en.u64);
|
|
|
|
/* 3. Set GSER(0)_DLM(0..2)_MPLL_MULTIPLIER[MPLL_MULTIPLIER]
|
|
* to the value in the preceding table, which is different
|
|
* than the desired setting prescribed by the HRM.
|
|
*/
|
|
mpll_multiplier.u64 = csr_rd(CVMX_GSERX_DLMX_MPLL_MULTIPLIER(qlm, 0));
|
|
if (gmx_ref_clk == 100)
|
|
mpll_multiplier.s.mpll_multiplier = 35;
|
|
else if (gmx_ref_clk == 125)
|
|
mpll_multiplier.s.mpll_multiplier = 56;
|
|
else
|
|
mpll_multiplier.s.mpll_multiplier = 45;
|
|
debug("%s: Setting mpll multiplier to %u for DLM%d, baud %d, clock rate %uMHz\n",
|
|
__func__, mpll_multiplier.s.mpll_multiplier, qlm, baud_mhz, gmx_ref_clk);
|
|
|
|
csr_wr(CVMX_GSERX_DLMX_MPLL_MULTIPLIER(qlm, 0), mpll_multiplier.u64);
|
|
|
|
/* 5. Clear GSER0_DLM0_TEST_POWERDOWN[TEST_POWERDOWN] */
|
|
dlmx_test_powerdown.u64 = csr_rd(CVMX_GSERX_DLMX_TEST_POWERDOWN(qlm, 0));
|
|
dlmx_test_powerdown.s.test_powerdown = 0;
|
|
csr_wr(CVMX_GSERX_DLMX_TEST_POWERDOWN(qlm, 0), dlmx_test_powerdown.u64);
|
|
|
|
/* 6. Set GSER0_DLM0_REF_SSP_EN[REF_SSP_EN] = 1 */
|
|
dlmx_ref_ssp_en.u64 = csr_rd(CVMX_GSERX_DLMX_REF_SSP_EN(qlm, 0));
|
|
dlmx_ref_ssp_en.s.ref_ssp_en = 1;
|
|
csr_wr(CVMX_GSERX_DLMX_REF_SSP_EN(0, 0), dlmx_ref_ssp_en.u64);
|
|
|
|
/* 8. Clear GSER0_DLM0_PHY_RESET[PHY_RESET] = 0 */
|
|
dlmx_phy_reset.u64 = csr_rd(CVMX_GSERX_DLMX_PHY_RESET(qlm, 0));
|
|
dlmx_phy_reset.s.phy_reset = 0;
|
|
csr_wr(CVMX_GSERX_DLMX_PHY_RESET(qlm, 0), dlmx_phy_reset.u64);
|
|
|
|
/* 5. If PCIe or SATA (i.e. if DLM1 or DLM2), set both MPLL_EN
|
|
* and MPLL_EN_OVRD to one in GSER(0)_PHY(1..2)_OVRD_IN_LO.
|
|
*/
|
|
|
|
/* 6. Decrease MPLL_MULTIPLIER by one continually until it
|
|
* reaches the desired long-term setting, ensuring that each
|
|
* MPLL_MULTIPLIER value is constant for at least 1 msec before
|
|
* changing to the next value. The desired long-term setting is
|
|
* as indicated in HRM tables 21-1, 21-2, and 21-3. This is not
|
|
* required with the HRM sequence.
|
|
*/
|
|
mpll_multiplier.u64 = csr_rd(CVMX_GSERX_DLMX_MPLL_MULTIPLIER(qlm, 0));
|
|
__cvmx_qlm_set_mult(qlm, baud_mhz, mpll_multiplier.s.mpll_multiplier);
|
|
|
|
/* 9. Poll until the MPLL locks. Wait for
|
|
* GSER0_DLM0_MPLL_STATUS[MPLL_STATUS] = 1
|
|
*/
|
|
if (CVMX_WAIT_FOR_FIELD64(CVMX_GSERX_DLMX_MPLL_STATUS(qlm, 0),
|
|
cvmx_gserx_dlmx_mpll_status_t, mpll_status, ==, 1, 10000)) {
|
|
printf("PLL for DLM%d failed to lock\n", qlm);
|
|
return -1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int __dlm0_setup_tx_cn70xx(int speed, int ref_clk_sel)
|
|
{
|
|
int need0, need1;
|
|
cvmx_gmxx_inf_mode_t mode0, mode1;
|
|
cvmx_gserx_dlmx_tx_rate_t rate;
|
|
cvmx_gserx_dlmx_tx_en_t en;
|
|
cvmx_gserx_dlmx_tx_cm_en_t cm_en;
|
|
cvmx_gserx_dlmx_tx_data_en_t data_en;
|
|
cvmx_gserx_dlmx_tx_reset_t tx_reset;
|
|
|
|
debug("%s(%d, %d)\n", __func__, speed, ref_clk_sel);
|
|
mode0.u64 = csr_rd(CVMX_GMXX_INF_MODE(0));
|
|
mode1.u64 = csr_rd(CVMX_GMXX_INF_MODE(1));
|
|
|
|
/* Which lanes do we need? */
|
|
need0 = (mode0.s.mode != CVMX_GMX_INF_MODE_DISABLED);
|
|
need1 = (mode1.s.mode != CVMX_GMX_INF_MODE_DISABLED) ||
|
|
(mode0.s.mode == CVMX_GMX_INF_MODE_RXAUI);
|
|
|
|
/* 1. Write GSER0_DLM0_TX_RATE[TXn_RATE] (Set according to required
|
|
* data rate (see Table 21-1).
|
|
*/
|
|
rate.u64 = csr_rd(CVMX_GSERX_DLMX_TX_RATE(0, 0));
|
|
debug("%s: speed: %d\n", __func__, speed);
|
|
switch (speed) {
|
|
case 1250:
|
|
case 2500:
|
|
switch (ref_clk_sel) {
|
|
case OCTEON_QLM_REF_CLK_100MHZ: /* 100MHz */
|
|
case OCTEON_QLM_REF_CLK_125MHZ: /* 125MHz */
|
|
case OCTEON_QLM_REF_CLK_156MHZ: /* 156.25MHz */
|
|
rate.s.tx0_rate = (mode0.s.mode == CVMX_GMX_INF_MODE_SGMII) ? 2 : 0;
|
|
rate.s.tx1_rate = (mode1.s.mode == CVMX_GMX_INF_MODE_SGMII) ? 2 : 0;
|
|
break;
|
|
default:
|
|
printf("Invalid reference clock select %d\n", ref_clk_sel);
|
|
return -1;
|
|
}
|
|
break;
|
|
case 3125:
|
|
switch (ref_clk_sel) {
|
|
case OCTEON_QLM_REF_CLK_125MHZ: /* 125MHz */
|
|
case OCTEON_QLM_REF_CLK_156MHZ: /* 156.25MHz */
|
|
rate.s.tx0_rate = (mode0.s.mode == CVMX_GMX_INF_MODE_SGMII) ? 1 : 0;
|
|
rate.s.tx1_rate = (mode1.s.mode == CVMX_GMX_INF_MODE_SGMII) ? 1 : 0;
|
|
break;
|
|
default:
|
|
printf("Invalid reference clock select %d\n", ref_clk_sel);
|
|
return -1;
|
|
}
|
|
break;
|
|
case 5000: /* QSGMII only */
|
|
switch (ref_clk_sel) {
|
|
case OCTEON_QLM_REF_CLK_100MHZ: /* 100MHz */
|
|
rate.s.tx0_rate = 0;
|
|
rate.s.tx1_rate = 0;
|
|
break;
|
|
case OCTEON_QLM_REF_CLK_125MHZ: /* 125MHz */
|
|
case OCTEON_QLM_REF_CLK_156MHZ: /* 156.25MHz */
|
|
rate.s.tx0_rate = 0;
|
|
rate.s.tx1_rate = 0;
|
|
break;
|
|
default:
|
|
printf("Invalid reference clock select %d\n", ref_clk_sel);
|
|
return -1;
|
|
}
|
|
break;
|
|
case 6250:
|
|
switch (ref_clk_sel) {
|
|
case OCTEON_QLM_REF_CLK_125MHZ: /* 125MHz */
|
|
case OCTEON_QLM_REF_CLK_156MHZ: /* 156.25MHz */
|
|
rate.s.tx0_rate = 0;
|
|
rate.s.tx1_rate = 0;
|
|
break;
|
|
default:
|
|
printf("Invalid reference clock select %d\n", ref_clk_sel);
|
|
return -1;
|
|
}
|
|
break;
|
|
default:
|
|
printf("%s: Invalid rate %d\n", __func__, speed);
|
|
return -1;
|
|
}
|
|
debug("%s: tx 0 rate: %d, tx 1 rate: %d\n", __func__, rate.s.tx0_rate, rate.s.tx1_rate);
|
|
csr_wr(CVMX_GSERX_DLMX_TX_RATE(0, 0), rate.u64);
|
|
|
|
/* 2. Set GSER0_DLM0_TX_EN[TXn_EN] = 1 */
|
|
en.u64 = csr_rd(CVMX_GSERX_DLMX_TX_EN(0, 0));
|
|
en.s.tx0_en = need0;
|
|
en.s.tx1_en = need1;
|
|
csr_wr(CVMX_GSERX_DLMX_TX_EN(0, 0), en.u64);
|
|
|
|
/* 3 set GSER0_DLM0_TX_CM_EN[TXn_CM_EN] = 1 */
|
|
cm_en.u64 = csr_rd(CVMX_GSERX_DLMX_TX_CM_EN(0, 0));
|
|
cm_en.s.tx0_cm_en = need0;
|
|
cm_en.s.tx1_cm_en = need1;
|
|
csr_wr(CVMX_GSERX_DLMX_TX_CM_EN(0, 0), cm_en.u64);
|
|
|
|
/* 4. Set GSER0_DLM0_TX_DATA_EN[TXn_DATA_EN] = 1 */
|
|
data_en.u64 = csr_rd(CVMX_GSERX_DLMX_TX_DATA_EN(0, 0));
|
|
data_en.s.tx0_data_en = need0;
|
|
data_en.s.tx1_data_en = need1;
|
|
csr_wr(CVMX_GSERX_DLMX_TX_DATA_EN(0, 0), data_en.u64);
|
|
|
|
/* 5. Clear GSER0_DLM0_TX_RESET[TXn_DATA_EN] = 0 */
|
|
tx_reset.u64 = csr_rd(CVMX_GSERX_DLMX_TX_RESET(0, 0));
|
|
tx_reset.s.tx0_reset = !need0;
|
|
tx_reset.s.tx1_reset = !need1;
|
|
csr_wr(CVMX_GSERX_DLMX_TX_RESET(0, 0), tx_reset.u64);
|
|
|
|
/* 6. Poll GSER0_DLM0_TX_STATUS[TXn_STATUS, TXn_CM_STATUS] until both
|
|
* are set to 1. This prevents GMX from transmitting until the DLM
|
|
* is ready.
|
|
*/
|
|
if (need0) {
|
|
if (CVMX_WAIT_FOR_FIELD64(CVMX_GSERX_DLMX_TX_STATUS(0, 0),
|
|
cvmx_gserx_dlmx_tx_status_t, tx0_status, ==, 1, 10000)) {
|
|
printf("DLM0 TX0 status fail\n");
|
|
return -1;
|
|
}
|
|
if (CVMX_WAIT_FOR_FIELD64(CVMX_GSERX_DLMX_TX_STATUS(0, 0),
|
|
cvmx_gserx_dlmx_tx_status_t, tx0_cm_status, ==, 1,
|
|
10000)) {
|
|
printf("DLM0 TX0 CM status fail\n");
|
|
return -1;
|
|
}
|
|
}
|
|
if (need1) {
|
|
if (CVMX_WAIT_FOR_FIELD64(CVMX_GSERX_DLMX_TX_STATUS(0, 0),
|
|
cvmx_gserx_dlmx_tx_status_t, tx1_status, ==, 1, 10000)) {
|
|
printf("DLM0 TX1 status fail\n");
|
|
return -1;
|
|
}
|
|
if (CVMX_WAIT_FOR_FIELD64(CVMX_GSERX_DLMX_TX_STATUS(0, 0),
|
|
cvmx_gserx_dlmx_tx_status_t, tx1_cm_status, ==, 1,
|
|
10000)) {
|
|
printf("DLM0 TX1 CM status fail\n");
|
|
return -1;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int __dlm0_setup_rx_cn70xx(int speed, int ref_clk_sel)
|
|
{
|
|
int need0, need1;
|
|
cvmx_gmxx_inf_mode_t mode0, mode1;
|
|
cvmx_gserx_dlmx_rx_rate_t rate;
|
|
cvmx_gserx_dlmx_rx_pll_en_t pll_en;
|
|
cvmx_gserx_dlmx_rx_data_en_t data_en;
|
|
cvmx_gserx_dlmx_rx_reset_t rx_reset;
|
|
|
|
debug("%s(%d, %d)\n", __func__, speed, ref_clk_sel);
|
|
mode0.u64 = csr_rd(CVMX_GMXX_INF_MODE(0));
|
|
mode1.u64 = csr_rd(CVMX_GMXX_INF_MODE(1));
|
|
|
|
/* Which lanes do we need? */
|
|
need0 = (mode0.s.mode != CVMX_GMX_INF_MODE_DISABLED);
|
|
need1 = (mode1.s.mode != CVMX_GMX_INF_MODE_DISABLED) ||
|
|
(mode0.s.mode == CVMX_GMX_INF_MODE_RXAUI);
|
|
|
|
/* 1. Write GSER0_DLM0_RX_RATE[RXn_RATE] (must match the
|
|
* GER0_DLM0_TX_RATE[TXn_RATE] setting).
|
|
*/
|
|
rate.u64 = csr_rd(CVMX_GSERX_DLMX_RX_RATE(0, 0));
|
|
switch (speed) {
|
|
case 1250:
|
|
case 2500:
|
|
switch (ref_clk_sel) {
|
|
case OCTEON_QLM_REF_CLK_100MHZ: /* 100MHz */
|
|
case OCTEON_QLM_REF_CLK_125MHZ: /* 125MHz */
|
|
case OCTEON_QLM_REF_CLK_156MHZ: /* 156.25MHz */
|
|
rate.s.rx0_rate = (mode0.s.mode == CVMX_GMX_INF_MODE_SGMII) ? 2 : 0;
|
|
rate.s.rx1_rate = (mode1.s.mode == CVMX_GMX_INF_MODE_SGMII) ? 2 : 0;
|
|
break;
|
|
default:
|
|
printf("Invalid reference clock select %d\n", ref_clk_sel);
|
|
return -1;
|
|
}
|
|
break;
|
|
case 3125:
|
|
switch (ref_clk_sel) {
|
|
case OCTEON_QLM_REF_CLK_125MHZ: /* 125MHz */
|
|
case OCTEON_QLM_REF_CLK_156MHZ: /* 156.25MHz */
|
|
rate.s.rx0_rate = (mode0.s.mode == CVMX_GMX_INF_MODE_SGMII) ? 1 : 0;
|
|
rate.s.rx1_rate = (mode1.s.mode == CVMX_GMX_INF_MODE_SGMII) ? 1 : 0;
|
|
break;
|
|
default:
|
|
printf("Invalid reference clock select %d\n", ref_clk_sel);
|
|
return -1;
|
|
}
|
|
break;
|
|
case 5000: /* QSGMII only */
|
|
switch (ref_clk_sel) {
|
|
case OCTEON_QLM_REF_CLK_100MHZ: /* 100MHz */
|
|
case OCTEON_QLM_REF_CLK_125MHZ: /* 125MHz */
|
|
case OCTEON_QLM_REF_CLK_156MHZ: /* 156.25MHz */
|
|
rate.s.rx0_rate = 0;
|
|
rate.s.rx1_rate = 0;
|
|
break;
|
|
default:
|
|
printf("Invalid reference clock select %d\n", ref_clk_sel);
|
|
return -1;
|
|
}
|
|
break;
|
|
case 6250:
|
|
switch (ref_clk_sel) {
|
|
case OCTEON_QLM_REF_CLK_125MHZ: /* 125MHz */
|
|
case OCTEON_QLM_REF_CLK_156MHZ: /* 156.25MHz */
|
|
rate.s.rx0_rate = 0;
|
|
rate.s.rx1_rate = 0;
|
|
break;
|
|
default:
|
|
printf("Invalid reference clock select %d\n", ref_clk_sel);
|
|
return -1;
|
|
}
|
|
break;
|
|
default:
|
|
printf("%s: Invalid rate %d\n", __func__, speed);
|
|
return -1;
|
|
}
|
|
debug("%s: rx 0 rate: %d, rx 1 rate: %d\n", __func__, rate.s.rx0_rate, rate.s.rx1_rate);
|
|
csr_wr(CVMX_GSERX_DLMX_RX_RATE(0, 0), rate.u64);
|
|
|
|
/* 2. Set GSER0_DLM0_RX_PLL_EN[RXn_PLL_EN] = 1 */
|
|
pll_en.u64 = csr_rd(CVMX_GSERX_DLMX_RX_PLL_EN(0, 0));
|
|
pll_en.s.rx0_pll_en = need0;
|
|
pll_en.s.rx1_pll_en = need1;
|
|
csr_wr(CVMX_GSERX_DLMX_RX_PLL_EN(0, 0), pll_en.u64);
|
|
|
|
/* 3. Set GSER0_DLM0_RX_DATA_EN[RXn_DATA_EN] = 1 */
|
|
data_en.u64 = csr_rd(CVMX_GSERX_DLMX_RX_DATA_EN(0, 0));
|
|
data_en.s.rx0_data_en = need0;
|
|
data_en.s.rx1_data_en = need1;
|
|
csr_wr(CVMX_GSERX_DLMX_RX_DATA_EN(0, 0), data_en.u64);
|
|
|
|
/* 4. Clear GSER0_DLM0_RX_RESET[RXn_DATA_EN] = 0. Now the GMX can be
|
|
* enabled: set GMX(0..1)_INF_MODE[EN] = 1
|
|
*/
|
|
rx_reset.u64 = csr_rd(CVMX_GSERX_DLMX_RX_RESET(0, 0));
|
|
rx_reset.s.rx0_reset = !need0;
|
|
rx_reset.s.rx1_reset = !need1;
|
|
csr_wr(CVMX_GSERX_DLMX_RX_RESET(0, 0), rx_reset.u64);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int a_clk;
|
|
|
|
static int __dlm2_sata_uctl_init_cn70xx(void)
|
|
{
|
|
cvmx_sata_uctl_ctl_t uctl_ctl;
|
|
const int MAX_A_CLK = 333000000; /* Max of 333Mhz */
|
|
int divisor, a_clkdiv;
|
|
|
|
/* Wait for all voltages to reach a stable stable. Ensure the
|
|
* reference clock is up and stable.
|
|
*/
|
|
|
|
/* 2. Wait for IOI reset to deassert. */
|
|
|
|
/* 3. Optionally program the GPIO CSRs for SATA features.
|
|
* a. For cold-presence detect:
|
|
* i. Select a GPIO for the input and program GPIO_SATA_CTL[sel]
|
|
* for port0 and port1.
|
|
* ii. Select a GPIO for the output and program
|
|
* GPIO_BIT_CFG*[OUTPUT_SEL] for port0 and port1.
|
|
* b. For mechanical-presence detect, select a GPIO for the input
|
|
* and program GPIO_SATA_CTL[SEL] for port0/port1.
|
|
* c. For LED activity, select a GPIO for the output and program
|
|
* GPIO_BIT_CFG*[OUTPUT_SEL] for port0/port1.
|
|
*/
|
|
|
|
/* 4. Assert all resets:
|
|
* a. UAHC reset: SATA_UCTL_CTL[UAHC_RST] = 1
|
|
* a. UCTL reset: SATA_UCTL_CTL[UCTL_RST] = 1
|
|
*/
|
|
|
|
uctl_ctl.u64 = csr_rd(CVMX_SATA_UCTL_CTL);
|
|
uctl_ctl.s.sata_uahc_rst = 1;
|
|
uctl_ctl.s.sata_uctl_rst = 1;
|
|
csr_wr(CVMX_SATA_UCTL_CTL, uctl_ctl.u64);
|
|
|
|
/* 5. Configure the ACLK:
|
|
* a. Reset the clock dividers: SATA_UCTL_CTL[A_CLKDIV_RST] = 1.
|
|
* b. Select the ACLK frequency (400 MHz maximum)
|
|
* i. SATA_UCTL_CTL[A_CLKDIV] = desired value,
|
|
* ii. SATA_UCTL_CTL[A_CLKDIV_EN] = 1 to enable the ACLK,
|
|
* c. Deassert the ACLK clock divider reset:
|
|
* SATA_UCTL_CTL[A_CLKDIV_RST] = 0
|
|
*/
|
|
uctl_ctl.u64 = csr_rd(CVMX_SATA_UCTL_CTL);
|
|
uctl_ctl.s.a_clkdiv_rst = 1;
|
|
csr_wr(CVMX_SATA_UCTL_CTL, uctl_ctl.u64);
|
|
|
|
uctl_ctl.u64 = csr_rd(CVMX_SATA_UCTL_CTL);
|
|
|
|
divisor = (gd->bus_clk + MAX_A_CLK - 1) / MAX_A_CLK;
|
|
if (divisor <= 4) {
|
|
a_clkdiv = divisor - 1;
|
|
} else if (divisor <= 6) {
|
|
a_clkdiv = 4;
|
|
divisor = 6;
|
|
} else if (divisor <= 8) {
|
|
a_clkdiv = 5;
|
|
divisor = 8;
|
|
} else if (divisor <= 16) {
|
|
a_clkdiv = 6;
|
|
divisor = 16;
|
|
} else if (divisor <= 24) {
|
|
a_clkdiv = 7;
|
|
divisor = 24;
|
|
} else {
|
|
printf("Unable to determine SATA clock divisor\n");
|
|
return -1;
|
|
}
|
|
|
|
/* Calculate the final clock rate */
|
|
a_clk = gd->bus_clk / divisor;
|
|
|
|
uctl_ctl.s.a_clkdiv_sel = a_clkdiv;
|
|
uctl_ctl.s.a_clk_en = 1;
|
|
uctl_ctl.s.a_clk_byp_sel = 0;
|
|
csr_wr(CVMX_SATA_UCTL_CTL, uctl_ctl.u64);
|
|
|
|
uctl_ctl.u64 = csr_rd(CVMX_SATA_UCTL_CTL);
|
|
uctl_ctl.s.a_clkdiv_rst = 0;
|
|
csr_wr(CVMX_SATA_UCTL_CTL, uctl_ctl.u64);
|
|
|
|
udelay(1);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int __sata_dlm_init_cn70xx(int qlm, int baud_mhz, int ref_clk_sel, int ref_clk_input)
|
|
{
|
|
cvmx_gserx_sata_cfg_t sata_cfg;
|
|
cvmx_gserx_sata_lane_rst_t sata_lane_rst;
|
|
cvmx_gserx_dlmx_phy_reset_t dlmx_phy_reset;
|
|
cvmx_gserx_dlmx_test_powerdown_t dlmx_test_powerdown;
|
|
cvmx_gserx_sata_ref_ssp_en_t ref_ssp_en;
|
|
cvmx_gserx_dlmx_mpll_multiplier_t mpll_multiplier;
|
|
cvmx_gserx_dlmx_ref_clkdiv2_t ref_clkdiv2;
|
|
cvmx_sata_uctl_shim_cfg_t shim_cfg;
|
|
cvmx_gserx_phyx_ovrd_in_lo_t ovrd_in;
|
|
cvmx_sata_uctl_ctl_t uctl_ctl;
|
|
int sata_ref_clk;
|
|
|
|
debug("%s(%d, %d, %d, %d)\n", __func__, qlm, baud_mhz, ref_clk_sel, ref_clk_input);
|
|
|
|
switch (ref_clk_sel) {
|
|
case 0:
|
|
sata_ref_clk = 100;
|
|
break;
|
|
case 1:
|
|
sata_ref_clk = 125;
|
|
break;
|
|
case 2:
|
|
sata_ref_clk = 156;
|
|
break;
|
|
default:
|
|
printf("%s: Invalid reference clock select %d for qlm %d\n", __func__,
|
|
ref_clk_sel, qlm);
|
|
return -1;
|
|
}
|
|
|
|
/* 5. Set GSERX0_SATA_CFG[SATA_EN] = 1 to configure DLM2 multiplexing.
|
|
*/
|
|
sata_cfg.u64 = csr_rd(CVMX_GSERX_SATA_CFG(0));
|
|
sata_cfg.s.sata_en = 1;
|
|
csr_wr(CVMX_GSERX_SATA_CFG(0), sata_cfg.u64);
|
|
|
|
/* 1. Write GSER(0)_DLM2_REFCLK_SEL[REFCLK_SEL] if required for
|
|
* reference-clock selection.
|
|
*/
|
|
if (ref_clk_input < 2) {
|
|
csr_wr(CVMX_GSERX_DLMX_REFCLK_SEL(qlm, 0), ref_clk_input);
|
|
csr_wr(CVMX_GSERX_DLMX_REF_USE_PAD(qlm, 0), 0);
|
|
} else {
|
|
csr_wr(CVMX_GSERX_DLMX_REF_USE_PAD(qlm, 0), 1);
|
|
}
|
|
|
|
ref_ssp_en.u64 = csr_rd(CVMX_GSERX_SATA_REF_SSP_EN(0));
|
|
ref_ssp_en.s.ref_ssp_en = 1;
|
|
csr_wr(CVMX_GSERX_SATA_REF_SSP_EN(0), ref_ssp_en.u64);
|
|
|
|
/* Apply workaround for Errata (G-20669) MPLL may not come up. */
|
|
|
|
/* Set REF_CLKDIV2 based on the Ref Clock */
|
|
ref_clkdiv2.u64 = csr_rd(CVMX_GSERX_DLMX_REF_CLKDIV2(qlm, 0));
|
|
if (sata_ref_clk == 100)
|
|
ref_clkdiv2.s.ref_clkdiv2 = 0;
|
|
else
|
|
ref_clkdiv2.s.ref_clkdiv2 = 1;
|
|
csr_wr(CVMX_GSERX_DLMX_REF_CLKDIV2(qlm, 0), ref_clkdiv2.u64);
|
|
|
|
/* 1. Ensure GSER(0)_DLM(0..2)_PHY_RESET[PHY_RESET] is set. */
|
|
dlmx_phy_reset.u64 = csr_rd(CVMX_GSERX_DLMX_PHY_RESET(qlm, 0));
|
|
dlmx_phy_reset.s.phy_reset = 1;
|
|
csr_wr(CVMX_GSERX_DLMX_PHY_RESET(qlm, 0), dlmx_phy_reset.u64);
|
|
|
|
/* 2. If SGMII or QSGMII or RXAUI (i.e. if DLM0) set
|
|
* GSER(0)_DLM(0)_MPLL_EN[MPLL_EN] to one.
|
|
*/
|
|
|
|
/* 3. Set GSER(0)_DLM(0..2)_MPLL_MULTIPLIER[MPLL_MULTIPLIER]
|
|
* to the value in the preceding table, which is different
|
|
* than the desired setting prescribed by the HRM.
|
|
*/
|
|
|
|
mpll_multiplier.u64 = csr_rd(CVMX_GSERX_DLMX_MPLL_MULTIPLIER(qlm, 0));
|
|
if (sata_ref_clk == 100)
|
|
mpll_multiplier.s.mpll_multiplier = 35;
|
|
else
|
|
mpll_multiplier.s.mpll_multiplier = 56;
|
|
csr_wr(CVMX_GSERX_DLMX_MPLL_MULTIPLIER(qlm, 0), mpll_multiplier.u64);
|
|
|
|
/* 3. Clear GSER0_DLM2_TEST_POWERDOWN[TEST_POWERDOWN] = 0 */
|
|
dlmx_test_powerdown.u64 = csr_rd(CVMX_GSERX_DLMX_TEST_POWERDOWN(qlm, 0));
|
|
dlmx_test_powerdown.s.test_powerdown = 0;
|
|
csr_wr(CVMX_GSERX_DLMX_TEST_POWERDOWN(qlm, 0), dlmx_test_powerdown.u64);
|
|
|
|
/* 4. Clear either/both lane0 and lane1 resets:
|
|
* GSER0_SATA_LANE_RST[L0_RST, L1_RST] = 0.
|
|
*/
|
|
sata_lane_rst.u64 = csr_rd(CVMX_GSERX_SATA_LANE_RST(0));
|
|
sata_lane_rst.s.l0_rst = 0;
|
|
sata_lane_rst.s.l1_rst = 0;
|
|
csr_wr(CVMX_GSERX_SATA_LANE_RST(0), sata_lane_rst.u64);
|
|
|
|
udelay(1);
|
|
|
|
/* 5. Clear GSER0_DLM2_PHY_RESET */
|
|
dlmx_phy_reset.u64 = csr_rd(CVMX_GSERX_DLMX_PHY_RESET(qlm, 0));
|
|
dlmx_phy_reset.s.phy_reset = 0;
|
|
csr_wr(CVMX_GSERX_DLMX_PHY_RESET(qlm, 0), dlmx_phy_reset.u64);
|
|
|
|
/* 6. If PCIe or SATA (i.e. if DLM1 or DLM2), set both MPLL_EN
|
|
* and MPLL_EN_OVRD to one in GSER(0)_PHY(1..2)_OVRD_IN_LO.
|
|
*/
|
|
ovrd_in.u64 = csr_rd(CVMX_GSERX_PHYX_OVRD_IN_LO(qlm, 0));
|
|
ovrd_in.s.mpll_en = 1;
|
|
ovrd_in.s.mpll_en_ovrd = 1;
|
|
csr_wr(CVMX_GSERX_PHYX_OVRD_IN_LO(qlm, 0), ovrd_in.u64);
|
|
|
|
/* 7. Decrease MPLL_MULTIPLIER by one continually until it reaches
|
|
* the desired long-term setting, ensuring that each MPLL_MULTIPLIER
|
|
* value is constant for at least 1 msec before changing to the next
|
|
* value. The desired long-term setting is as indicated in HRM tables
|
|
* 21-1, 21-2, and 21-3. This is not required with the HRM
|
|
* sequence.
|
|
*/
|
|
mpll_multiplier.u64 = csr_rd(CVMX_GSERX_DLMX_MPLL_MULTIPLIER(qlm, 0));
|
|
if (sata_ref_clk == 100)
|
|
mpll_multiplier.s.mpll_multiplier = 0x1e;
|
|
else
|
|
mpll_multiplier.s.mpll_multiplier = 0x30;
|
|
csr_wr(CVMX_GSERX_DLMX_MPLL_MULTIPLIER(qlm, 0), mpll_multiplier.u64);
|
|
|
|
if (CVMX_WAIT_FOR_FIELD64(CVMX_GSERX_DLMX_MPLL_STATUS(qlm, 0),
|
|
cvmx_gserx_dlmx_mpll_status_t, mpll_status, ==, 1, 10000)) {
|
|
printf("ERROR: SATA MPLL failed to set\n");
|
|
return -1;
|
|
}
|
|
|
|
if (CVMX_WAIT_FOR_FIELD64(CVMX_GSERX_DLMX_RX_STATUS(qlm, 0), cvmx_gserx_dlmx_rx_status_t,
|
|
rx0_status, ==, 1, 10000)) {
|
|
printf("ERROR: SATA RX0_STATUS failed to set\n");
|
|
return -1;
|
|
}
|
|
if (CVMX_WAIT_FOR_FIELD64(CVMX_GSERX_DLMX_RX_STATUS(qlm, 0), cvmx_gserx_dlmx_rx_status_t,
|
|
rx1_status, ==, 1, 10000)) {
|
|
printf("ERROR: SATA RX1_STATUS failed to set\n");
|
|
return -1;
|
|
}
|
|
|
|
/* 8. Deassert UCTL and UAHC resets:
|
|
* a. SATA_UCTL_CTL[UCTL_RST] = 0
|
|
* b. SATA_UCTL_CTL[UAHC_RST] = 0
|
|
* c. Wait 10 ACLK cycles before accessing any ACLK-only registers.
|
|
*/
|
|
uctl_ctl.u64 = csr_rd(CVMX_SATA_UCTL_CTL);
|
|
uctl_ctl.s.sata_uctl_rst = 0;
|
|
uctl_ctl.s.sata_uahc_rst = 0;
|
|
csr_wr(CVMX_SATA_UCTL_CTL, uctl_ctl.u64);
|
|
|
|
udelay(1);
|
|
|
|
/* 9. Enable conditional SCLK of UCTL by writing
|
|
* SATA_UCTL_CTL[CSCLK_EN] = 1
|
|
*/
|
|
uctl_ctl.u64 = csr_rd(CVMX_SATA_UCTL_CTL);
|
|
uctl_ctl.s.csclk_en = 1;
|
|
csr_wr(CVMX_SATA_UCTL_CTL, uctl_ctl.u64);
|
|
|
|
/* 10. Initialize UAHC as described in the AHCI Specification (UAHC_*
|
|
* registers
|
|
*/
|
|
|
|
/* set-up endian mode */
|
|
shim_cfg.u64 = csr_rd(CVMX_SATA_UCTL_SHIM_CFG);
|
|
shim_cfg.s.dma_endian_mode = 1;
|
|
shim_cfg.s.csr_endian_mode = 3;
|
|
csr_wr(CVMX_SATA_UCTL_SHIM_CFG, shim_cfg.u64);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* Initializes DLM 4 for SATA
|
|
*
|
|
* @param qlm Must be 4.
|
|
* @param baud_mhz Baud rate for SATA
|
|
* @param ref_clk_sel Selects the speed of the reference clock where:
|
|
* 0 = 100MHz, 1 = 125MHz and 2 = 156.25MHz
|
|
* @param ref_clk_input Reference clock input where 0 = external QLM clock,
|
|
* 1 = qlmc_ref_clk0 and 2 = qlmc_ref_clk1
|
|
*/
|
|
static int __sata_dlm_init_cn73xx(int qlm, int baud_mhz, int ref_clk_sel, int ref_clk_input)
|
|
{
|
|
cvmx_sata_uctl_shim_cfg_t shim_cfg;
|
|
cvmx_gserx_refclk_sel_t refclk_sel;
|
|
cvmx_gserx_phy_ctl_t phy_ctl;
|
|
cvmx_gserx_rx_pwr_ctrl_p2_t pwr_ctrl_p2;
|
|
cvmx_gserx_lanex_misc_cfg_0_t misc_cfg_0;
|
|
cvmx_gserx_sata_lane_rst_t lane_rst;
|
|
cvmx_gserx_pll_px_mode_0_t pmode_0;
|
|
cvmx_gserx_pll_px_mode_1_t pmode_1;
|
|
cvmx_gserx_lane_px_mode_0_t lane_pmode_0;
|
|
cvmx_gserx_lane_px_mode_1_t lane_pmode_1;
|
|
cvmx_gserx_cfg_t gserx_cfg;
|
|
cvmx_sata_uctl_ctl_t uctl_ctl;
|
|
int l;
|
|
int i;
|
|
|
|
/*
|
|
* 1. Configure the SATA
|
|
*/
|
|
|
|
/*
|
|
* 2. Configure the QLM Reference clock
|
|
* Set GSERX_REFCLK_SEL.COM_CLK_SEL to source reference clock
|
|
* from the external clock mux.
|
|
* GSERX_REFCLK_SEL.USE_COM1 to select qlmc_refclkn/p_1 or
|
|
* leave clear to select qlmc_refclkn/p_0
|
|
*/
|
|
refclk_sel.u64 = 0;
|
|
if (ref_clk_input == 0) { /* External ref clock */
|
|
refclk_sel.s.com_clk_sel = 0;
|
|
refclk_sel.s.use_com1 = 0;
|
|
} else if (ref_clk_input == 1) { /* Common reference clock 0 */
|
|
refclk_sel.s.com_clk_sel = 1;
|
|
refclk_sel.s.use_com1 = 0;
|
|
} else { /* Common reference clock 1 */
|
|
refclk_sel.s.com_clk_sel = 1;
|
|
refclk_sel.s.use_com1 = 1;
|
|
}
|
|
|
|
if (ref_clk_sel != 0) {
|
|
printf("Wrong reference clock selected for QLM4\n");
|
|
return -1;
|
|
}
|
|
|
|
csr_wr(CVMX_GSERX_REFCLK_SEL(qlm), refclk_sel.u64);
|
|
|
|
/* Reset the QLM after changing the reference clock */
|
|
phy_ctl.u64 = csr_rd(CVMX_GSERX_PHY_CTL(qlm));
|
|
phy_ctl.s.phy_reset = 1;
|
|
csr_wr(CVMX_GSERX_PHY_CTL(qlm), phy_ctl.u64);
|
|
|
|
udelay(1);
|
|
|
|
/*
|
|
* 3. Configure the QLM for SATA mode set GSERX_CFG.SATA
|
|
*/
|
|
gserx_cfg.u64 = 0;
|
|
gserx_cfg.s.sata = 1;
|
|
csr_wr(CVMX_GSERX_CFG(qlm), gserx_cfg.u64);
|
|
|
|
/*
|
|
* 12. Clear the appropriate lane resets
|
|
* clear GSERX_SATA_LANE_RST.LX_RST where X is the lane number 0-1.
|
|
*/
|
|
lane_rst.u64 = csr_rd(CVMX_GSERX_SATA_LANE_RST(qlm));
|
|
lane_rst.s.l0_rst = 0;
|
|
lane_rst.s.l1_rst = 0;
|
|
csr_wr(CVMX_GSERX_SATA_LANE_RST(qlm), lane_rst.u64);
|
|
csr_rd(CVMX_GSERX_SATA_LANE_RST(qlm));
|
|
|
|
udelay(1);
|
|
|
|
/*
|
|
* 4. Take the PHY out of reset
|
|
* Write GSERX_PHY_CTL.PHY_RESET to a zero
|
|
*/
|
|
phy_ctl.u64 = csr_rd(CVMX_GSERX_PHY_CTL(qlm));
|
|
phy_ctl.s.phy_reset = 0;
|
|
csr_wr(CVMX_GSERX_PHY_CTL(qlm), phy_ctl.u64);
|
|
|
|
/* Wait for reset to complete and the PLL to lock */
|
|
/* PCIe mode doesn't become ready until the PEM block attempts to bring
|
|
* the interface up. Skip this check for PCIe
|
|
*/
|
|
if (CVMX_WAIT_FOR_FIELD64(CVMX_GSERX_QLM_STAT(qlm), cvmx_gserx_qlm_stat_t,
|
|
rst_rdy, ==, 1, 10000)) {
|
|
printf("QLM%d: Timeout waiting for GSERX_QLM_STAT[rst_rdy]\n", qlm);
|
|
return -1;
|
|
}
|
|
|
|
/* Workaround for errata GSER-30310: SATA HDD Not Ready due to
|
|
* PHY SDLL/LDLL lockup at 3GHz
|
|
*/
|
|
for (i = 0; i < 2; i++) {
|
|
cvmx_gserx_slicex_pcie1_mode_t pcie1;
|
|
cvmx_gserx_slicex_pcie2_mode_t pcie2;
|
|
cvmx_gserx_slicex_pcie3_mode_t pcie3;
|
|
|
|
pcie1.u64 = csr_rd(CVMX_GSERX_SLICEX_PCIE1_MODE(i, qlm));
|
|
pcie1.s.rx_pi_bwsel = 1;
|
|
pcie1.s.rx_ldll_bwsel = 1;
|
|
pcie1.s.rx_sdll_bwsel = 1;
|
|
csr_wr(CVMX_GSERX_SLICEX_PCIE1_MODE(i, qlm), pcie1.u64);
|
|
|
|
pcie2.u64 = csr_rd(CVMX_GSERX_SLICEX_PCIE2_MODE(i, qlm));
|
|
pcie2.s.rx_pi_bwsel = 1;
|
|
pcie2.s.rx_ldll_bwsel = 1;
|
|
pcie2.s.rx_sdll_bwsel = 1;
|
|
csr_wr(CVMX_GSERX_SLICEX_PCIE2_MODE(i, qlm), pcie2.u64);
|
|
|
|
pcie3.u64 = csr_rd(CVMX_GSERX_SLICEX_PCIE3_MODE(i, qlm));
|
|
pcie3.s.rx_pi_bwsel = 1;
|
|
pcie3.s.rx_ldll_bwsel = 1;
|
|
pcie3.s.rx_sdll_bwsel = 1;
|
|
csr_wr(CVMX_GSERX_SLICEX_PCIE3_MODE(i, qlm), pcie3.u64);
|
|
}
|
|
|
|
/*
|
|
* 7. Change P2 termination
|
|
* Clear GSERX_RX_PWR_CTRL_P2.P2_RX_SUBBLK_PD[0] (Termination)
|
|
*/
|
|
pwr_ctrl_p2.u64 = csr_rd(CVMX_GSERX_RX_PWR_CTRL_P2(qlm));
|
|
pwr_ctrl_p2.s.p2_rx_subblk_pd &= 0x1e;
|
|
csr_wr(CVMX_GSERX_RX_PWR_CTRL_P2(qlm), pwr_ctrl_p2.u64);
|
|
|
|
/*
|
|
* 8. Modify the Electrical IDLE Detect on delay
|
|
* Change GSERX_LANE(0..3)_MISC_CFG_0.EIE_DET_STL_ON_TIME to a 0x4
|
|
*/
|
|
for (i = 0; i < 2; i++) {
|
|
misc_cfg_0.u64 = csr_rd(CVMX_GSERX_LANEX_MISC_CFG_0(i, qlm));
|
|
misc_cfg_0.s.eie_det_stl_on_time = 4;
|
|
csr_wr(CVMX_GSERX_LANEX_MISC_CFG_0(i, qlm), misc_cfg_0.u64);
|
|
}
|
|
|
|
/*
|
|
* 9. Modify the PLL and Lane Protocol Mode registers to configure
|
|
* the PHY for SATA.
|
|
* (Configure all 3 PLLs, doesn't matter what speed it is configured)
|
|
*/
|
|
|
|
/* Errata (GSER-26724) SATA never indicates GSER QLM_STAT[RST_RDY]
|
|
* We program PLL_PX_MODE_0 last due to this errata
|
|
*/
|
|
for (l = 0; l < 3; l++) {
|
|
pmode_1.u64 = csr_rd(CVMX_GSERX_PLL_PX_MODE_1(l, qlm));
|
|
lane_pmode_0.u64 = csr_rd(CVMX_GSERX_LANE_PX_MODE_0(l, qlm));
|
|
lane_pmode_1.u64 = csr_rd(CVMX_GSERX_LANE_PX_MODE_1(l, qlm));
|
|
|
|
pmode_1.s.pll_cpadj = 0x2;
|
|
pmode_1.s.pll_opr = 0x0;
|
|
pmode_1.s.pll_div = 0x1e;
|
|
pmode_1.s.pll_pcie3en = 0x0;
|
|
pmode_1.s.pll_16p5en = 0x0;
|
|
|
|
lane_pmode_0.s.ctle = 0x0;
|
|
lane_pmode_0.s.pcie = 0x0;
|
|
lane_pmode_0.s.tx_ldiv = 0x0;
|
|
lane_pmode_0.s.srate = 0;
|
|
lane_pmode_0.s.tx_mode = 0x3;
|
|
lane_pmode_0.s.rx_mode = 0x3;
|
|
|
|
lane_pmode_1.s.vma_mm = 1;
|
|
lane_pmode_1.s.vma_fine_cfg_sel = 0;
|
|
lane_pmode_1.s.cdr_fgain = 0xa;
|
|
lane_pmode_1.s.ph_acc_adj = 0x15;
|
|
|
|
if (l == R_2_5G_REFCLK100)
|
|
lane_pmode_0.s.rx_ldiv = 0x2;
|
|
else if (l == R_5G_REFCLK100)
|
|
lane_pmode_0.s.rx_ldiv = 0x1;
|
|
else
|
|
lane_pmode_0.s.rx_ldiv = 0x0;
|
|
|
|
csr_wr(CVMX_GSERX_PLL_PX_MODE_1(l, qlm), pmode_1.u64);
|
|
csr_wr(CVMX_GSERX_LANE_PX_MODE_0(l, qlm), lane_pmode_0.u64);
|
|
csr_wr(CVMX_GSERX_LANE_PX_MODE_1(l, qlm), lane_pmode_1.u64);
|
|
}
|
|
|
|
for (l = 0; l < 3; l++) {
|
|
pmode_0.u64 = csr_rd(CVMX_GSERX_PLL_PX_MODE_0(l, qlm));
|
|
pmode_0.s.pll_icp = 0x1;
|
|
pmode_0.s.pll_rloop = 0x3;
|
|
pmode_0.s.pll_pcs_div = 0x5;
|
|
csr_wr(CVMX_GSERX_PLL_PX_MODE_0(l, qlm), pmode_0.u64);
|
|
}
|
|
|
|
for (i = 0; i < 2; i++) {
|
|
cvmx_gserx_slicex_rx_sdll_ctrl_t rx_sdll;
|
|
|
|
rx_sdll.u64 = csr_rd(CVMX_GSERX_SLICEX_RX_SDLL_CTRL(i, qlm));
|
|
rx_sdll.s.pcs_sds_oob_clk_ctrl = 2;
|
|
rx_sdll.s.pcs_sds_rx_sdll_tune = 0;
|
|
rx_sdll.s.pcs_sds_rx_sdll_swsel = 0;
|
|
csr_wr(CVMX_GSERX_SLICEX_RX_SDLL_CTRL(i, qlm), rx_sdll.u64);
|
|
}
|
|
|
|
for (i = 0; i < 2; i++) {
|
|
cvmx_gserx_lanex_misc_cfg_0_t misc_cfg;
|
|
|
|
misc_cfg.u64 = csr_rd(CVMX_GSERX_LANEX_MISC_CFG_0(i, qlm));
|
|
misc_cfg.s.use_pma_polarity = 0;
|
|
misc_cfg.s.cfg_pcs_loopback = 0;
|
|
misc_cfg.s.pcs_tx_mode_ovrrd_en = 0;
|
|
misc_cfg.s.pcs_rx_mode_ovrrd_en = 0;
|
|
misc_cfg.s.cfg_eie_det_cnt = 0;
|
|
misc_cfg.s.eie_det_stl_on_time = 4;
|
|
misc_cfg.s.eie_det_stl_off_time = 0;
|
|
misc_cfg.s.tx_bit_order = 1;
|
|
misc_cfg.s.rx_bit_order = 1;
|
|
csr_wr(CVMX_GSERX_LANEX_MISC_CFG_0(i, qlm), misc_cfg.u64);
|
|
}
|
|
|
|
/* Wait for reset to complete and the PLL to lock */
|
|
/* PCIe mode doesn't become ready until the PEM block attempts to bring
|
|
* the interface up. Skip this check for PCIe
|
|
*/
|
|
if (CVMX_WAIT_FOR_FIELD64(CVMX_GSERX_QLM_STAT(qlm), cvmx_gserx_qlm_stat_t,
|
|
rst_rdy, ==, 1, 10000)) {
|
|
printf("QLM%d: Timeout waiting for GSERX_QLM_STAT[rst_rdy]\n", qlm);
|
|
return -1;
|
|
}
|
|
|
|
/* Poll GSERX_SATA_STATUS for P0_RDY = 1 */
|
|
if (CVMX_WAIT_FOR_FIELD64(CVMX_GSERX_SATA_STATUS(qlm), cvmx_gserx_sata_status_t,
|
|
p0_rdy, ==, 1, 10000)) {
|
|
printf("QLM4: Timeout waiting for GSERX_SATA_STATUS[p0_rdy]\n");
|
|
return -1;
|
|
}
|
|
|
|
/* Poll GSERX_SATA_STATUS for P1_RDY = 1 */
|
|
if (CVMX_WAIT_FOR_FIELD64(CVMX_GSERX_SATA_STATUS(qlm), cvmx_gserx_sata_status_t,
|
|
p1_rdy, ==, 1, 10000)) {
|
|
printf("QLM4: Timeout waiting for GSERX_SATA_STATUS[p1_rdy]\n");
|
|
return -1;
|
|
}
|
|
|
|
udelay(2000);
|
|
|
|
/* 6. Deassert UCTL and UAHC resets:
|
|
* a. SATA_UCTL_CTL[UCTL_RST] = 0
|
|
* b. SATA_UCTL_CTL[UAHC_RST] = 0
|
|
* c. Wait 10 ACLK cycles before accessing any ACLK-only registers.
|
|
*/
|
|
uctl_ctl.u64 = csr_rd(CVMX_SATA_UCTL_CTL);
|
|
uctl_ctl.s.sata_uctl_rst = 0;
|
|
uctl_ctl.s.sata_uahc_rst = 0;
|
|
csr_wr(CVMX_SATA_UCTL_CTL, uctl_ctl.u64);
|
|
|
|
udelay(1);
|
|
|
|
/* 7. Enable conditional SCLK of UCTL by writing
|
|
* SATA_UCTL_CTL[CSCLK_EN] = 1
|
|
*/
|
|
uctl_ctl.u64 = csr_rd(CVMX_SATA_UCTL_CTL);
|
|
uctl_ctl.s.csclk_en = 1;
|
|
csr_wr(CVMX_SATA_UCTL_CTL, uctl_ctl.u64);
|
|
|
|
/* set-up endian mode */
|
|
shim_cfg.u64 = csr_rd(CVMX_SATA_UCTL_SHIM_CFG);
|
|
shim_cfg.s.dma_endian_mode = 1;
|
|
shim_cfg.s.csr_endian_mode = 3;
|
|
csr_wr(CVMX_SATA_UCTL_SHIM_CFG, shim_cfg.u64);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int __dlm2_sata_uahc_init_cn70xx(int baud_mhz)
|
|
{
|
|
cvmx_sata_uahc_gbl_cap_t gbl_cap;
|
|
cvmx_sata_uahc_px_sctl_t sctl;
|
|
cvmx_sata_uahc_gbl_pi_t pi;
|
|
cvmx_sata_uahc_px_cmd_t cmd;
|
|
cvmx_sata_uahc_px_sctl_t sctl0, sctl1;
|
|
cvmx_sata_uahc_px_ssts_t ssts;
|
|
cvmx_sata_uahc_px_tfd_t tfd;
|
|
cvmx_sata_uahc_gbl_timer1ms_t gbl_timer1ms;
|
|
u64 done;
|
|
int result = -1;
|
|
int retry_count = 0;
|
|
int spd;
|
|
|
|
/* From the synopsis data book, SATA_UAHC_GBL_TIMER1MS is the
|
|
* AMBA clock in MHz * 1000, which is a_clk(Hz) / 1000
|
|
*/
|
|
gbl_timer1ms.u32 = csr_rd32(CVMX_SATA_UAHC_GBL_TIMER1MS);
|
|
gbl_timer1ms.s.timv = a_clk / 1000;
|
|
csr_wr32(CVMX_SATA_UAHC_GBL_TIMER1MS, gbl_timer1ms.u32);
|
|
gbl_timer1ms.u32 = csr_rd32(CVMX_SATA_UAHC_GBL_TIMER1MS);
|
|
|
|
/* Set-u global capabilities reg (GBL_CAP) */
|
|
gbl_cap.u32 = csr_rd32(CVMX_SATA_UAHC_GBL_CAP);
|
|
debug("%s: SATA_UAHC_GBL_CAP before: 0x%x\n", __func__, gbl_cap.u32);
|
|
gbl_cap.s.sss = 1;
|
|
gbl_cap.s.smps = 1;
|
|
csr_wr32(CVMX_SATA_UAHC_GBL_CAP, gbl_cap.u32);
|
|
gbl_cap.u32 = csr_rd32(CVMX_SATA_UAHC_GBL_CAP);
|
|
debug("%s: SATA_UAHC_GBL_CAP after: 0x%x\n", __func__, gbl_cap.u32);
|
|
|
|
/* Set-up global hba control reg (interrupt enables) */
|
|
/* Set-up port SATA control registers (speed limitation) */
|
|
if (baud_mhz == 1500)
|
|
spd = 1;
|
|
else if (baud_mhz == 3000)
|
|
spd = 2;
|
|
else
|
|
spd = 3;
|
|
|
|
sctl.u32 = csr_rd32(CVMX_SATA_UAHC_PX_SCTL(0));
|
|
debug("%s: SATA_UAHC_P0_SCTL before: 0x%x\n", __func__, sctl.u32);
|
|
sctl.s.spd = spd;
|
|
csr_wr32(CVMX_SATA_UAHC_PX_SCTL(0), sctl.u32);
|
|
sctl.u32 = csr_rd32(CVMX_SATA_UAHC_PX_SCTL(0));
|
|
debug("%s: SATA_UAHC_P0_SCTL after: 0x%x\n", __func__, sctl.u32);
|
|
sctl.u32 = csr_rd32(CVMX_SATA_UAHC_PX_SCTL(1));
|
|
debug("%s: SATA_UAHC_P1_SCTL before: 0x%x\n", __func__, sctl.u32);
|
|
sctl.s.spd = spd;
|
|
csr_wr32(CVMX_SATA_UAHC_PX_SCTL(1), sctl.u32);
|
|
sctl.u32 = csr_rd32(CVMX_SATA_UAHC_PX_SCTL(1));
|
|
debug("%s: SATA_UAHC_P1_SCTL after: 0x%x\n", __func__, sctl.u32);
|
|
|
|
/* Set-up ports implemented reg. */
|
|
pi.u32 = csr_rd32(CVMX_SATA_UAHC_GBL_PI);
|
|
debug("%s: SATA_UAHC_GBL_PI before: 0x%x\n", __func__, pi.u32);
|
|
pi.s.pi = 3;
|
|
csr_wr32(CVMX_SATA_UAHC_GBL_PI, pi.u32);
|
|
pi.u32 = csr_rd32(CVMX_SATA_UAHC_GBL_PI);
|
|
debug("%s: SATA_UAHC_GBL_PI after: 0x%x\n", __func__, pi.u32);
|
|
|
|
retry0:
|
|
/* Clear port SERR and IS registers */
|
|
csr_wr32(CVMX_SATA_UAHC_PX_SERR(0), csr_rd32(CVMX_SATA_UAHC_PX_SERR(0)));
|
|
csr_wr32(CVMX_SATA_UAHC_PX_IS(0), csr_rd32(CVMX_SATA_UAHC_PX_IS(0)));
|
|
|
|
/* Set spin-up, power on, FIS RX enable, start, active */
|
|
cmd.u32 = csr_rd32(CVMX_SATA_UAHC_PX_CMD(0));
|
|
debug("%s: SATA_UAHC_P0_CMD before: 0x%x\n", __func__, cmd.u32);
|
|
cmd.s.fre = 1;
|
|
cmd.s.sud = 1;
|
|
cmd.s.pod = 1;
|
|
cmd.s.st = 1;
|
|
cmd.s.icc = 1;
|
|
cmd.s.fbscp = 1; /* Enable FIS-based switching */
|
|
csr_wr32(CVMX_SATA_UAHC_PX_CMD(0), cmd.u32);
|
|
cmd.u32 = csr_rd32(CVMX_SATA_UAHC_PX_CMD(0));
|
|
debug("%s: SATA_UAHC_P0_CMD after: 0x%x\n", __func__, cmd.u32);
|
|
|
|
sctl0.u32 = csr_rd32(CVMX_SATA_UAHC_PX_SCTL(0));
|
|
sctl0.s.det = 1;
|
|
csr_wr32(CVMX_SATA_UAHC_PX_SCTL(0), sctl0.u32);
|
|
|
|
/* check status */
|
|
done = get_timer(0);
|
|
while (1) {
|
|
ssts.u32 = csr_rd32(CVMX_SATA_UAHC_PX_SSTS(0));
|
|
|
|
if (ssts.s.ipm == 1 && ssts.s.det == 3) {
|
|
result = 0;
|
|
break;
|
|
} else if (get_timer(done) > 100) {
|
|
result = -1;
|
|
break;
|
|
}
|
|
|
|
udelay(100);
|
|
}
|
|
|
|
if (result != -1) {
|
|
/* Clear the PxSERR Register, by writing '1s' to each
|
|
* implemented bit location
|
|
*/
|
|
csr_wr32(CVMX_SATA_UAHC_PX_SERR(0), -1);
|
|
|
|
/*
|
|
* Wait for indication that SATA drive is ready. This is
|
|
* determined via an examination of PxTFD.STS. If PxTFD.STS.BSY
|
|
* PxTFD.STS.DRQ, and PxTFD.STS.ERR are all '0', prior to the
|
|
* maximum allowed time as specified in the ATA/ATAPI-7
|
|
* specification, the device is ready.
|
|
*/
|
|
/*
|
|
* Wait for the device to be ready. BSY(7), DRQ(3), and ERR(0)
|
|
* must be clear
|
|
*/
|
|
done = get_timer(0);
|
|
while (1) {
|
|
tfd.u32 = csr_rd32(CVMX_SATA_UAHC_PX_TFD(0));
|
|
if ((tfd.s.sts & 0x89) == 0) {
|
|
result = 0;
|
|
break;
|
|
} else if (get_timer(done) > 500) {
|
|
if (retry_count < 3) {
|
|
sctl0.u32 = csr_rd32(CVMX_SATA_UAHC_PX_SCTL(0));
|
|
sctl0.s.det = 1; /* Perform interface reset */
|
|
csr_wr32(CVMX_SATA_UAHC_PX_SCTL(0), sctl0.u32);
|
|
udelay(1000); /* 1ms dicated by AHCI 1.3 spec */
|
|
sctl0.u32 = csr_rd32(CVMX_SATA_UAHC_PX_SCTL(0));
|
|
sctl0.s.det = 0; /* Perform interface reset */
|
|
csr_wr32(CVMX_SATA_UAHC_PX_SCTL(0), sctl0.u32);
|
|
retry_count++;
|
|
goto retry0;
|
|
}
|
|
result = -1;
|
|
break;
|
|
}
|
|
|
|
udelay(100);
|
|
}
|
|
}
|
|
|
|
if (result == -1)
|
|
printf("SATA0: not available\n");
|
|
else
|
|
printf("SATA0: available\n");
|
|
|
|
sctl1.u32 = csr_rd32(CVMX_SATA_UAHC_PX_SCTL(1));
|
|
sctl1.s.det = 1;
|
|
csr_wr32(CVMX_SATA_UAHC_PX_SCTL(1), sctl1.u32);
|
|
|
|
result = -1;
|
|
retry_count = 0;
|
|
|
|
retry1:
|
|
/* Clear port SERR and IS registers */
|
|
csr_wr32(CVMX_SATA_UAHC_PX_SERR(1), csr_rd32(CVMX_SATA_UAHC_PX_SERR(1)));
|
|
csr_wr32(CVMX_SATA_UAHC_PX_IS(1), csr_rd32(CVMX_SATA_UAHC_PX_IS(1)));
|
|
|
|
/* Set spin-up, power on, FIS RX enable, start, active */
|
|
cmd.u32 = csr_rd32(CVMX_SATA_UAHC_PX_CMD(1));
|
|
debug("%s: SATA_UAHC_P1_CMD before: 0x%x\n", __func__, cmd.u32);
|
|
cmd.s.fre = 1;
|
|
cmd.s.sud = 1;
|
|
cmd.s.pod = 1;
|
|
cmd.s.st = 1;
|
|
cmd.s.icc = 1;
|
|
cmd.s.fbscp = 1; /* Enable FIS-based switching */
|
|
csr_wr32(CVMX_SATA_UAHC_PX_CMD(1), cmd.u32);
|
|
cmd.u32 = csr_rd32(CVMX_SATA_UAHC_PX_CMD(1));
|
|
debug("%s: SATA_UAHC_P1_CMD after: 0x%x\n", __func__, cmd.u32);
|
|
|
|
/* check status */
|
|
done = get_timer(0);
|
|
while (1) {
|
|
ssts.u32 = csr_rd32(CVMX_SATA_UAHC_PX_SSTS(1));
|
|
|
|
if (ssts.s.ipm == 1 && ssts.s.det == 3) {
|
|
result = 0;
|
|
break;
|
|
} else if (get_timer(done) > 1000) {
|
|
result = -1;
|
|
break;
|
|
}
|
|
|
|
udelay(100);
|
|
}
|
|
|
|
if (result != -1) {
|
|
/* Clear the PxSERR Register, by writing '1s' to each
|
|
* implemented bit location
|
|
*/
|
|
csr_wr32(CVMX_SATA_UAHC_PX_SERR(1), csr_rd32(CVMX_SATA_UAHC_PX_SERR(1)));
|
|
|
|
/*
|
|
* Wait for indication that SATA drive is ready. This is
|
|
* determined via an examination of PxTFD.STS. If PxTFD.STS.BSY
|
|
* PxTFD.STS.DRQ, and PxTFD.STS.ERR are all '0', prior to the
|
|
* maximum allowed time as specified in the ATA/ATAPI-7
|
|
* specification, the device is ready.
|
|
*/
|
|
/*
|
|
* Wait for the device to be ready. BSY(7), DRQ(3), and ERR(0)
|
|
* must be clear
|
|
*/
|
|
done = get_timer(0);
|
|
while (1) {
|
|
tfd.u32 = csr_rd32(CVMX_SATA_UAHC_PX_TFD(1));
|
|
if ((tfd.s.sts & 0x89) == 0) {
|
|
result = 0;
|
|
break;
|
|
} else if (get_timer(done) > 500) {
|
|
if (retry_count < 3) {
|
|
sctl0.u32 = csr_rd32(CVMX_SATA_UAHC_PX_SCTL(1));
|
|
sctl0.s.det = 1; /* Perform interface reset */
|
|
csr_wr32(CVMX_SATA_UAHC_PX_SCTL(1), sctl0.u32);
|
|
udelay(1000); /* 1ms dicated by AHCI 1.3 spec */
|
|
sctl0.u32 = csr_rd32(CVMX_SATA_UAHC_PX_SCTL(1));
|
|
sctl0.s.det = 0; /* Perform interface reset */
|
|
csr_wr32(CVMX_SATA_UAHC_PX_SCTL(1), sctl0.u32);
|
|
retry_count++;
|
|
goto retry1;
|
|
}
|
|
result = -1;
|
|
break;
|
|
}
|
|
|
|
udelay(100);
|
|
}
|
|
}
|
|
|
|
if (result == -1)
|
|
printf("SATA1: not available\n");
|
|
else
|
|
printf("SATA1: available\n");
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int __sata_bist_cn70xx(int qlm, int baud_mhz, int ref_clk_sel, int ref_clk_input)
|
|
{
|
|
cvmx_sata_uctl_bist_status_t bist_status;
|
|
cvmx_sata_uctl_ctl_t uctl_ctl;
|
|
cvmx_sata_uctl_shim_cfg_t shim_cfg;
|
|
u64 done;
|
|
int result = -1;
|
|
|
|
debug("%s(%d, %d, %d, %d)\n", __func__, qlm, baud_mhz, ref_clk_sel, ref_clk_input);
|
|
bist_status.u64 = csr_rd(CVMX_SATA_UCTL_BIST_STATUS);
|
|
|
|
{
|
|
if (__dlm2_sata_uctl_init_cn70xx()) {
|
|
printf("ERROR: Failed to initialize SATA UCTL CSRs\n");
|
|
return -1;
|
|
}
|
|
if (OCTEON_IS_MODEL(OCTEON_CN73XX))
|
|
result = __sata_dlm_init_cn73xx(qlm, baud_mhz, ref_clk_sel, ref_clk_input);
|
|
else
|
|
result = __sata_dlm_init_cn70xx(qlm, baud_mhz, ref_clk_sel, ref_clk_input);
|
|
if (result) {
|
|
printf("ERROR: Failed to initialize SATA GSER CSRs\n");
|
|
return -1;
|
|
}
|
|
|
|
uctl_ctl.u64 = csr_rd(CVMX_SATA_UCTL_CTL);
|
|
uctl_ctl.s.start_bist = 1;
|
|
csr_wr(CVMX_SATA_UCTL_CTL, uctl_ctl.u64);
|
|
|
|
/* Set-up for a 1 sec timer. */
|
|
done = get_timer(0);
|
|
while (1) {
|
|
bist_status.u64 = csr_rd(CVMX_SATA_UCTL_BIST_STATUS);
|
|
if ((bist_status.s.uctl_xm_r_bist_ndone |
|
|
bist_status.s.uctl_xm_w_bist_ndone |
|
|
bist_status.s.uahc_p0_rxram_bist_ndone |
|
|
bist_status.s.uahc_p1_rxram_bist_ndone |
|
|
bist_status.s.uahc_p0_txram_bist_ndone |
|
|
bist_status.s.uahc_p1_txram_bist_ndone) == 0) {
|
|
result = 0;
|
|
break;
|
|
} else if (get_timer(done) > 1000) {
|
|
result = -1;
|
|
break;
|
|
}
|
|
|
|
udelay(100);
|
|
}
|
|
if (result == -1) {
|
|
printf("ERROR: SATA_UCTL_BIST_STATUS = 0x%llx\n",
|
|
(unsigned long long)bist_status.u64);
|
|
return -1;
|
|
}
|
|
|
|
debug("%s: Initializing UAHC\n", __func__);
|
|
if (__dlm2_sata_uahc_init_cn70xx(baud_mhz)) {
|
|
printf("ERROR: Failed to initialize SATA UAHC CSRs\n");
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
/* Change CSR_ENDIAN_MODE to big endian to use Open Source AHCI SATA
|
|
* driver
|
|
*/
|
|
shim_cfg.u64 = csr_rd(CVMX_SATA_UCTL_SHIM_CFG);
|
|
shim_cfg.s.csr_endian_mode = 1;
|
|
csr_wr(CVMX_SATA_UCTL_SHIM_CFG, shim_cfg.u64);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int __setup_sata(int qlm, int baud_mhz, int ref_clk_sel, int ref_clk_input)
|
|
{
|
|
debug("%s(%d, %d, %d, %d)\n", __func__, qlm, baud_mhz, ref_clk_sel, ref_clk_input);
|
|
return __sata_bist_cn70xx(qlm, baud_mhz, ref_clk_sel, ref_clk_input);
|
|
}
|
|
|
|
static int __dlmx_setup_pcie_cn70xx(int qlm, enum cvmx_qlm_mode mode, int gen2, int rc,
|
|
int ref_clk_sel, int ref_clk_input)
|
|
{
|
|
cvmx_gserx_dlmx_phy_reset_t dlmx_phy_reset;
|
|
cvmx_gserx_dlmx_test_powerdown_t dlmx_test_powerdown;
|
|
cvmx_gserx_dlmx_mpll_multiplier_t mpll_multiplier;
|
|
cvmx_gserx_dlmx_ref_clkdiv2_t ref_clkdiv2;
|
|
static const u8 ref_clk_mult[2] = { 35, 56 }; /* 100 & 125 MHz ref clock supported. */
|
|
|
|
debug("%s(%d, %d, %d, %d, %d, %d)\n", __func__, qlm, mode, gen2, rc, ref_clk_sel,
|
|
ref_clk_input);
|
|
if (rc == 0) {
|
|
debug("Skipping initializing PCIe dlm %d in endpoint mode\n", qlm);
|
|
return 0;
|
|
}
|
|
|
|
if (qlm > 0 && ref_clk_input > 1) {
|
|
printf("%s: Error: ref_clk_input can only be 0 or 1 for QLM %d\n",
|
|
__func__, qlm);
|
|
return -1;
|
|
}
|
|
|
|
if (ref_clk_sel > OCTEON_QLM_REF_CLK_125MHZ) {
|
|
printf("%s: Error: ref_clk_sel can only be 100 or 125 MHZ.\n", __func__);
|
|
return -1;
|
|
}
|
|
|
|
/* 1. Write GSER0_DLM(1..2)_REFCLK_SEL[REFCLK_SEL] if required for
|
|
* reference-clock selection
|
|
*/
|
|
|
|
csr_wr(CVMX_GSERX_DLMX_REFCLK_SEL(qlm, 0), ref_clk_input);
|
|
|
|
/* 2. If required, write GSER0_DLM(1..2)_REF_CLKDIV2[REF_CLKDIV2] = 1
|
|
* (must be set if reference clock >= 100 MHz)
|
|
*/
|
|
|
|
/* 4. Configure the PCIE PIPE:
|
|
* a. Write GSER0_PCIE_PIPE_PORT_SEL[PIPE_PORT_SEL] to configure the
|
|
* PCIE PIPE.
|
|
* 0x0 = disables all pipes
|
|
* 0x1 = enables pipe0 only (PEM0 4-lane)
|
|
* 0x2 = enables pipes 0 and 1 (PEM0 and PEM1 2-lanes each)
|
|
* 0x3 = enables pipes 0, 1, 2, and 3 (PEM0, PEM1, and PEM3 are
|
|
* one-lane each)
|
|
* b. Configure GSER0_PCIE_PIPE_PORT_SEL[CFG_PEM1_DLM2]. If PEM1 is
|
|
* to be configured, this bit must reflect which DLM it is logically
|
|
* tied to. This bit sets multiplexing logic in GSER, and it is used
|
|
* by the RST logic to determine when the MAC can come out of reset.
|
|
* 0 = PEM1 is tied to DLM1 (for 3 x 1 PCIe mode).
|
|
* 1 = PEM1 is tied to DLM2 (for all other PCIe modes).
|
|
*/
|
|
if (qlm == 1) {
|
|
cvmx_gserx_pcie_pipe_port_sel_t pipe_port;
|
|
|
|
pipe_port.u64 = csr_rd(CVMX_GSERX_PCIE_PIPE_PORT_SEL(0));
|
|
pipe_port.s.cfg_pem1_dlm2 = (mode == CVMX_QLM_MODE_PCIE_1X1) ? 1 : 0;
|
|
pipe_port.s.pipe_port_sel =
|
|
(mode == CVMX_QLM_MODE_PCIE) ? 1 : /* PEM0 only */
|
|
(mode == CVMX_QLM_MODE_PCIE_1X2) ? 2 : /* PEM0-1 */
|
|
(mode == CVMX_QLM_MODE_PCIE_1X1) ? 3 : /* PEM0-2 */
|
|
(mode == CVMX_QLM_MODE_PCIE_2X1) ? 3 : /* PEM0-1 */
|
|
0; /* PCIe disabled */
|
|
csr_wr(CVMX_GSERX_PCIE_PIPE_PORT_SEL(0), pipe_port.u64);
|
|
}
|
|
|
|
/* Apply workaround for Errata (G-20669) MPLL may not come up. */
|
|
|
|
/* Set REF_CLKDIV2 based on the Ref Clock */
|
|
ref_clkdiv2.u64 = csr_rd(CVMX_GSERX_DLMX_REF_CLKDIV2(qlm, 0));
|
|
ref_clkdiv2.s.ref_clkdiv2 = ref_clk_sel > 0;
|
|
csr_wr(CVMX_GSERX_DLMX_REF_CLKDIV2(qlm, 0), ref_clkdiv2.u64);
|
|
|
|
/* 1. Ensure GSER(0)_DLM(0..2)_PHY_RESET[PHY_RESET] is set. */
|
|
dlmx_phy_reset.u64 = csr_rd(CVMX_GSERX_DLMX_PHY_RESET(qlm, 0));
|
|
dlmx_phy_reset.s.phy_reset = 1;
|
|
csr_wr(CVMX_GSERX_DLMX_PHY_RESET(qlm, 0), dlmx_phy_reset.u64);
|
|
|
|
/* 2. If SGMII or QSGMII or RXAUI (i.e. if DLM0) set
|
|
* GSER(0)_DLM(0)_MPLL_EN[MPLL_EN] to one.
|
|
*/
|
|
|
|
/* 3. Set GSER(0)_DLM(0..2)_MPLL_MULTIPLIER[MPLL_MULTIPLIER]
|
|
* to the value in the preceding table, which is different
|
|
* than the desired setting prescribed by the HRM.
|
|
*/
|
|
mpll_multiplier.u64 = csr_rd(CVMX_GSERX_DLMX_MPLL_MULTIPLIER(qlm, 0));
|
|
mpll_multiplier.s.mpll_multiplier = ref_clk_mult[ref_clk_sel];
|
|
debug("%s: Setting MPLL multiplier to %d\n", __func__,
|
|
(int)mpll_multiplier.s.mpll_multiplier);
|
|
csr_wr(CVMX_GSERX_DLMX_MPLL_MULTIPLIER(qlm, 0), mpll_multiplier.u64);
|
|
/* 5. Clear GSER0_DLM(1..2)_TEST_POWERDOWN. Configurations that only
|
|
* use DLM1 need not clear GSER0_DLM2_TEST_POWERDOWN
|
|
*/
|
|
dlmx_test_powerdown.u64 = csr_rd(CVMX_GSERX_DLMX_TEST_POWERDOWN(qlm, 0));
|
|
dlmx_test_powerdown.s.test_powerdown = 0;
|
|
csr_wr(CVMX_GSERX_DLMX_TEST_POWERDOWN(qlm, 0), dlmx_test_powerdown.u64);
|
|
|
|
/* 6. Clear GSER0_DLM(1..2)_PHY_RESET. Configurations that use only
|
|
* need DLM1 need not clear GSER0_DLM2_PHY_RESET
|
|
*/
|
|
dlmx_phy_reset.u64 = csr_rd(CVMX_GSERX_DLMX_PHY_RESET(qlm, 0));
|
|
dlmx_phy_reset.s.phy_reset = 0;
|
|
csr_wr(CVMX_GSERX_DLMX_PHY_RESET(qlm, 0), dlmx_phy_reset.u64);
|
|
|
|
/* 6. Decrease MPLL_MULTIPLIER by one continually until it reaches
|
|
* the desired long-term setting, ensuring that each MPLL_MULTIPLIER
|
|
* value is constant for at least 1 msec before changing to the next
|
|
* value. The desired long-term setting is as indicated in HRM tables
|
|
* 21-1, 21-2, and 21-3. This is not required with the HRM
|
|
* sequence.
|
|
*/
|
|
/* This is set when initializing PCIe after soft reset is asserted. */
|
|
|
|
/* 7. Write the GSER0_PCIE_PIPE_RST register to take the appropriate
|
|
* PIPE out of reset. There is a PIPEn_RST bit for each PIPE. Clear
|
|
* the appropriate bits based on the configuration (reset is
|
|
* active high).
|
|
*/
|
|
if (qlm == 1) {
|
|
cvmx_pemx_cfg_t pemx_cfg;
|
|
cvmx_pemx_on_t pemx_on;
|
|
cvmx_gserx_pcie_pipe_rst_t pipe_rst;
|
|
cvmx_rst_ctlx_t rst_ctl;
|
|
|
|
switch (mode) {
|
|
case CVMX_QLM_MODE_PCIE: /* PEM0 on DLM1 & DLM2 */
|
|
case CVMX_QLM_MODE_PCIE_1X2: /* PEM0 on DLM1 */
|
|
case CVMX_QLM_MODE_PCIE_1X1: /* PEM0 on DLM1 using lane 0 */
|
|
pemx_cfg.u64 = csr_rd(CVMX_PEMX_CFG(0));
|
|
pemx_cfg.cn70xx.hostmd = rc;
|
|
if (mode == CVMX_QLM_MODE_PCIE_1X1) {
|
|
pemx_cfg.cn70xx.md =
|
|
gen2 ? CVMX_PEM_MD_GEN2_1LANE : CVMX_PEM_MD_GEN1_1LANE;
|
|
} else if (mode == CVMX_QLM_MODE_PCIE) {
|
|
pemx_cfg.cn70xx.md =
|
|
gen2 ? CVMX_PEM_MD_GEN2_4LANE : CVMX_PEM_MD_GEN1_4LANE;
|
|
} else {
|
|
pemx_cfg.cn70xx.md =
|
|
gen2 ? CVMX_PEM_MD_GEN2_2LANE : CVMX_PEM_MD_GEN1_2LANE;
|
|
}
|
|
csr_wr(CVMX_PEMX_CFG(0), pemx_cfg.u64);
|
|
|
|
rst_ctl.u64 = csr_rd(CVMX_RST_CTLX(0));
|
|
rst_ctl.s.rst_drv = 1;
|
|
csr_wr(CVMX_RST_CTLX(0), rst_ctl.u64);
|
|
|
|
/* PEM0 is on DLM1&2 which is pipe0 */
|
|
pipe_rst.u64 = csr_rd(CVMX_GSERX_PCIE_PIPE_RST(0));
|
|
pipe_rst.s.pipe0_rst = 0;
|
|
csr_wr(CVMX_GSERX_PCIE_PIPE_RST(0), pipe_rst.u64);
|
|
|
|
pemx_on.u64 = csr_rd(CVMX_PEMX_ON(0));
|
|
pemx_on.s.pemon = 1;
|
|
csr_wr(CVMX_PEMX_ON(0), pemx_on.u64);
|
|
break;
|
|
case CVMX_QLM_MODE_PCIE_2X1: /* PEM0 and PEM1 on DLM1 */
|
|
pemx_cfg.u64 = csr_rd(CVMX_PEMX_CFG(0));
|
|
pemx_cfg.cn70xx.hostmd = rc;
|
|
pemx_cfg.cn70xx.md = gen2 ? CVMX_PEM_MD_GEN2_1LANE : CVMX_PEM_MD_GEN1_1LANE;
|
|
csr_wr(CVMX_PEMX_CFG(0), pemx_cfg.u64);
|
|
|
|
rst_ctl.u64 = csr_rd(CVMX_RST_CTLX(0));
|
|
rst_ctl.s.rst_drv = 1;
|
|
csr_wr(CVMX_RST_CTLX(0), rst_ctl.u64);
|
|
|
|
/* PEM0 is on DLM1 which is pipe0 */
|
|
pipe_rst.u64 = csr_rd(CVMX_GSERX_PCIE_PIPE_RST(0));
|
|
pipe_rst.s.pipe0_rst = 0;
|
|
csr_wr(CVMX_GSERX_PCIE_PIPE_RST(0), pipe_rst.u64);
|
|
|
|
pemx_on.u64 = csr_rd(CVMX_PEMX_ON(0));
|
|
pemx_on.s.pemon = 1;
|
|
csr_wr(CVMX_PEMX_ON(0), pemx_on.u64);
|
|
|
|
pemx_cfg.u64 = csr_rd(CVMX_PEMX_CFG(1));
|
|
pemx_cfg.cn70xx.hostmd = 1;
|
|
pemx_cfg.cn70xx.md = gen2 ? CVMX_PEM_MD_GEN2_1LANE : CVMX_PEM_MD_GEN1_1LANE;
|
|
csr_wr(CVMX_PEMX_CFG(1), pemx_cfg.u64);
|
|
rst_ctl.u64 = csr_rd(CVMX_RST_CTLX(1));
|
|
rst_ctl.s.rst_drv = 1;
|
|
csr_wr(CVMX_RST_CTLX(1), rst_ctl.u64);
|
|
/* PEM1 is on DLM2 which is pipe1 */
|
|
pipe_rst.u64 = csr_rd(CVMX_GSERX_PCIE_PIPE_RST(0));
|
|
pipe_rst.s.pipe1_rst = 0;
|
|
csr_wr(CVMX_GSERX_PCIE_PIPE_RST(0), pipe_rst.u64);
|
|
pemx_on.u64 = csr_rd(CVMX_PEMX_ON(1));
|
|
pemx_on.s.pemon = 1;
|
|
csr_wr(CVMX_PEMX_ON(1), pemx_on.u64);
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
} else {
|
|
cvmx_pemx_cfg_t pemx_cfg;
|
|
cvmx_pemx_on_t pemx_on;
|
|
cvmx_gserx_pcie_pipe_rst_t pipe_rst;
|
|
cvmx_rst_ctlx_t rst_ctl;
|
|
|
|
switch (mode) {
|
|
case CVMX_QLM_MODE_PCIE_1X2: /* PEM1 on DLM2 */
|
|
pemx_cfg.u64 = csr_rd(CVMX_PEMX_CFG(1));
|
|
pemx_cfg.cn70xx.hostmd = 1;
|
|
pemx_cfg.cn70xx.md = gen2 ? CVMX_PEM_MD_GEN2_2LANE : CVMX_PEM_MD_GEN1_2LANE;
|
|
csr_wr(CVMX_PEMX_CFG(1), pemx_cfg.u64);
|
|
|
|
rst_ctl.u64 = csr_rd(CVMX_RST_CTLX(1));
|
|
rst_ctl.s.rst_drv = 1;
|
|
csr_wr(CVMX_RST_CTLX(1), rst_ctl.u64);
|
|
|
|
/* PEM1 is on DLM1 lane 0, which is pipe1 */
|
|
pipe_rst.u64 = csr_rd(CVMX_GSERX_PCIE_PIPE_RST(0));
|
|
pipe_rst.s.pipe1_rst = 0;
|
|
csr_wr(CVMX_GSERX_PCIE_PIPE_RST(0), pipe_rst.u64);
|
|
|
|
pemx_on.u64 = csr_rd(CVMX_PEMX_ON(1));
|
|
pemx_on.s.pemon = 1;
|
|
csr_wr(CVMX_PEMX_ON(1), pemx_on.u64);
|
|
break;
|
|
case CVMX_QLM_MODE_PCIE_2X1: /* PEM1 and PEM2 on DLM2 */
|
|
pemx_cfg.u64 = csr_rd(CVMX_PEMX_CFG(1));
|
|
pemx_cfg.cn70xx.hostmd = 1;
|
|
pemx_cfg.cn70xx.md = gen2 ? CVMX_PEM_MD_GEN2_1LANE : CVMX_PEM_MD_GEN1_1LANE;
|
|
csr_wr(CVMX_PEMX_CFG(1), pemx_cfg.u64);
|
|
|
|
rst_ctl.u64 = csr_rd(CVMX_RST_CTLX(1));
|
|
rst_ctl.s.rst_drv = 1;
|
|
csr_wr(CVMX_RST_CTLX(1), rst_ctl.u64);
|
|
|
|
/* PEM1 is on DLM2 lane 0, which is pipe2 */
|
|
pipe_rst.u64 = csr_rd(CVMX_GSERX_PCIE_PIPE_RST(0));
|
|
pipe_rst.s.pipe2_rst = 0;
|
|
csr_wr(CVMX_GSERX_PCIE_PIPE_RST(0), pipe_rst.u64);
|
|
|
|
pemx_on.u64 = csr_rd(CVMX_PEMX_ON(1));
|
|
pemx_on.s.pemon = 1;
|
|
csr_wr(CVMX_PEMX_ON(1), pemx_on.u64);
|
|
|
|
pemx_cfg.u64 = csr_rd(CVMX_PEMX_CFG(2));
|
|
pemx_cfg.cn70xx.hostmd = 1;
|
|
pemx_cfg.cn70xx.md = gen2 ? CVMX_PEM_MD_GEN2_1LANE : CVMX_PEM_MD_GEN1_1LANE;
|
|
csr_wr(CVMX_PEMX_CFG(2), pemx_cfg.u64);
|
|
|
|
rst_ctl.u64 = csr_rd(CVMX_RST_CTLX(2));
|
|
rst_ctl.s.rst_drv = 1;
|
|
csr_wr(CVMX_RST_CTLX(2), rst_ctl.u64);
|
|
|
|
/* PEM2 is on DLM2 lane 1, which is pipe3 */
|
|
pipe_rst.u64 = csr_rd(CVMX_GSERX_PCIE_PIPE_RST(0));
|
|
pipe_rst.s.pipe3_rst = 0;
|
|
csr_wr(CVMX_GSERX_PCIE_PIPE_RST(0), pipe_rst.u64);
|
|
|
|
pemx_on.u64 = csr_rd(CVMX_PEMX_ON(2));
|
|
pemx_on.s.pemon = 1;
|
|
csr_wr(CVMX_PEMX_ON(2), pemx_on.u64);
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* Configure dlm speed and mode for cn70xx.
|
|
*
|
|
* @param qlm The DLM to configure
|
|
* @param speed The speed the DLM needs to be configured in Mhz.
|
|
* @param mode The DLM to be configured as SGMII/XAUI/PCIe.
|
|
* DLM 0: has 2 interfaces which can be configured as
|
|
* SGMII/QSGMII/RXAUI. Need to configure both at the
|
|
* same time. These are valid option
|
|
* CVMX_QLM_MODE_QSGMII,
|
|
* CVMX_QLM_MODE_SGMII_SGMII,
|
|
* CVMX_QLM_MODE_SGMII_DISABLED,
|
|
* CVMX_QLM_MODE_DISABLED_SGMII,
|
|
* CVMX_QLM_MODE_SGMII_QSGMII,
|
|
* CVMX_QLM_MODE_QSGMII_QSGMII,
|
|
* CVMX_QLM_MODE_QSGMII_DISABLED,
|
|
* CVMX_QLM_MODE_DISABLED_QSGMII,
|
|
* CVMX_QLM_MODE_QSGMII_SGMII,
|
|
* CVMX_QLM_MODE_RXAUI_1X2
|
|
*
|
|
* DLM 1: PEM0/1 in PCIE_1x4/PCIE_2x1/PCIE_1X1
|
|
* DLM 2: PEM0/1/2 in PCIE_1x4/PCIE_1x2/PCIE_2x1/PCIE_1x1
|
|
* @param rc Only used for PCIe, rc = 1 for root complex mode, 0 for EP mode.
|
|
* @param gen2 Only used for PCIe, gen2 = 1, in GEN2 mode else in GEN1 mode.
|
|
*
|
|
* @param ref_clk_input The reference-clock input to use to configure QLM
|
|
* @param ref_clk_sel The reference-clock selection to use to configure QLM
|
|
*
|
|
* @return Return 0 on success or -1.
|
|
*/
|
|
static int octeon_configure_qlm_cn70xx(int qlm, int speed, int mode, int rc, int gen2,
|
|
int ref_clk_sel, int ref_clk_input)
|
|
{
|
|
debug("%s(%d, %d, %d, %d, %d, %d, %d)\n", __func__, qlm, speed, mode, rc, gen2, ref_clk_sel,
|
|
ref_clk_input);
|
|
switch (qlm) {
|
|
case 0: {
|
|
int is_sff7000_rxaui = 0;
|
|
cvmx_gmxx_inf_mode_t inf_mode0, inf_mode1;
|
|
|
|
inf_mode0.u64 = csr_rd(CVMX_GMXX_INF_MODE(0));
|
|
inf_mode1.u64 = csr_rd(CVMX_GMXX_INF_MODE(1));
|
|
if (inf_mode0.s.en || inf_mode1.s.en) {
|
|
debug("DLM0 already configured\n");
|
|
return -1;
|
|
}
|
|
|
|
switch (mode) {
|
|
case CVMX_QLM_MODE_SGMII_SGMII:
|
|
debug(" Mode SGMII SGMII\n");
|
|
inf_mode0.s.mode = CVMX_GMX_INF_MODE_SGMII;
|
|
inf_mode1.s.mode = CVMX_GMX_INF_MODE_SGMII;
|
|
break;
|
|
case CVMX_QLM_MODE_SGMII_QSGMII:
|
|
debug(" Mode SGMII QSGMII\n");
|
|
inf_mode0.s.mode = CVMX_GMX_INF_MODE_SGMII;
|
|
inf_mode1.s.mode = CVMX_GMX_INF_MODE_QSGMII;
|
|
break;
|
|
case CVMX_QLM_MODE_SGMII_DISABLED:
|
|
debug(" Mode SGMII Disabled\n");
|
|
inf_mode0.s.mode = CVMX_GMX_INF_MODE_SGMII;
|
|
inf_mode1.s.mode = CVMX_GMX_INF_MODE_DISABLED;
|
|
break;
|
|
case CVMX_QLM_MODE_DISABLED_SGMII:
|
|
debug("Mode Disabled SGMII\n");
|
|
inf_mode0.s.mode = CVMX_GMX_INF_MODE_DISABLED;
|
|
inf_mode1.s.mode = CVMX_GMX_INF_MODE_SGMII;
|
|
break;
|
|
case CVMX_QLM_MODE_QSGMII_SGMII:
|
|
debug(" Mode QSGMII SGMII\n");
|
|
inf_mode0.s.mode = CVMX_GMX_INF_MODE_QSGMII;
|
|
inf_mode1.s.mode = CVMX_GMX_INF_MODE_SGMII;
|
|
break;
|
|
case CVMX_QLM_MODE_QSGMII_QSGMII:
|
|
debug(" Mode QSGMII QSGMII\n");
|
|
inf_mode0.s.mode = CVMX_GMX_INF_MODE_QSGMII;
|
|
inf_mode1.s.mode = CVMX_GMX_INF_MODE_QSGMII;
|
|
break;
|
|
case CVMX_QLM_MODE_QSGMII_DISABLED:
|
|
debug(" Mode QSGMII Disabled\n");
|
|
inf_mode0.s.mode = CVMX_GMX_INF_MODE_QSGMII;
|
|
inf_mode1.s.mode = CVMX_GMX_INF_MODE_DISABLED;
|
|
break;
|
|
case CVMX_QLM_MODE_DISABLED_QSGMII:
|
|
debug("Mode Disabled QSGMII\n");
|
|
inf_mode0.s.mode = CVMX_GMX_INF_MODE_DISABLED;
|
|
inf_mode1.s.mode = CVMX_GMX_INF_MODE_QSGMII;
|
|
break;
|
|
case CVMX_QLM_MODE_RXAUI:
|
|
debug(" Mode RXAUI\n");
|
|
inf_mode0.s.mode = CVMX_GMX_INF_MODE_RXAUI;
|
|
inf_mode1.s.mode = CVMX_GMX_INF_MODE_DISABLED;
|
|
|
|
break;
|
|
default:
|
|
debug(" Mode Disabled Disabled\n");
|
|
inf_mode0.s.mode = CVMX_GMX_INF_MODE_DISABLED;
|
|
inf_mode1.s.mode = CVMX_GMX_INF_MODE_DISABLED;
|
|
break;
|
|
}
|
|
csr_wr(CVMX_GMXX_INF_MODE(0), inf_mode0.u64);
|
|
csr_wr(CVMX_GMXX_INF_MODE(1), inf_mode1.u64);
|
|
|
|
/* Bringup the PLL */
|
|
if (__dlm_setup_pll_cn70xx(qlm, speed, ref_clk_sel, ref_clk_input,
|
|
is_sff7000_rxaui))
|
|
return -1;
|
|
|
|
/* TX Lanes */
|
|
if (__dlm0_setup_tx_cn70xx(speed, ref_clk_sel))
|
|
return -1;
|
|
|
|
/* RX Lanes */
|
|
if (__dlm0_setup_rx_cn70xx(speed, ref_clk_sel))
|
|
return -1;
|
|
|
|
/* Enable the interface */
|
|
inf_mode0.u64 = csr_rd(CVMX_GMXX_INF_MODE(0));
|
|
if (inf_mode0.s.mode != CVMX_GMX_INF_MODE_DISABLED)
|
|
inf_mode0.s.en = 1;
|
|
csr_wr(CVMX_GMXX_INF_MODE(0), inf_mode0.u64);
|
|
inf_mode1.u64 = csr_rd(CVMX_GMXX_INF_MODE(1));
|
|
if (inf_mode1.s.mode != CVMX_GMX_INF_MODE_DISABLED)
|
|
inf_mode1.s.en = 1;
|
|
csr_wr(CVMX_GMXX_INF_MODE(1), inf_mode1.u64);
|
|
break;
|
|
}
|
|
case 1:
|
|
switch (mode) {
|
|
case CVMX_QLM_MODE_PCIE: /* PEM0 on DLM1 & DLM2 */
|
|
debug(" Mode PCIe\n");
|
|
if (__dlmx_setup_pcie_cn70xx(1, mode, gen2, rc, ref_clk_sel, ref_clk_input))
|
|
return -1;
|
|
if (__dlmx_setup_pcie_cn70xx(2, mode, gen2, rc, ref_clk_sel, ref_clk_input))
|
|
return -1;
|
|
break;
|
|
case CVMX_QLM_MODE_PCIE_1X2: /* PEM0 on DLM1 */
|
|
case CVMX_QLM_MODE_PCIE_2X1: /* PEM0 & PEM1 on DLM1 */
|
|
case CVMX_QLM_MODE_PCIE_1X1: /* PEM0 on DLM1, only 1 lane */
|
|
debug(" Mode PCIe 1x2, 2x1 or 1x1\n");
|
|
if (__dlmx_setup_pcie_cn70xx(qlm, mode, gen2, rc, ref_clk_sel,
|
|
ref_clk_input))
|
|
return -1;
|
|
break;
|
|
case CVMX_QLM_MODE_DISABLED:
|
|
debug(" Mode disabled\n");
|
|
break;
|
|
default:
|
|
debug("DLM1 illegal mode specified\n");
|
|
return -1;
|
|
}
|
|
break;
|
|
case 2:
|
|
switch (mode) {
|
|
case CVMX_QLM_MODE_SATA_2X1:
|
|
debug("%s: qlm 2, mode is SATA 2x1\n", __func__);
|
|
/* DLM2 is SATA, PCIE2 is disabled */
|
|
if (__setup_sata(qlm, speed, ref_clk_sel, ref_clk_input))
|
|
return -1;
|
|
break;
|
|
case CVMX_QLM_MODE_PCIE:
|
|
debug(" Mode PCIe\n");
|
|
/* DLM2 is PCIE0, PCIE1-2 are disabled. */
|
|
/* Do nothing, its initialized in DLM1 */
|
|
break;
|
|
case CVMX_QLM_MODE_PCIE_1X2: /* PEM1 on DLM2 */
|
|
case CVMX_QLM_MODE_PCIE_2X1: /* PEM1 & PEM2 on DLM2 */
|
|
debug(" Mode PCIe 1x2 or 2x1\n");
|
|
if (__dlmx_setup_pcie_cn70xx(qlm, mode, gen2, rc, ref_clk_sel,
|
|
ref_clk_input))
|
|
return -1;
|
|
break;
|
|
case CVMX_QLM_MODE_DISABLED:
|
|
debug(" Mode Disabled\n");
|
|
break;
|
|
default:
|
|
debug("DLM2 illegal mode specified\n");
|
|
return -1;
|
|
}
|
|
default:
|
|
return -1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* Disables DFE for the specified QLM lane(s).
|
|
* This function should only be called for low-loss channels.
|
|
*
|
|
* @param node Node to configure
|
|
* @param qlm QLM to configure
|
|
* @param lane Lane to configure, or -1 all lanes
|
|
* @param baud_mhz The speed the QLM needs to be configured in Mhz.
|
|
* @param mode The QLM to be configured as SGMII/XAUI/PCIe.
|
|
*/
|
|
void octeon_qlm_dfe_disable(int node, int qlm, int lane, int baud_mhz, int mode)
|
|
{
|
|
int num_lanes = cvmx_qlm_get_lanes(qlm);
|
|
int l;
|
|
cvmx_gserx_lanex_rx_loop_ctrl_t loop_ctrl;
|
|
cvmx_gserx_lanex_rx_valbbd_ctrl_0_t ctrl_0;
|
|
cvmx_gserx_lanex_rx_valbbd_ctrl_1_t ctrl_1;
|
|
cvmx_gserx_lanex_rx_valbbd_ctrl_2_t ctrl_2;
|
|
cvmx_gserx_lane_vma_fine_ctrl_2_t lane_vma_fine_ctrl_2;
|
|
|
|
/* Interfaces below 5Gbaud are already manually tuned. */
|
|
if (baud_mhz < 5000)
|
|
return;
|
|
|
|
/* Don't run on PCIe links, SATA or KR. These interfaces use training */
|
|
switch (mode) {
|
|
case CVMX_QLM_MODE_10G_KR_1X2:
|
|
case CVMX_QLM_MODE_10G_KR:
|
|
case CVMX_QLM_MODE_40G_KR4:
|
|
return;
|
|
case CVMX_QLM_MODE_PCIE_1X1:
|
|
case CVMX_QLM_MODE_PCIE_2X1:
|
|
case CVMX_QLM_MODE_PCIE_1X2:
|
|
case CVMX_QLM_MODE_PCIE:
|
|
case CVMX_QLM_MODE_PCIE_1X8:
|
|
return;
|
|
case CVMX_QLM_MODE_SATA_2X1:
|
|
return;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
/* Updating pre_ctle minimum to 0. This works best for short channels */
|
|
lane_vma_fine_ctrl_2.u64 = csr_rd_node(node, CVMX_GSERX_LANE_VMA_FINE_CTRL_2(qlm));
|
|
lane_vma_fine_ctrl_2.s.rx_prectle_gain_min_fine = 0;
|
|
csr_wr_node(node, CVMX_GSERX_LANE_VMA_FINE_CTRL_2(qlm), lane_vma_fine_ctrl_2.u64);
|
|
|
|
for (l = 0; l < num_lanes; l++) {
|
|
if (lane != -1 && lane != l)
|
|
continue;
|
|
|
|
/* 1. Write GSERX_LANEx_RX_LOOP_CTRL = 0x0270
|
|
* (var "loop_ctrl" with bits 8 & 1 cleared).
|
|
* bit<1> dfe_en_byp = 1'b0
|
|
*/
|
|
loop_ctrl.u64 = csr_rd_node(node, CVMX_GSERX_LANEX_RX_LOOP_CTRL(l, qlm));
|
|
loop_ctrl.s.cfg_rx_lctrl = loop_ctrl.s.cfg_rx_lctrl & 0x3fd;
|
|
csr_wr_node(node, CVMX_GSERX_LANEX_RX_LOOP_CTRL(l, qlm), loop_ctrl.u64);
|
|
|
|
/* 2. Write GSERX_LANEx_RX_VALBBD_CTRL_1 = 0x0000
|
|
* (var "ctrl1" with all bits cleared)
|
|
* bits<14:11> CFG_RX_DFE_C3_MVAL = 4'b0000
|
|
* bit<10> CFG_RX_DFE_C3_MSGN = 1'b0
|
|
* bits<9:6> CFG_RX_DFE_C2_MVAL = 4'b0000
|
|
* bit<5> CFG_RX_DFE_C2_MSGN = 1'b0
|
|
* bits<4:0> CFG_RX_DFE_C1_MVAL = 5'b00000
|
|
*/
|
|
ctrl_1.u64 = csr_rd_node(node, CVMX_GSERX_LANEX_RX_VALBBD_CTRL_1(l, qlm));
|
|
ctrl_1.s.dfe_c3_mval = 0;
|
|
ctrl_1.s.dfe_c3_msgn = 0;
|
|
ctrl_1.s.dfe_c2_mval = 0;
|
|
ctrl_1.s.dfe_c2_msgn = 0;
|
|
ctrl_1.s.dfe_c2_mval = 0;
|
|
ctrl_1.s.dfe_c1_mval = 0;
|
|
ctrl_1.s.dfe_c1_msgn = 0;
|
|
csr_wr_node(node, CVMX_GSERX_LANEX_RX_VALBBD_CTRL_1(l, qlm), ctrl_1.u64);
|
|
|
|
/* 3. Write GSERX_LANEx_RX_VALBBD_CTRL_0 = 0x2400
|
|
* (var "ctrl0" with following bits set/cleared)
|
|
* bits<11:10> CFG_RX_DFE_GAIN = 0x1
|
|
* bits<9:6> CFG_RX_DFE_C5_MVAL = 4'b0000
|
|
* bit<5> CFG_RX_DFE_C5_MSGN = 1'b0
|
|
* bits<4:1> CFG_RX_DFE_C4_MVAL = 4'b0000
|
|
* bit<0> CFG_RX_DFE_C4_MSGN = 1'b0
|
|
*/
|
|
ctrl_0.u64 = csr_rd_node(node, CVMX_GSERX_LANEX_RX_VALBBD_CTRL_0(l, qlm));
|
|
ctrl_0.s.dfe_gain = 0x1;
|
|
ctrl_0.s.dfe_c5_mval = 0;
|
|
ctrl_0.s.dfe_c5_msgn = 0;
|
|
ctrl_0.s.dfe_c4_mval = 0;
|
|
ctrl_0.s.dfe_c4_msgn = 0;
|
|
csr_wr_node(node, CVMX_GSERX_LANEX_RX_VALBBD_CTRL_0(l, qlm), ctrl_0.u64);
|
|
|
|
/* 4. Write GSER(0..13)_LANE(0..3)_RX_VALBBD_CTRL_2 = 0x003F
|
|
* //enable DFE tap overrides
|
|
* bit<5> dfe_ovrd_en = 1
|
|
* bit<4> dfe_c5_ovrd_val = 1
|
|
* bit<3> dfe_c4_ovrd_val = 1
|
|
* bit<2> dfe_c3_ovrd_val = 1
|
|
* bit<1> dfe_c2_ovrd_val = 1
|
|
* bit<0> dfe_c1_ovrd_val = 1
|
|
*/
|
|
ctrl_2.u64 = csr_rd_node(node, CVMX_GSERX_LANEX_RX_VALBBD_CTRL_2(l, qlm));
|
|
ctrl_2.s.dfe_ovrd_en = 0x1;
|
|
ctrl_2.s.dfe_c5_ovrd_val = 0x1;
|
|
ctrl_2.s.dfe_c4_ovrd_val = 0x1;
|
|
ctrl_2.s.dfe_c3_ovrd_val = 0x1;
|
|
ctrl_2.s.dfe_c2_ovrd_val = 0x1;
|
|
ctrl_2.s.dfe_c1_ovrd_val = 0x1;
|
|
csr_wr_node(node, CVMX_GSERX_LANEX_RX_VALBBD_CTRL_2(l, qlm), ctrl_2.u64);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Disables DFE, uses fixed CTLE Peak value and AGC settings
|
|
* for the specified QLM lane(s).
|
|
* This function should only be called for low-loss channels.
|
|
* This function prevents Rx equalization from happening on all lanes in a QLM
|
|
* This function should be called for all lanes being used in the QLM.
|
|
*
|
|
* @param node Node to configure
|
|
* @param qlm QLM to configure
|
|
* @param lane Lane to configure, or -1 all lanes
|
|
* @param baud_mhz The speed the QLM needs to be configured in Mhz.
|
|
* @param mode The QLM to be configured as SGMII/XAUI/PCIe.
|
|
* @param ctle_zero Equalizer Peaking control
|
|
* @param agc_pre_ctle Pre-CTLE gain
|
|
* @param agc_post_ctle Post-CTLE gain
|
|
* @return Zero on success, negative on failure
|
|
*/
|
|
|
|
int octeon_qlm_dfe_disable_ctle_agc(int node, int qlm, int lane, int baud_mhz, int mode,
|
|
int ctle_zero, int agc_pre_ctle, int agc_post_ctle)
|
|
{
|
|
int num_lanes = cvmx_qlm_get_lanes(qlm);
|
|
int l;
|
|
cvmx_gserx_lanex_rx_loop_ctrl_t loop_ctrl;
|
|
cvmx_gserx_lanex_rx_valbbd_ctrl_0_t ctrl_0;
|
|
cvmx_gserx_lanex_pwr_ctrl_t lanex_pwr_ctrl;
|
|
cvmx_gserx_lane_mode_t lmode;
|
|
cvmx_gserx_lane_px_mode_1_t px_mode_1;
|
|
cvmx_gserx_lanex_rx_cfg_5_t rx_cfg_5;
|
|
cvmx_gserx_lanex_rx_cfg_2_t rx_cfg_2;
|
|
cvmx_gserx_lanex_rx_ctle_ctrl_t ctle_ctrl;
|
|
|
|
/* Check tuning constraints */
|
|
if (ctle_zero < 0 || ctle_zero > 15) {
|
|
printf("Error: N%d.QLM%d: Invalid CTLE_ZERO(%d). Must be between -1 and 15.\n",
|
|
node, qlm, ctle_zero);
|
|
return -1;
|
|
}
|
|
if (agc_pre_ctle < 0 || agc_pre_ctle > 15) {
|
|
printf("Error: N%d.QLM%d: Invalid AGC_Pre_CTLE(%d)\n",
|
|
node, qlm, agc_pre_ctle);
|
|
return -1;
|
|
}
|
|
|
|
if (agc_post_ctle < 0 || agc_post_ctle > 15) {
|
|
printf("Error: N%d.QLM%d: Invalid AGC_Post_CTLE(%d)\n",
|
|
node, qlm, agc_post_ctle);
|
|
return -1;
|
|
}
|
|
|
|
/* Interfaces below 5Gbaud are already manually tuned. */
|
|
if (baud_mhz < 5000)
|
|
return 0;
|
|
|
|
/* Don't run on PCIe links, SATA or KR. These interfaces use training */
|
|
switch (mode) {
|
|
case CVMX_QLM_MODE_10G_KR_1X2:
|
|
case CVMX_QLM_MODE_10G_KR:
|
|
case CVMX_QLM_MODE_40G_KR4:
|
|
return 0;
|
|
case CVMX_QLM_MODE_PCIE_1X1:
|
|
case CVMX_QLM_MODE_PCIE_2X1:
|
|
case CVMX_QLM_MODE_PCIE_1X2:
|
|
case CVMX_QLM_MODE_PCIE:
|
|
case CVMX_QLM_MODE_PCIE_1X8:
|
|
return 0;
|
|
case CVMX_QLM_MODE_SATA_2X1:
|
|
return 0;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
lmode.u64 = csr_rd_node(node, CVMX_GSERX_LANE_MODE(qlm));
|
|
|
|
/* 1. Enable VMA manual mode for the QLM's lane mode */
|
|
px_mode_1.u64 = csr_rd_node(node, CVMX_GSERX_LANE_PX_MODE_1(lmode.s.lmode, qlm));
|
|
px_mode_1.s.vma_mm = 1;
|
|
csr_wr_node(node, CVMX_GSERX_LANE_PX_MODE_1(lmode.s.lmode, qlm), px_mode_1.u64);
|
|
|
|
/* 2. Disable DFE */
|
|
octeon_qlm_dfe_disable(node, qlm, lane, baud_mhz, mode);
|
|
|
|
for (l = 0; l < num_lanes; l++) {
|
|
if (lane != -1 && lane != l)
|
|
continue;
|
|
|
|
/* 3. Write GSERX_LANEx_RX_VALBBD_CTRL_0.CFG_RX_AGC_GAIN = 0x2 */
|
|
ctrl_0.u64 = csr_rd_node(node, CVMX_GSERX_LANEX_RX_VALBBD_CTRL_0(l, qlm));
|
|
ctrl_0.s.agc_gain = 0x2;
|
|
csr_wr_node(node, CVMX_GSERX_LANEX_RX_VALBBD_CTRL_0(l, qlm), ctrl_0.u64);
|
|
|
|
/* 4. Write GSERX_LANEx_RX_LOOP_CTRL
|
|
* bit<8> lctrl_men = 1'b1
|
|
* bit<0> cdr_en_byp = 1'b1
|
|
*/
|
|
loop_ctrl.u64 = csr_rd_node(node, CVMX_GSERX_LANEX_RX_LOOP_CTRL(l, qlm));
|
|
loop_ctrl.s.cfg_rx_lctrl = loop_ctrl.s.cfg_rx_lctrl | 0x101;
|
|
csr_wr_node(node, CVMX_GSERX_LANEX_RX_LOOP_CTRL(l, qlm), loop_ctrl.u64);
|
|
|
|
/* 5. Write GSERX_LANEx_PWR_CTRL = 0x0040 (var "lanex_pwr_ctrl" with
|
|
* following bits set)
|
|
* bit<6> RX_LCTRL_OVRRD_EN = 1'b1
|
|
* all other bits cleared.
|
|
*/
|
|
lanex_pwr_ctrl.u64 = csr_rd_node(node, CVMX_GSERX_LANEX_PWR_CTRL(l, qlm));
|
|
lanex_pwr_ctrl.s.rx_lctrl_ovrrd_en = 1;
|
|
csr_wr_node(node, CVMX_GSERX_LANEX_PWR_CTRL(l, qlm), lanex_pwr_ctrl.u64);
|
|
|
|
/* --Setting AGC in manual mode and configuring CTLE-- */
|
|
rx_cfg_5.u64 = csr_rd_node(node, CVMX_GSERX_LANEX_RX_CFG_5(l, qlm));
|
|
rx_cfg_5.s.rx_agc_men_ovrrd_val = 1;
|
|
rx_cfg_5.s.rx_agc_men_ovrrd_en = 1;
|
|
csr_wr_node(node, CVMX_GSERX_LANEX_RX_CFG_5(l, qlm), rx_cfg_5.u64);
|
|
|
|
ctle_ctrl.u64 = csr_rd_node(node, CVMX_GSERX_LANEX_RX_CTLE_CTRL(l, qlm));
|
|
ctle_ctrl.s.pcs_sds_rx_ctle_zero = ctle_zero;
|
|
csr_wr_node(node, CVMX_GSERX_LANEX_RX_CTLE_CTRL(l, qlm), ctle_ctrl.u64);
|
|
|
|
rx_cfg_2.u64 = csr_rd_node(node, CVMX_GSERX_LANEX_RX_CFG_2(l, qlm));
|
|
rx_cfg_2.s.rx_sds_rx_agc_mval = (agc_pre_ctle << 4) | agc_post_ctle;
|
|
csr_wr_node(node, CVMX_GSERX_LANEX_RX_CFG_2(l, qlm), rx_cfg_2.u64);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* Some QLM speeds need to override the default tuning parameters
|
|
*
|
|
* @param node Node to configure
|
|
* @param qlm QLM to configure
|
|
* @param baud_mhz Desired speed in MHz
|
|
* @param lane Lane the apply the tuning parameters
|
|
* @param tx_swing Voltage swing. The higher the value the lower the voltage,
|
|
* the default value is 7.
|
|
* @param tx_pre pre-cursor pre-emphasis
|
|
* @param tx_post post-cursor pre-emphasis.
|
|
* @param tx_gain Transmit gain. Range 0-7
|
|
* @param tx_vboost Transmit voltage boost. Range 0-1
|
|
*/
|
|
void octeon_qlm_tune_per_lane_v3(int node, int qlm, int baud_mhz, int lane, int tx_swing,
|
|
int tx_pre, int tx_post, int tx_gain, int tx_vboost)
|
|
{
|
|
cvmx_gserx_cfg_t gserx_cfg;
|
|
cvmx_gserx_lanex_tx_cfg_0_t tx_cfg0;
|
|
cvmx_gserx_lanex_tx_pre_emphasis_t pre_emphasis;
|
|
cvmx_gserx_lanex_tx_cfg_1_t tx_cfg1;
|
|
cvmx_gserx_lanex_tx_cfg_3_t tx_cfg3;
|
|
cvmx_bgxx_spux_br_pmd_control_t pmd_control;
|
|
cvmx_gserx_lanex_pcs_ctlifc_0_t pcs_ctlifc_0;
|
|
cvmx_gserx_lanex_pcs_ctlifc_2_t pcs_ctlifc_2;
|
|
int bgx, lmac;
|
|
|
|
/* Do not apply QLM tuning to PCIe and KR interfaces. */
|
|
gserx_cfg.u64 = csr_rd_node(node, CVMX_GSERX_CFG(qlm));
|
|
if (gserx_cfg.s.pcie)
|
|
return;
|
|
|
|
/* Apply the QLM tuning only to cn73xx and cn78xx models only */
|
|
if (OCTEON_IS_MODEL(OCTEON_CN78XX))
|
|
bgx = (qlm < 2) ? qlm : (qlm - 2);
|
|
else if (OCTEON_IS_MODEL(OCTEON_CN73XX))
|
|
bgx = (qlm < 4) ? (qlm - 2) : 2;
|
|
else if (OCTEON_IS_MODEL(OCTEON_CNF75XX))
|
|
bgx = 0;
|
|
else
|
|
return;
|
|
|
|
if ((OCTEON_IS_MODEL(OCTEON_CN73XX) && qlm == 6) ||
|
|
(OCTEON_IS_MODEL(OCTEON_CNF75XX) && qlm == 5))
|
|
lmac = 2;
|
|
else
|
|
lmac = lane;
|
|
|
|
/* No need to tune 10G-KR and 40G-KR interfaces */
|
|
pmd_control.u64 = csr_rd_node(node, CVMX_BGXX_SPUX_BR_PMD_CONTROL(lmac, bgx));
|
|
if (pmd_control.s.train_en)
|
|
return;
|
|
|
|
if (tx_pre != -1 && tx_post == -1)
|
|
tx_post = 0;
|
|
|
|
if (tx_post != -1 && tx_pre == -1)
|
|
tx_pre = 0;
|
|
|
|
/* Check tuning constraints */
|
|
if (tx_swing < -1 || tx_swing > 25) {
|
|
printf("ERROR: N%d:QLM%d: Lane %d: Invalid TX_SWING(%d). TX_SWING must be <= 25.\n",
|
|
node, qlm, lane, tx_swing);
|
|
return;
|
|
}
|
|
|
|
if (tx_pre < -1 || tx_pre > 10) {
|
|
printf("ERROR: N%d:QLM%d: Lane %d: Invalid TX_PRE(%d). TX_PRE must be <= 10.\n",
|
|
node, qlm, lane, tx_swing);
|
|
return;
|
|
}
|
|
|
|
if (tx_post < -1 || tx_post > 31) {
|
|
printf("ERROR: N%d:QLM%d: Lane %d: Invalid TX_POST(%d). TX_POST must be <= 15.\n",
|
|
node, qlm, lane, tx_swing);
|
|
return;
|
|
}
|
|
|
|
if (tx_pre >= 0 && tx_post >= 0 && tx_swing >= 0 &&
|
|
tx_pre + tx_post - tx_swing > 2) {
|
|
printf("ERROR: N%d.QLM%d: Lane %d: TX_PRE(%d) + TX_POST(%d) - TX_SWING(%d) must be <= 2\n",
|
|
node, qlm, lane, tx_pre, tx_post, tx_swing);
|
|
return;
|
|
}
|
|
|
|
if (tx_pre >= 0 && tx_post >= 0 && tx_swing >= 0 &&
|
|
tx_pre + tx_post + tx_swing > 35) {
|
|
printf("ERROR: N%d.QLM%d: Lane %d: TX_PRE(%d) + TX_POST(%d) + TX_SWING(%d) must be <= 35\n",
|
|
node, qlm, lane, tx_pre, tx_post, tx_swing);
|
|
return;
|
|
}
|
|
|
|
if (tx_gain < -1 || tx_gain > 7) {
|
|
printf("ERROR: N%d.QLM%d: Lane %d: Invalid TX_GAIN(%d). TX_GAIN must be between 0 and 7\n",
|
|
node, qlm, lane, tx_gain);
|
|
return;
|
|
}
|
|
|
|
if (tx_vboost < -1 || tx_vboost > 1) {
|
|
printf("ERROR: N%d.QLM%d: Lane %d: Invalid TX_VBOOST(%d). TX_VBOOST must be 0 or 1.\n",
|
|
node, qlm, lane, tx_vboost);
|
|
return;
|
|
}
|
|
|
|
debug("N%d.QLM%d: Lane %d: TX_SWING=%d, TX_PRE=%d, TX_POST=%d, TX_GAIN=%d, TX_VBOOST=%d\n",
|
|
node, qlm, lane, tx_swing, tx_pre, tx_post, tx_gain, tx_vboost);
|
|
|
|
/* Complete the Tx swing and Tx equilization programming */
|
|
/* 1) Enable Tx swing and Tx emphasis overrides */
|
|
tx_cfg1.u64 = csr_rd_node(node, CVMX_GSERX_LANEX_TX_CFG_1(lane, qlm));
|
|
tx_cfg1.s.tx_swing_ovrrd_en = (tx_swing != -1);
|
|
tx_cfg1.s.tx_premptap_ovrrd_val = (tx_pre != -1) && (tx_post != -1);
|
|
tx_cfg1.s.tx_vboost_en_ovrrd_en = (tx_vboost != -1); /* Vboost override */
|
|
;
|
|
csr_wr_node(node, CVMX_GSERX_LANEX_TX_CFG_1(lane, qlm), tx_cfg1.u64);
|
|
/* 2) Program the Tx swing and Tx emphasis Pre-cursor and Post-cursor values */
|
|
/* CFG_TX_PREMPTAP[8:4] = Lane X's TX post-cursor value (C+1) */
|
|
/* CFG_TX_PREMPTAP[3:0] = Lane X's TX pre-cursor value (C-1) */
|
|
if (tx_swing != -1) {
|
|
tx_cfg0.u64 = csr_rd_node(node, CVMX_GSERX_LANEX_TX_CFG_0(lane, qlm));
|
|
tx_cfg0.s.cfg_tx_swing = tx_swing;
|
|
csr_wr_node(node, CVMX_GSERX_LANEX_TX_CFG_0(lane, qlm), tx_cfg0.u64);
|
|
}
|
|
|
|
if ((tx_pre != -1) && (tx_post != -1)) {
|
|
pre_emphasis.u64 = csr_rd_node(node, CVMX_GSERX_LANEX_TX_PRE_EMPHASIS(lane, qlm));
|
|
pre_emphasis.s.cfg_tx_premptap = (tx_post << 4) | tx_pre;
|
|
csr_wr_node(node, CVMX_GSERX_LANEX_TX_PRE_EMPHASIS(lane, qlm), pre_emphasis.u64);
|
|
}
|
|
|
|
/* Apply TX gain settings */
|
|
if (tx_gain != -1) {
|
|
tx_cfg3.u64 = csr_rd_node(node, CVMX_GSERX_LANEX_TX_CFG_3(lane, qlm));
|
|
tx_cfg3.s.pcs_sds_tx_gain = tx_gain;
|
|
csr_wr_node(node, CVMX_GSERX_LANEX_TX_CFG_3(lane, qlm), tx_cfg3.u64);
|
|
}
|
|
|
|
/* Apply TX vboot settings */
|
|
if (tx_vboost != -1) {
|
|
tx_cfg3.u64 = csr_rd_node(node, CVMX_GSERX_LANEX_TX_CFG_3(lane, qlm));
|
|
tx_cfg3.s.cfg_tx_vboost_en = tx_vboost;
|
|
csr_wr_node(node, CVMX_GSERX_LANEX_TX_CFG_3(lane, qlm), tx_cfg3.u64);
|
|
}
|
|
|
|
/* 3) Program override for the Tx coefficient request */
|
|
pcs_ctlifc_0.u64 = csr_rd_node(node, CVMX_GSERX_LANEX_PCS_CTLIFC_0(lane, qlm));
|
|
if (((tx_pre != -1) && (tx_post != -1)) || (tx_swing != -1))
|
|
pcs_ctlifc_0.s.cfg_tx_coeff_req_ovrrd_val = 0x1;
|
|
if (tx_vboost != -1)
|
|
pcs_ctlifc_0.s.cfg_tx_vboost_en_ovrrd_val = 1;
|
|
csr_wr_node(node, CVMX_GSERX_LANEX_PCS_CTLIFC_0(lane, qlm), pcs_ctlifc_0.u64);
|
|
|
|
/* 4) Enable the Tx coefficient request override enable */
|
|
pcs_ctlifc_2.u64 = csr_rd_node(node, CVMX_GSERX_LANEX_PCS_CTLIFC_2(lane, qlm));
|
|
if (((tx_pre != -1) && (tx_post != -1)) || (tx_swing != -1))
|
|
pcs_ctlifc_2.s.cfg_tx_coeff_req_ovrrd_en = 0x1;
|
|
if (tx_vboost != -1)
|
|
pcs_ctlifc_2.s.cfg_tx_vboost_en_ovrrd_en = 1;
|
|
csr_wr_node(node, CVMX_GSERX_LANEX_PCS_CTLIFC_2(lane, qlm), pcs_ctlifc_2.u64);
|
|
|
|
/* 5) Issue a Control Interface Configuration Override request to start the Tx equalizer */
|
|
pcs_ctlifc_2.u64 = csr_rd_node(node, CVMX_GSERX_LANEX_PCS_CTLIFC_2(lane, qlm));
|
|
pcs_ctlifc_2.s.ctlifc_ovrrd_req = 0x1;
|
|
csr_wr_node(node, CVMX_GSERX_LANEX_PCS_CTLIFC_2(lane, qlm), pcs_ctlifc_2.u64);
|
|
|
|
/* 6) Wait 1 ms for the request to complete */
|
|
udelay(1000);
|
|
|
|
/* Steps 7 & 8 required for subsequent Tx swing and Tx equilization adjustment */
|
|
/* 7) Disable the Tx coefficient request override enable */
|
|
pcs_ctlifc_2.u64 = csr_rd_node(node, CVMX_GSERX_LANEX_PCS_CTLIFC_2(lane, qlm));
|
|
pcs_ctlifc_2.s.cfg_tx_coeff_req_ovrrd_en = 0;
|
|
csr_wr_node(node, CVMX_GSERX_LANEX_PCS_CTLIFC_2(lane, qlm), pcs_ctlifc_2.u64);
|
|
/* 8) Issue a Control Interface Configuration Override request */
|
|
pcs_ctlifc_2.u64 = csr_rd_node(node, CVMX_GSERX_LANEX_PCS_CTLIFC_2(lane, qlm));
|
|
pcs_ctlifc_2.s.ctlifc_ovrrd_req = 0x1;
|
|
csr_wr_node(node, CVMX_GSERX_LANEX_PCS_CTLIFC_2(lane, qlm), pcs_ctlifc_2.u64);
|
|
}
|
|
|
|
/**
|
|
* Some QLM speeds need to override the default tuning parameters
|
|
*
|
|
* @param node Node to configure
|
|
* @param qlm QLM to configure
|
|
* @param baud_mhz Desired speed in MHz
|
|
* @param tx_swing Voltage swing. The higher the value the lower the voltage,
|
|
* the default value is 7.
|
|
* @param tx_premptap bits [0:3] pre-cursor pre-emphasis, bits[4:8] post-cursor
|
|
* pre-emphasis.
|
|
* @param tx_gain Transmit gain. Range 0-7
|
|
* @param tx_vboost Transmit voltage boost. Range 0-1
|
|
*
|
|
*/
|
|
void octeon_qlm_tune_v3(int node, int qlm, int baud_mhz, int tx_swing, int tx_premptap, int tx_gain,
|
|
int tx_vboost)
|
|
{
|
|
int lane;
|
|
int num_lanes = cvmx_qlm_get_lanes(qlm);
|
|
|
|
for (lane = 0; lane < num_lanes; lane++) {
|
|
int tx_pre = (tx_premptap == -1) ? -1 : tx_premptap & 0xf;
|
|
int tx_post = (tx_premptap == -1) ? -1 : (tx_premptap >> 4) & 0x1f;
|
|
|
|
octeon_qlm_tune_per_lane_v3(node, qlm, baud_mhz, lane, tx_swing, tx_pre, tx_post,
|
|
tx_gain, tx_vboost);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Some QLMs need to override the default pre-ctle for low loss channels.
|
|
*
|
|
* @param node Node to configure
|
|
* @param qlm QLM to configure
|
|
* @param pre_ctle pre-ctle settings for low loss channels
|
|
*/
|
|
void octeon_qlm_set_channel_v3(int node, int qlm, int pre_ctle)
|
|
{
|
|
cvmx_gserx_lane_vma_fine_ctrl_2_t lane_vma_fine_ctrl_2;
|
|
|
|
lane_vma_fine_ctrl_2.u64 = csr_rd_node(node, CVMX_GSERX_LANE_VMA_FINE_CTRL_2(qlm));
|
|
lane_vma_fine_ctrl_2.s.rx_prectle_gain_min_fine = pre_ctle;
|
|
csr_wr_node(node, CVMX_GSERX_LANE_VMA_FINE_CTRL_2(qlm), lane_vma_fine_ctrl_2.u64);
|
|
}
|
|
|
|
static void __qlm_init_errata_20844(int node, int qlm)
|
|
{
|
|
int lane;
|
|
|
|
/* Only applies to CN78XX pass 1.x */
|
|
if (!OCTEON_IS_MODEL(OCTEON_CN78XX_PASS1_0))
|
|
return;
|
|
|
|
/* Errata GSER-20844: Electrical Idle logic can coast
|
|
* 1) After the link first comes up write the following
|
|
* register on each lane to prevent the application logic
|
|
* from stomping on the Coast inputs. This is a one time write,
|
|
* or if you prefer you could put it in the link up loop and
|
|
* write it every time the link comes up.
|
|
* 1a) Then write GSER(0..13)_LANE(0..3)_PCS_CTLIFC_2
|
|
* Set CTLIFC_OVRRD_REQ (later)
|
|
* Set CFG_RX_CDR_COAST_REQ_OVRRD_EN
|
|
* Its not clear if #1 and #1a can be combined, lets try it
|
|
* this way first.
|
|
*/
|
|
for (lane = 0; lane < 4; lane++) {
|
|
cvmx_gserx_lanex_rx_misc_ovrrd_t misc_ovrrd;
|
|
cvmx_gserx_lanex_pcs_ctlifc_2_t ctlifc_2;
|
|
|
|
ctlifc_2.u64 = csr_rd_node(node, CVMX_GSERX_LANEX_PCS_CTLIFC_2(lane, qlm));
|
|
ctlifc_2.s.cfg_rx_cdr_coast_req_ovrrd_en = 1;
|
|
csr_wr_node(node, CVMX_GSERX_LANEX_PCS_CTLIFC_2(lane, qlm), ctlifc_2.u64);
|
|
|
|
misc_ovrrd.u64 = csr_rd_node(node, CVMX_GSERX_LANEX_RX_MISC_OVRRD(lane, qlm));
|
|
misc_ovrrd.s.cfg_rx_eie_det_ovrrd_en = 1;
|
|
misc_ovrrd.s.cfg_rx_eie_det_ovrrd_val = 0;
|
|
csr_wr_node(node, CVMX_GSERX_LANEX_RX_MISC_OVRRD(lane, qlm), misc_ovrrd.u64);
|
|
|
|
udelay(1);
|
|
|
|
misc_ovrrd.u64 = csr_rd_node(node, CVMX_GSERX_LANEX_RX_MISC_OVRRD(lane, qlm));
|
|
misc_ovrrd.s.cfg_rx_eie_det_ovrrd_en = 1;
|
|
misc_ovrrd.s.cfg_rx_eie_det_ovrrd_val = 1;
|
|
csr_wr_node(node, CVMX_GSERX_LANEX_RX_MISC_OVRRD(lane, qlm), misc_ovrrd.u64);
|
|
ctlifc_2.u64 = csr_rd_node(node, CVMX_GSERX_LANEX_PCS_CTLIFC_2(lane, qlm));
|
|
ctlifc_2.s.ctlifc_ovrrd_req = 1;
|
|
csr_wr_node(node, CVMX_GSERX_LANEX_PCS_CTLIFC_2(lane, qlm), ctlifc_2.u64);
|
|
}
|
|
}
|
|
|
|
/** CN78xx reference clock register settings */
|
|
struct refclk_settings_cn78xx {
|
|
bool valid; /** Reference clock speed supported */
|
|
union cvmx_gserx_pll_px_mode_0 mode_0;
|
|
union cvmx_gserx_pll_px_mode_1 mode_1;
|
|
union cvmx_gserx_lane_px_mode_0 pmode_0;
|
|
union cvmx_gserx_lane_px_mode_1 pmode_1;
|
|
};
|
|
|
|
/** Default reference clock for various modes */
|
|
static const u8 def_ref_clk_cn78xx[R_NUM_LANE_MODES] = { 0, 0, 0, 2, 2, 2, 2, 2, 2, 1, 1, 1 };
|
|
|
|
/**
|
|
* This data structure stores the reference clock for each mode for each QLM.
|
|
*
|
|
* It is indexed first by the node number, then the QLM number and then the
|
|
* lane mode. It is initialized to the default values.
|
|
*/
|
|
static u8 ref_clk_cn78xx[CVMX_MAX_NODES][8][R_NUM_LANE_MODES] = {
|
|
{ { 0, 0, 0, 2, 2, 2, 2, 2, 2, 1, 1, 1 },
|
|
{ 0, 0, 0, 2, 2, 2, 2, 2, 2, 1, 1, 1 },
|
|
{ 0, 0, 0, 2, 2, 2, 2, 2, 2, 1, 1, 1 },
|
|
{ 0, 0, 0, 2, 2, 2, 2, 2, 2, 1, 1, 1 },
|
|
{ 0, 0, 0, 2, 2, 2, 2, 2, 2, 1, 1, 1 },
|
|
{ 0, 0, 0, 2, 2, 2, 2, 2, 2, 1, 1, 1 },
|
|
{ 0, 0, 0, 2, 2, 2, 2, 2, 2, 1, 1, 1 },
|
|
{ 0, 0, 0, 2, 2, 2, 2, 2, 2, 1, 1, 1 } },
|
|
{ { 0, 0, 0, 2, 2, 2, 2, 2, 2, 1, 1, 1 },
|
|
{ 0, 0, 0, 2, 2, 2, 2, 2, 2, 1, 1, 1 },
|
|
{ 0, 0, 0, 2, 2, 2, 2, 2, 2, 1, 1, 1 },
|
|
{ 0, 0, 0, 2, 2, 2, 2, 2, 2, 1, 1, 1 },
|
|
{ 0, 0, 0, 2, 2, 2, 2, 2, 2, 1, 1, 1 },
|
|
{ 0, 0, 0, 2, 2, 2, 2, 2, 2, 1, 1, 1 },
|
|
{ 0, 0, 0, 2, 2, 2, 2, 2, 2, 1, 1, 1 },
|
|
{ 0, 0, 0, 2, 2, 2, 2, 2, 2, 1, 1, 1 } },
|
|
{ { 0, 0, 0, 2, 2, 2, 2, 2, 2, 1, 1, 1 },
|
|
{ 0, 0, 0, 2, 2, 2, 2, 2, 2, 1, 1, 1 },
|
|
{ 0, 0, 0, 2, 2, 2, 2, 2, 2, 1, 1, 1 },
|
|
{ 0, 0, 0, 2, 2, 2, 2, 2, 2, 1, 1, 1 },
|
|
{ 0, 0, 0, 2, 2, 2, 2, 2, 2, 1, 1, 1 },
|
|
{ 0, 0, 0, 2, 2, 2, 2, 2, 2, 1, 1, 1 },
|
|
{ 0, 0, 0, 2, 2, 2, 2, 2, 2, 1, 1, 1 },
|
|
{ 0, 0, 0, 2, 2, 2, 2, 2, 2, 1, 1, 1 } },
|
|
{ { 0, 0, 0, 2, 2, 2, 2, 2, 2, 1, 1, 1 },
|
|
{ 0, 0, 0, 2, 2, 2, 2, 2, 2, 1, 1, 1 },
|
|
{ 0, 0, 0, 2, 2, 2, 2, 2, 2, 1, 1, 1 },
|
|
{ 0, 0, 0, 2, 2, 2, 2, 2, 2, 1, 1, 1 },
|
|
{ 0, 0, 0, 2, 2, 2, 2, 2, 2, 1, 1, 1 },
|
|
{ 0, 0, 0, 2, 2, 2, 2, 2, 2, 1, 1, 1 },
|
|
{ 0, 0, 0, 2, 2, 2, 2, 2, 2, 1, 1, 1 },
|
|
{ 0, 0, 0, 2, 2, 2, 2, 2, 2, 1, 1, 1 } }
|
|
};
|
|
|
|
/**
|
|
* This data structure contains the register values for the cn78xx PLLs
|
|
* It is indexed first by the reference clock and second by the mode.
|
|
* Note that not all combinations are supported.
|
|
*/
|
|
static const struct refclk_settings_cn78xx refclk_settings_cn78xx[R_NUM_LANE_MODES][4] = {
|
|
{ /* 0 R_2_5G_REFCLK100 */
|
|
{ /* 100MHz reference clock */
|
|
.valid = true,
|
|
.mode_0.s = { .pll_icp = 0x4, .pll_rloop = 0x3, .pll_pcs_div = 0x5 },
|
|
.mode_1.s = { .pll_16p5en = 0x0,
|
|
.pll_cpadj = 0x2,
|
|
.pll_pcie3en = 0x0,
|
|
.pll_opr = 0x0,
|
|
.pll_div = 0x19 },
|
|
.pmode_0.s = { .ctle = 0x0,
|
|
.pcie = 0x1,
|
|
.tx_ldiv = 0x1,
|
|
.rx_ldiv = 0x1,
|
|
.srate = 0x0,
|
|
.tx_mode = 0x3,
|
|
.rx_mode = 0x3 },
|
|
.pmode_1.s = { .vma_fine_cfg_sel = 0x0,
|
|
.vma_mm = 0x1,
|
|
.cdr_fgain = 0xa,
|
|
.ph_acc_adj = 0x14 } },
|
|
{ /* 125MHz reference clock */
|
|
.valid = true,
|
|
.mode_0.s = { .pll_icp = 0x3, .pll_rloop = 0x3, .pll_pcs_div = 0x5 },
|
|
.mode_1.s = { .pll_16p5en = 0x0,
|
|
.pll_cpadj = 0x1,
|
|
.pll_pcie3en = 0x0,
|
|
.pll_opr = 0x0,
|
|
.pll_div = 0x14 },
|
|
.pmode_0.s = { .ctle = 0x0,
|
|
.pcie = 0x1,
|
|
.tx_ldiv = 0x1,
|
|
.rx_ldiv = 0x1,
|
|
.srate = 0x0,
|
|
.tx_mode = 0x3,
|
|
.rx_mode = 0x3 },
|
|
.pmode_1.s = { .vma_fine_cfg_sel = 0x0,
|
|
.vma_mm = 0x1,
|
|
.cdr_fgain = 0xa,
|
|
.ph_acc_adj = 0x14 } },
|
|
{ /* 156.25MHz reference clock */
|
|
.valid = true,
|
|
.mode_0.s = { .pll_icp = 0x3, .pll_rloop = 0x3, .pll_pcs_div = 0x5 },
|
|
.mode_1.s = { .pll_16p5en = 0x0,
|
|
.pll_cpadj = 0x2,
|
|
.pll_pcie3en = 0x0,
|
|
.pll_opr = 0x0,
|
|
.pll_div = 0x10 },
|
|
.pmode_0.s = { .ctle = 0x0,
|
|
.pcie = 0x1,
|
|
.tx_ldiv = 0x1,
|
|
.rx_ldiv = 0x1,
|
|
.srate = 0x0,
|
|
.tx_mode = 0x3,
|
|
.rx_mode = 0x3 },
|
|
.pmode_1.s = { .vma_fine_cfg_sel = 0x0,
|
|
.vma_mm = 0x1,
|
|
.cdr_fgain = 0xa,
|
|
.ph_acc_adj = 0x14 } },
|
|
{
|
|
/* 161.1328125MHz reference clock */
|
|
.valid = false,
|
|
} },
|
|
{
|
|
/* 1 R_5G_REFCLK100 */
|
|
{ /* 100MHz reference clock */
|
|
.valid = true,
|
|
.mode_0.s = { .pll_icp = 0x4, .pll_rloop = 0x3, .pll_pcs_div = 0xa },
|
|
.mode_1.s = { .pll_16p5en = 0x0,
|
|
.pll_cpadj = 0x2,
|
|
.pll_pcie3en = 0x0,
|
|
.pll_opr = 0x0,
|
|
.pll_div = 0x19 },
|
|
.pmode_0.s = { .ctle = 0x0,
|
|
.pcie = 0x1,
|
|
.tx_ldiv = 0x0,
|
|
.rx_ldiv = 0x0,
|
|
.srate = 0x0,
|
|
.tx_mode = 0x3,
|
|
.rx_mode = 0x3 },
|
|
.pmode_1.s = { .vma_fine_cfg_sel = 0x0,
|
|
.vma_mm = 0x0,
|
|
.cdr_fgain = 0xa,
|
|
.ph_acc_adj = 0x14 } },
|
|
{ /* 125MHz reference clock */
|
|
.valid = true,
|
|
.mode_0.s = { .pll_icp = 0x3, .pll_rloop = 0x3, .pll_pcs_div = 0xa },
|
|
.mode_1.s = { .pll_16p5en = 0x0,
|
|
.pll_cpadj = 0x1,
|
|
.pll_pcie3en = 0x0,
|
|
.pll_opr = 0x0,
|
|
.pll_div = 0x14 },
|
|
.pmode_0.s = { .ctle = 0x0,
|
|
.pcie = 0x1,
|
|
.tx_ldiv = 0x0,
|
|
.rx_ldiv = 0x0,
|
|
.srate = 0x0,
|
|
.tx_mode = 0x3,
|
|
.rx_mode = 0x3 },
|
|
.pmode_1.s = { .vma_fine_cfg_sel = 0x0,
|
|
.vma_mm = 0x0,
|
|
.cdr_fgain = 0xa,
|
|
.ph_acc_adj = 0x14 } },
|
|
{ /* 156.25MHz reference clock */
|
|
.valid = true,
|
|
.mode_0.s = { .pll_icp = 0x3, .pll_rloop = 0x3, .pll_pcs_div = 0xa },
|
|
.mode_1.s = { .pll_16p5en = 0x0,
|
|
.pll_cpadj = 0x2,
|
|
.pll_pcie3en = 0x0,
|
|
.pll_opr = 0x0,
|
|
.pll_div = 0x10 },
|
|
.pmode_0.s = { .ctle = 0x0,
|
|
.pcie = 0x1,
|
|
.tx_ldiv = 0x0,
|
|
.rx_ldiv = 0x0,
|
|
.srate = 0x0,
|
|
.tx_mode = 0x3,
|
|
.rx_mode = 0x3 },
|
|
.pmode_1.s = { .vma_fine_cfg_sel = 0x0,
|
|
.vma_mm = 0x0,
|
|
.cdr_fgain = 0xa,
|
|
.ph_acc_adj = 0x14 } },
|
|
{
|
|
/* 161.1328125MHz reference clock */
|
|
.valid = false,
|
|
},
|
|
},
|
|
{ /* 2 R_8G_REFCLK100 */
|
|
{ /* 100MHz reference clock */
|
|
.valid = true,
|
|
.mode_0.s = { .pll_icp = 0x3, .pll_rloop = 0x5, .pll_pcs_div = 0xa },
|
|
.mode_1.s = { .pll_16p5en = 0x0,
|
|
.pll_cpadj = 0x2,
|
|
.pll_pcie3en = 0x1,
|
|
.pll_opr = 0x1,
|
|
.pll_div = 0x28 },
|
|
.pmode_0.s = { .ctle = 0x3,
|
|
.pcie = 0x0,
|
|
.tx_ldiv = 0x0,
|
|
.rx_ldiv = 0x0,
|
|
.srate = 0x0,
|
|
.tx_mode = 0x3,
|
|
.rx_mode = 0x3 },
|
|
.pmode_1.s = { .vma_fine_cfg_sel = 0x0,
|
|
.vma_mm = 0x0,
|
|
.cdr_fgain = 0xb,
|
|
.ph_acc_adj = 0x23 } },
|
|
{ /* 125MHz reference clock */
|
|
.valid = true,
|
|
.mode_0.s = { .pll_icp = 0x2, .pll_rloop = 0x5, .pll_pcs_div = 0xa },
|
|
.mode_1.s = { .pll_16p5en = 0x0,
|
|
.pll_cpadj = 0x1,
|
|
.pll_pcie3en = 0x1,
|
|
.pll_opr = 0x1,
|
|
.pll_div = 0x20 },
|
|
.pmode_0.s = { .ctle = 0x3,
|
|
.pcie = 0x0,
|
|
.tx_ldiv = 0x0,
|
|
.rx_ldiv = 0x0,
|
|
.srate = 0x0,
|
|
.tx_mode = 0x3,
|
|
.rx_mode = 0x3 },
|
|
.pmode_1.s = { .vma_fine_cfg_sel = 0x0,
|
|
.vma_mm = 0x0,
|
|
.cdr_fgain = 0xb,
|
|
.ph_acc_adj = 0x23 } },
|
|
{ /* 156.25MHz reference clock not supported */
|
|
.valid = false } },
|
|
{
|
|
/* 3 R_125G_REFCLK15625_KX */
|
|
{ /* 100MHz reference */
|
|
.valid = true,
|
|
.mode_0.s = { .pll_icp = 0x1, .pll_rloop = 0x3, .pll_pcs_div = 0x28 },
|
|
.mode_1.s = { .pll_16p5en = 0x1,
|
|
.pll_cpadj = 0x2,
|
|
.pll_pcie3en = 0x0,
|
|
.pll_opr = 0x0,
|
|
.pll_div = 0x19 },
|
|
.pmode_0.s = { .ctle = 0x0,
|
|
.pcie = 0x0,
|
|
.tx_ldiv = 0x2,
|
|
.rx_ldiv = 0x2,
|
|
.srate = 0x0,
|
|
.tx_mode = 0x3,
|
|
.rx_mode = 0x3 },
|
|
.pmode_1.s = { .vma_fine_cfg_sel = 0x0,
|
|
.vma_mm = 0x1,
|
|
.cdr_fgain = 0xc,
|
|
.ph_acc_adj = 0x1e } },
|
|
{ /* 125MHz reference */
|
|
.valid = true,
|
|
.mode_0.s = { .pll_icp = 0x1, .pll_rloop = 0x3, .pll_pcs_div = 0x28 },
|
|
.mode_1.s = { .pll_16p5en = 0x1,
|
|
.pll_cpadj = 0x2,
|
|
.pll_pcie3en = 0x0,
|
|
.pll_opr = 0x0,
|
|
.pll_div = 0x14 },
|
|
.pmode_0.s = { .ctle = 0x0,
|
|
.pcie = 0x0,
|
|
.tx_ldiv = 0x2,
|
|
.rx_ldiv = 0x2,
|
|
.srate = 0x0,
|
|
.tx_mode = 0x3,
|
|
.rx_mode = 0x3 },
|
|
.pmode_1.s = { .vma_fine_cfg_sel = 0x0,
|
|
.vma_mm = 0x1,
|
|
.cdr_fgain = 0xc,
|
|
.ph_acc_adj = 0x1e } },
|
|
{ /* 156.25MHz reference */
|
|
.valid = true,
|
|
.mode_0.s = { .pll_icp = 0x1, .pll_rloop = 0x3, .pll_pcs_div = 0x28 },
|
|
.mode_1.s = { .pll_16p5en = 0x1,
|
|
.pll_cpadj = 0x3,
|
|
.pll_pcie3en = 0x0,
|
|
.pll_opr = 0x0,
|
|
.pll_div = 0x10 },
|
|
.pmode_0.s = { .ctle = 0x0,
|
|
.pcie = 0x0,
|
|
.tx_ldiv = 0x2,
|
|
.rx_ldiv = 0x2,
|
|
.srate = 0x0,
|
|
.tx_mode = 0x3,
|
|
.rx_mode = 0x3 },
|
|
.pmode_1.s = { .vma_fine_cfg_sel = 0x0,
|
|
.vma_mm = 0x1,
|
|
.cdr_fgain = 0xc,
|
|
.ph_acc_adj = 0x1e } },
|
|
{
|
|
/* 161.1328125MHz reference clock */
|
|
.valid = false,
|
|
},
|
|
},
|
|
{ /* 4 R_3125G_REFCLK15625_XAUI */
|
|
{ /* 100MHz reference */
|
|
.valid = false },
|
|
{ /* 125MHz reference */
|
|
.valid = true,
|
|
.mode_0.s = { .pll_icp = 0x1, .pll_rloop = 0x3, .pll_pcs_div = 0x14 },
|
|
.mode_1.s = { .pll_16p5en = 0x1,
|
|
.pll_cpadj = 0x2,
|
|
.pll_pcie3en = 0x0,
|
|
.pll_opr = 0x0,
|
|
.pll_div = 0x19 },
|
|
.pmode_0.s = { .ctle = 0x0,
|
|
.pcie = 0x0,
|
|
.tx_ldiv = 0x1,
|
|
.rx_ldiv = 0x1,
|
|
.srate = 0x0,
|
|
.tx_mode = 0x3,
|
|
.rx_mode = 0x3 },
|
|
.pmode_1.s = { .vma_fine_cfg_sel = 0x0,
|
|
.vma_mm = 0x1,
|
|
.cdr_fgain = 0xc,
|
|
.ph_acc_adj = 0x1e } },
|
|
{ /* 156.25MHz reference, default */
|
|
.valid = true,
|
|
.mode_0.s = { .pll_icp = 0x1, .pll_rloop = 0x3, .pll_pcs_div = 0x14 },
|
|
.mode_1.s = { .pll_16p5en = 0x1,
|
|
.pll_cpadj = 0x2,
|
|
.pll_pcie3en = 0x0,
|
|
.pll_opr = 0x0,
|
|
.pll_div = 0x14 },
|
|
.pmode_0.s = { .ctle = 0x0,
|
|
.pcie = 0x0,
|
|
.tx_ldiv = 0x1,
|
|
.rx_ldiv = 0x1,
|
|
.srate = 0x0,
|
|
.tx_mode = 0x3,
|
|
.rx_mode = 0x3 },
|
|
.pmode_1.s = { .vma_fine_cfg_sel = 0x0,
|
|
.vma_mm = 0x1,
|
|
.cdr_fgain = 0xc,
|
|
.ph_acc_adj = 0x1e } },
|
|
{
|
|
/* 161.1328125MHz reference clock */
|
|
.valid = false,
|
|
} },
|
|
{ /* 5 R_103125G_REFCLK15625_KR */
|
|
{ /* 100MHz reference */
|
|
.valid = false },
|
|
{ /* 125MHz reference */
|
|
.valid = false },
|
|
{ /* 156.25MHz reference */
|
|
.valid = true,
|
|
.mode_0.s = { .pll_icp = 0x1, .pll_rloop = 0x5, .pll_pcs_div = 0xa },
|
|
.mode_1.s = { .pll_16p5en = 0x1,
|
|
.pll_cpadj = 0x2,
|
|
.pll_pcie3en = 0x0,
|
|
.pll_opr = 0x1,
|
|
.pll_div = 0x21 },
|
|
.pmode_0.s = { .ctle = 0x3,
|
|
.pcie = 0x0,
|
|
.tx_ldiv = 0x0,
|
|
.rx_ldiv = 0x0,
|
|
.srate = 0x0,
|
|
.tx_mode = 0x3,
|
|
.rx_mode = 0x3 },
|
|
.pmode_1.s = { .vma_fine_cfg_sel = 0x1,
|
|
.vma_mm = 0x0,
|
|
.cdr_fgain = 0xa,
|
|
.ph_acc_adj = 0xf } },
|
|
{ /* 161.1328125 reference */
|
|
.valid = true,
|
|
.mode_0.s = { .pll_icp = 0x1, .pll_rloop = 0x5, .pll_pcs_div = 0xa },
|
|
.mode_1.s = { .pll_16p5en = 0x1,
|
|
.pll_cpadj = 0x2,
|
|
.pll_pcie3en = 0x0,
|
|
.pll_opr = 0x1,
|
|
.pll_div = 0x20 },
|
|
.pmode_0.s = { .ctle = 0x3,
|
|
.pcie = 0x0,
|
|
.tx_ldiv = 0x0,
|
|
.rx_ldiv = 0x0,
|
|
.srate = 0x0,
|
|
.tx_mode = 0x3,
|
|
.rx_mode = 0x3 },
|
|
.pmode_1.s = { .vma_fine_cfg_sel = 0x1,
|
|
.vma_mm = 0x0,
|
|
.cdr_fgain = 0xa,
|
|
.ph_acc_adj = 0xf } } },
|
|
{ /* 6 R_125G_REFCLK15625_SGMII */
|
|
{ /* 100MHz reference clock */
|
|
.valid = 1,
|
|
.mode_0.s = { .pll_icp = 0x1, .pll_rloop = 0x3, .pll_pcs_div = 0x28 },
|
|
.mode_1.s = { .pll_16p5en = 0x1,
|
|
.pll_cpadj = 0x2,
|
|
.pll_pcie3en = 0x0,
|
|
.pll_opr = 0x0,
|
|
.pll_div = 0x19 },
|
|
.pmode_0.s = { .ctle = 0x0,
|
|
.pcie = 0x0,
|
|
.tx_ldiv = 0x2,
|
|
.rx_ldiv = 0x2,
|
|
.srate = 0x0,
|
|
.tx_mode = 0x3,
|
|
.rx_mode = 0x3 },
|
|
.pmode_1.s = { .vma_fine_cfg_sel = 0x0,
|
|
.vma_mm = 0x1,
|
|
.cdr_fgain = 0xc,
|
|
.ph_acc_adj = 0x1e } },
|
|
{ /* 125MHz reference clock */
|
|
.valid = 1,
|
|
.mode_0.s = { .pll_icp = 0x1, .pll_rloop = 0x3, .pll_pcs_div = 0x28 },
|
|
.mode_1.s = { .pll_16p5en = 0x1,
|
|
.pll_cpadj = 0x2,
|
|
.pll_pcie3en = 0x0,
|
|
.pll_opr = 0x0,
|
|
.pll_div = 0x14 },
|
|
.pmode_0.s = { .ctle = 0x0,
|
|
.pcie = 0x0,
|
|
.tx_ldiv = 0x2,
|
|
.rx_ldiv = 0x2,
|
|
.srate = 0x0,
|
|
.tx_mode = 0x3,
|
|
.rx_mode = 0x3 },
|
|
.pmode_1.s = { .vma_fine_cfg_sel = 0x0,
|
|
.vma_mm = 0x0,
|
|
.cdr_fgain = 0xc,
|
|
.ph_acc_adj = 0x1e } },
|
|
{ /* 156.25MHz reference clock */
|
|
.valid = 1,
|
|
.mode_0.s = { .pll_icp = 0x1, .pll_rloop = 0x3, .pll_pcs_div = 0x28 },
|
|
.mode_1.s = { .pll_16p5en = 0x1,
|
|
.pll_cpadj = 0x3,
|
|
.pll_pcie3en = 0x0,
|
|
.pll_opr = 0x0,
|
|
.pll_div = 0x10 },
|
|
.pmode_0.s = { .ctle = 0x0,
|
|
.pcie = 0x0,
|
|
.tx_ldiv = 0x2,
|
|
.rx_ldiv = 0x2,
|
|
.srate = 0x0,
|
|
.tx_mode = 0x3,
|
|
.rx_mode = 0x3 },
|
|
.pmode_1.s = { .vma_fine_cfg_sel = 0x0,
|
|
.vma_mm = 0x1,
|
|
.cdr_fgain = 0xc,
|
|
.ph_acc_adj = 0x1e } } },
|
|
{ /* 7 R_5G_REFCLK15625_QSGMII */
|
|
{ /* 100MHz reference */
|
|
.valid = true,
|
|
.mode_0.s = { .pll_icp = 0x4, .pll_rloop = 0x3, .pll_pcs_div = 0xa },
|
|
.mode_1.s = { .pll_16p5en = 0x0, .pll_cpadj = 0x2, .pll_pcie3en = 0x0,
|
|
.pll_div = 0x19 },
|
|
.pmode_0.s = { .ctle = 0x0,
|
|
.pcie = 0x0,
|
|
.tx_ldiv = 0x0,
|
|
.rx_ldiv = 0x0,
|
|
.srate = 0x0,
|
|
.tx_mode = 0x3,
|
|
.rx_mode = 0x3 },
|
|
.pmode_1.s = { .vma_fine_cfg_sel = 0x0,
|
|
.vma_mm = 0x1,
|
|
.cdr_fgain = 0xc,
|
|
.ph_acc_adj = 0x1e } },
|
|
{ /* 125MHz reference */
|
|
.valid = true,
|
|
.mode_0.s = { .pll_icp = 0x3, .pll_rloop = 0x3, .pll_pcs_div = 0xa },
|
|
.mode_1.s = { .pll_16p5en = 0x0, .pll_cpadj = 0x1, .pll_pcie3en = 0x0,
|
|
.pll_div = 0x14 },
|
|
.pmode_0.s = { .ctle = 0x0,
|
|
.pcie = 0x0,
|
|
.tx_ldiv = 0x0,
|
|
.rx_ldiv = 0x0,
|
|
.srate = 0x0,
|
|
.tx_mode = 0x3,
|
|
.rx_mode = 0x3 },
|
|
.pmode_1.s = { .vma_fine_cfg_sel = 0x0,
|
|
.vma_mm = 0x1,
|
|
.cdr_fgain = 0xc,
|
|
.ph_acc_adj = 0x1e } },
|
|
{ /* 156.25MHz reference */
|
|
.valid = true,
|
|
.mode_0.s = { .pll_icp = 0x3, .pll_rloop = 0x3, .pll_pcs_div = 0xa },
|
|
.mode_1.s = { .pll_16p5en = 0x0, .pll_cpadj = 0x2, .pll_pcie3en = 0x0,
|
|
.pll_div = 0x10 },
|
|
.pmode_0.s = { .ctle = 0x0,
|
|
.pcie = 0x0,
|
|
.tx_ldiv = 0x0,
|
|
.rx_ldiv = 0x0,
|
|
.srate = 0x0,
|
|
.tx_mode = 0x3,
|
|
.rx_mode = 0x3 },
|
|
.pmode_1.s = { .vma_fine_cfg_sel = 0x0,
|
|
.vma_mm = 0x1,
|
|
.cdr_fgain = 0xc,
|
|
.ph_acc_adj = 0x1e } },
|
|
{
|
|
/* 161.1328125MHz reference clock */
|
|
.valid = false,
|
|
} },
|
|
{ /* 8 R_625G_REFCLK15625_RXAUI */
|
|
{ /* 100MHz reference */
|
|
.valid = false },
|
|
{ /* 125MHz reference */
|
|
.valid = true,
|
|
.mode_0.s = { .pll_icp = 0x1, .pll_rloop = 0x3, .pll_pcs_div = 0xa },
|
|
.mode_1.s = { .pll_16p5en = 0x0,
|
|
.pll_cpadj = 0x2,
|
|
.pll_pcie3en = 0x0,
|
|
.pll_opr = 0x0,
|
|
.pll_div = 0x19 },
|
|
.pmode_0.s = { .ctle = 0x0,
|
|
.pcie = 0x0,
|
|
.tx_ldiv = 0x0,
|
|
.rx_ldiv = 0x0,
|
|
.srate = 0x0,
|
|
.tx_mode = 0x3,
|
|
.rx_mode = 0x3 },
|
|
.pmode_1.s = { .vma_fine_cfg_sel = 0x0,
|
|
.vma_mm = 0x0,
|
|
.cdr_fgain = 0xa,
|
|
.ph_acc_adj = 0x14 } },
|
|
{ /* 156.25MHz reference */
|
|
.valid = true,
|
|
.mode_0.s = { .pll_icp = 0x1, .pll_rloop = 0x3, .pll_pcs_div = 0xa },
|
|
.mode_1.s = { .pll_16p5en = 0x0,
|
|
.pll_cpadj = 0x2,
|
|
.pll_pcie3en = 0x0,
|
|
.pll_opr = 0x0,
|
|
.pll_div = 0x14 },
|
|
.pmode_0.s = { .ctle = 0x0,
|
|
.pcie = 0x0,
|
|
.tx_ldiv = 0x0,
|
|
.rx_ldiv = 0x0,
|
|
.srate = 0x0,
|
|
.tx_mode = 0x3,
|
|
.rx_mode = 0x3 },
|
|
.pmode_1.s = { .vma_fine_cfg_sel = 0x0,
|
|
.vma_mm = 0x0,
|
|
.cdr_fgain = 0xa,
|
|
.ph_acc_adj = 0x14 } },
|
|
{ /* 161.1328125 reference */
|
|
.valid = true,
|
|
.mode_0.s = { .pll_icp = 0x1, .pll_rloop = 0x3, .pll_pcs_div = 0xa },
|
|
.mode_1.s = { .pll_16p5en = 0x0,
|
|
.pll_cpadj = 0x2,
|
|
.pll_pcie3en = 0x0,
|
|
.pll_opr = 0x0,
|
|
.pll_div = 0x14 },
|
|
.pmode_0.s = { .ctle = 0x0,
|
|
.pcie = 0x0,
|
|
.tx_ldiv = 0x0,
|
|
.rx_ldiv = 0x0,
|
|
.srate = 0x0,
|
|
.tx_mode = 0x3,
|
|
.rx_mode = 0x3 },
|
|
.pmode_1.s = { .vma_fine_cfg_sel = 0x0,
|
|
.vma_mm = 0x0,
|
|
.cdr_fgain = 0xa,
|
|
.ph_acc_adj = 0x14 } } },
|
|
{ /* 9 R_2_5G_REFCLK125 */
|
|
{ /* 100MHz reference */
|
|
.valid = true,
|
|
.mode_0.s = { .pll_icp = 0x4, .pll_rloop = 0x3, .pll_pcs_div = 0x5 },
|
|
.mode_1.s = { .pll_16p5en = 0x0,
|
|
.pll_cpadj = 0x2,
|
|
.pll_pcie3en = 0x0,
|
|
.pll_opr = 0x0,
|
|
.pll_div = 0x19 },
|
|
.pmode_0.s = { .ctle = 0x0,
|
|
.pcie = 0x1,
|
|
.tx_ldiv = 0x1,
|
|
.rx_ldiv = 0x1,
|
|
.srate = 0x0,
|
|
.tx_mode = 0x3,
|
|
.rx_mode = 0x3 },
|
|
.pmode_1.s = { .vma_fine_cfg_sel = 0x0,
|
|
.vma_mm = 0x1,
|
|
.cdr_fgain = 0xa,
|
|
.ph_acc_adj = 0x14 } },
|
|
{ /* 125MHz reference */
|
|
.valid = true,
|
|
.mode_0.s = { .pll_icp = 0x3, .pll_rloop = 0x3, .pll_pcs_div = 0x5 },
|
|
.mode_1.s = { .pll_16p5en = 0x0,
|
|
.pll_cpadj = 0x1,
|
|
.pll_pcie3en = 0x0,
|
|
.pll_opr = 0x0,
|
|
.pll_div = 0x14 },
|
|
.pmode_0.s = { .ctle = 0x0,
|
|
.pcie = 0x1,
|
|
.tx_ldiv = 0x1,
|
|
.rx_ldiv = 0x1,
|
|
.srate = 0x0,
|
|
.tx_mode = 0x3,
|
|
.rx_mode = 0x3 },
|
|
.pmode_1.s = { .vma_fine_cfg_sel = 0x0,
|
|
.vma_mm = 0x1,
|
|
.cdr_fgain = 0xa,
|
|
.ph_acc_adj = 0x14 } },
|
|
{ /* 156,25MHz reference */
|
|
.valid = true,
|
|
.mode_0.s = { .pll_icp = 0x3, .pll_rloop = 0x3, .pll_pcs_div = 0x5 },
|
|
.mode_1.s = { .pll_16p5en = 0x0,
|
|
.pll_cpadj = 0x2,
|
|
.pll_pcie3en = 0x0,
|
|
.pll_opr = 0x0,
|
|
.pll_div = 0x10 },
|
|
.pmode_0.s = { .ctle = 0x0,
|
|
.pcie = 0x1,
|
|
.tx_ldiv = 0x1,
|
|
.rx_ldiv = 0x1,
|
|
.srate = 0x0,
|
|
.tx_mode = 0x3,
|
|
.rx_mode = 0x3 },
|
|
.pmode_1.s = { .vma_fine_cfg_sel = 0x0,
|
|
.vma_mm = 0x1,
|
|
.cdr_fgain = 0xa,
|
|
.ph_acc_adj = 0x14 } },
|
|
{
|
|
/* 161.1328125MHz reference clock */
|
|
.valid = false,
|
|
} },
|
|
{ /* 0xa R_5G_REFCLK125 */
|
|
{ /* 100MHz reference */
|
|
.valid = true,
|
|
.mode_0.s = { .pll_icp = 0x4, .pll_rloop = 0x3, .pll_pcs_div = 0xa },
|
|
.mode_1.s = { .pll_16p5en = 0x0,
|
|
.pll_cpadj = 0x2,
|
|
.pll_pcie3en = 0x0,
|
|
.pll_opr = 0x0,
|
|
.pll_div = 0x19 },
|
|
.pmode_0.s = { .ctle = 0x0,
|
|
.pcie = 0x1,
|
|
.tx_ldiv = 0x0,
|
|
.rx_ldiv = 0x0,
|
|
.srate = 0x0,
|
|
.tx_mode = 0x3,
|
|
.rx_mode = 0x3 },
|
|
.pmode_1.s = { .vma_fine_cfg_sel = 0x0,
|
|
.vma_mm = 0x0,
|
|
.cdr_fgain = 0xa,
|
|
.ph_acc_adj = 0x14 } },
|
|
{ /* 125MHz reference */
|
|
.valid = true,
|
|
.mode_0.s = { .pll_icp = 0x3, .pll_rloop = 0x3, .pll_pcs_div = 0xa },
|
|
.mode_1.s = { .pll_16p5en = 0x0,
|
|
.pll_cpadj = 0x1,
|
|
.pll_pcie3en = 0x0,
|
|
.pll_opr = 0x0,
|
|
.pll_div = 0x14 },
|
|
.pmode_0.s = { .ctle = 0x0,
|
|
.pcie = 0x1,
|
|
.tx_ldiv = 0x0,
|
|
.rx_ldiv = 0x0,
|
|
.srate = 0x0,
|
|
.tx_mode = 0x3,
|
|
.rx_mode = 0x3 },
|
|
.pmode_1.s = { .vma_fine_cfg_sel = 0x0,
|
|
.vma_mm = 0x0,
|
|
.cdr_fgain = 0xa,
|
|
.ph_acc_adj = 0x14 } },
|
|
{ /* 156.25MHz reference */
|
|
.valid = true,
|
|
.mode_0.s = { .pll_icp = 0x3, .pll_rloop = 0x3, .pll_pcs_div = 0xa },
|
|
.mode_1.s = { .pll_16p5en = 0x0,
|
|
.pll_cpadj = 0x2,
|
|
.pll_pcie3en = 0x0,
|
|
.pll_opr = 0x0,
|
|
.pll_div = 0x10 },
|
|
.pmode_0.s = { .ctle = 0x0,
|
|
.pcie = 0x1,
|
|
.tx_ldiv = 0x0,
|
|
.rx_ldiv = 0x0,
|
|
.srate = 0x0,
|
|
.tx_mode = 0x3,
|
|
.rx_mode = 0x3 },
|
|
.pmode_1.s = { .vma_fine_cfg_sel = 0x0,
|
|
.vma_mm = 0x0,
|
|
.cdr_fgain = 0xa,
|
|
.ph_acc_adj = 0x14 } },
|
|
{
|
|
/* 161.1328125MHz reference clock */
|
|
.valid = false,
|
|
} },
|
|
{ /* 0xb R_8G_REFCLK125 */
|
|
{ /* 100MHz reference */
|
|
.valid = true,
|
|
.mode_0.s = { .pll_icp = 0x3, .pll_rloop = 0x5, .pll_pcs_div = 0xa },
|
|
.mode_1.s = { .pll_16p5en = 0x0,
|
|
.pll_cpadj = 0x2,
|
|
.pll_pcie3en = 0x1,
|
|
.pll_opr = 0x1,
|
|
.pll_div = 0x28 },
|
|
.pmode_0.s = { .ctle = 0x3,
|
|
.pcie = 0x0,
|
|
.tx_ldiv = 0x0,
|
|
.rx_ldiv = 0x0,
|
|
.srate = 0x0,
|
|
.tx_mode = 0x3,
|
|
.rx_mode = 0x3 },
|
|
.pmode_1.s = { .vma_fine_cfg_sel = 0x0,
|
|
.vma_mm = 0x0,
|
|
.cdr_fgain = 0xb,
|
|
.ph_acc_adj = 0x23 } },
|
|
{ /* 125MHz reference */
|
|
.valid = true,
|
|
.mode_0.s = { .pll_icp = 0x2, .pll_rloop = 0x5, .pll_pcs_div = 0xa },
|
|
.mode_1.s = { .pll_16p5en = 0x0,
|
|
.pll_cpadj = 0x1,
|
|
.pll_pcie3en = 0x1,
|
|
.pll_opr = 0x1,
|
|
.pll_div = 0x20 },
|
|
.pmode_0.s = { .ctle = 0x3,
|
|
.pcie = 0x0,
|
|
.tx_ldiv = 0x0,
|
|
.rx_ldiv = 0x0,
|
|
.srate = 0x0,
|
|
.tx_mode = 0x3,
|
|
.rx_mode = 0x3 },
|
|
.pmode_1.s = { .vma_fine_cfg_sel = 0x0,
|
|
.vma_mm = 0x0,
|
|
.cdr_fgain = 0xb,
|
|
.ph_acc_adj = 0x23 } },
|
|
{ /* 156.25MHz reference */
|
|
.valid = false },
|
|
{
|
|
/* 161.1328125MHz reference clock */
|
|
.valid = false,
|
|
} }
|
|
};
|
|
|
|
/**
|
|
* Set a non-standard reference clock for a node, qlm and lane mode.
|
|
*
|
|
* @INTERNAL
|
|
*
|
|
* @param node node number the reference clock is used with
|
|
* @param qlm qlm number the reference clock is hooked up to
|
|
* @param lane_mode current lane mode selected for the QLM
|
|
* @param ref_clk_sel 0 = 100MHz, 1 = 125MHz, 2 = 156.25MHz,
|
|
* 3 = 161.1328125MHz
|
|
*
|
|
* @return 0 for success or -1 if the reference clock selector is not supported
|
|
*
|
|
* NOTE: This must be called before __qlm_setup_pll_cn78xx.
|
|
*/
|
|
static int __set_qlm_ref_clk_cn78xx(int node, int qlm, int lane_mode, int ref_clk_sel)
|
|
{
|
|
if (ref_clk_sel > 3 || ref_clk_sel < 0 ||
|
|
!refclk_settings_cn78xx[lane_mode][ref_clk_sel].valid) {
|
|
debug("%s: Invalid reference clock %d for lane mode %d for node %d, QLM %d\n",
|
|
__func__, ref_clk_sel, lane_mode, node, qlm);
|
|
return -1;
|
|
}
|
|
debug("%s(%d, %d, 0x%x, %d)\n", __func__, node, qlm, lane_mode, ref_clk_sel);
|
|
ref_clk_cn78xx[node][qlm][lane_mode] = ref_clk_sel;
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* KR - Inverted Tx Coefficient Direction Change. Changing Pre & Post Tap inc/dec direction
|
|
*
|
|
*
|
|
* @INTERNAL
|
|
*
|
|
* @param node Node number to configure
|
|
* @param qlm QLM number to configure
|
|
*/
|
|
static void __qlm_kr_inc_dec_gser26636(int node, int qlm)
|
|
{
|
|
cvmx_gserx_rx_txdir_ctrl_1_t rx_txdir_ctrl;
|
|
|
|
/* Apply workaround for Errata GSER-26636,
|
|
* KR training coefficient update inverted
|
|
*/
|
|
rx_txdir_ctrl.u64 = csr_rd_node(node, CVMX_GSERX_RX_TXDIR_CTRL_1(qlm));
|
|
rx_txdir_ctrl.s.rx_precorr_chg_dir = 1;
|
|
rx_txdir_ctrl.s.rx_tap1_chg_dir = 1;
|
|
csr_wr_node(node, CVMX_GSERX_RX_TXDIR_CTRL_1(qlm), rx_txdir_ctrl.u64);
|
|
}
|
|
|
|
/**
|
|
* Updating the RX EQ settings to support wider temperature range
|
|
* @INTERNAL
|
|
*
|
|
* @param node Node number to configure
|
|
* @param qlm QLM number to configure
|
|
*/
|
|
static void __qlm_rx_eq_temp_gser27140(int node, int qlm)
|
|
{
|
|
int lane;
|
|
int num_lanes = cvmx_qlm_get_lanes(qlm);
|
|
cvmx_gserx_lanex_rx_valbbd_ctrl_0_t rx_valbbd_ctrl_0;
|
|
cvmx_gserx_lane_vma_fine_ctrl_2_t lane_vma_fine_ctrl_2;
|
|
cvmx_gserx_lane_vma_fine_ctrl_0_t lane_vma_fine_ctrl_0;
|
|
cvmx_gserx_rx_txdir_ctrl_1_t rx_txdir_ctrl_1;
|
|
cvmx_gserx_eq_wait_time_t eq_wait_time;
|
|
cvmx_gserx_rx_txdir_ctrl_2_t rx_txdir_ctrl_2;
|
|
cvmx_gserx_rx_txdir_ctrl_0_t rx_txdir_ctrl_0;
|
|
|
|
for (lane = 0; lane < num_lanes; lane++) {
|
|
rx_valbbd_ctrl_0.u64 =
|
|
csr_rd_node(node, CVMX_GSERX_LANEX_RX_VALBBD_CTRL_0(lane, qlm));
|
|
rx_valbbd_ctrl_0.s.agc_gain = 3;
|
|
rx_valbbd_ctrl_0.s.dfe_gain = 2;
|
|
csr_wr_node(node, CVMX_GSERX_LANEX_RX_VALBBD_CTRL_0(lane, qlm),
|
|
rx_valbbd_ctrl_0.u64);
|
|
}
|
|
|
|
/* do_pre_ctle_limits_work_around: */
|
|
lane_vma_fine_ctrl_2.u64 = csr_rd_node(node, CVMX_GSERX_LANE_VMA_FINE_CTRL_2(qlm));
|
|
//lane_vma_fine_ctrl_2.s.rx_prectle_peak_max_fine = 11;
|
|
lane_vma_fine_ctrl_2.s.rx_prectle_gain_max_fine = 11;
|
|
//lane_vma_fine_ctrl_2.s.rx_prectle_peak_min_fine = 6;
|
|
lane_vma_fine_ctrl_2.s.rx_prectle_gain_min_fine = 6;
|
|
csr_wr_node(node, CVMX_GSERX_LANE_VMA_FINE_CTRL_2(qlm), lane_vma_fine_ctrl_2.u64);
|
|
|
|
/* do_inc_dec_thres_work_around: */
|
|
rx_txdir_ctrl_0.u64 = csr_rd_node(node, CVMX_GSERX_RX_TXDIR_CTRL_0(qlm));
|
|
rx_txdir_ctrl_0.s.rx_boost_hi_thrs = 11;
|
|
rx_txdir_ctrl_0.s.rx_boost_lo_thrs = 4;
|
|
rx_txdir_ctrl_0.s.rx_boost_hi_val = 15;
|
|
csr_wr_node(node, CVMX_GSERX_RX_TXDIR_CTRL_0(qlm), rx_txdir_ctrl_0.u64);
|
|
|
|
/* do_sdll_iq_work_around: */
|
|
lane_vma_fine_ctrl_0.u64 = csr_rd_node(node, CVMX_GSERX_LANE_VMA_FINE_CTRL_0(qlm));
|
|
lane_vma_fine_ctrl_0.s.rx_sdll_iq_max_fine = 14;
|
|
lane_vma_fine_ctrl_0.s.rx_sdll_iq_min_fine = 8;
|
|
lane_vma_fine_ctrl_0.s.rx_sdll_iq_step_fine = 2;
|
|
|
|
/* do_vma_window_work_around_2: */
|
|
lane_vma_fine_ctrl_0.s.vma_window_wait_fine = 5;
|
|
lane_vma_fine_ctrl_0.s.lms_wait_time_fine = 5;
|
|
|
|
csr_wr_node(node, CVMX_GSERX_LANE_VMA_FINE_CTRL_0(qlm), lane_vma_fine_ctrl_0.u64);
|
|
|
|
/* Set dfe_tap_1_lo_thres_val: */
|
|
rx_txdir_ctrl_1.u64 = csr_rd_node(node, CVMX_GSERX_RX_TXDIR_CTRL_1(qlm));
|
|
rx_txdir_ctrl_1.s.rx_tap1_lo_thrs = 8;
|
|
rx_txdir_ctrl_1.s.rx_tap1_hi_thrs = 0x17;
|
|
csr_wr_node(node, CVMX_GSERX_RX_TXDIR_CTRL_1(qlm), rx_txdir_ctrl_1.u64);
|
|
|
|
/* do_rxeq_wait_cnt_work_around: */
|
|
eq_wait_time.u64 = csr_rd_node(node, CVMX_GSERX_EQ_WAIT_TIME(qlm));
|
|
eq_wait_time.s.rxeq_wait_cnt = 6;
|
|
csr_wr_node(node, CVMX_GSERX_EQ_WAIT_TIME(qlm), eq_wait_time.u64);
|
|
|
|
/* do_write_rx_txdir_precorr_thresholds: */
|
|
rx_txdir_ctrl_2.u64 = csr_rd_node(node, CVMX_GSERX_RX_TXDIR_CTRL_2(qlm));
|
|
rx_txdir_ctrl_2.s.rx_precorr_hi_thrs = 0xc0;
|
|
rx_txdir_ctrl_2.s.rx_precorr_lo_thrs = 0x40;
|
|
csr_wr_node(node, CVMX_GSERX_RX_TXDIR_CTRL_2(qlm), rx_txdir_ctrl_2.u64);
|
|
}
|
|
|
|
/* Errata GSER-26150: 10G PHY PLL Temperature Failure
|
|
* This workaround must be completed after the final deassertion of
|
|
* GSERx_PHY_CTL[PHY_RESET]
|
|
*/
|
|
static int __qlm_errata_gser_26150(int node, int qlm, int is_pcie)
|
|
{
|
|
int num_lanes = 4;
|
|
int i;
|
|
cvmx_gserx_glbl_pll_cfg_3_t pll_cfg_3;
|
|
cvmx_gserx_glbl_misc_config_1_t misc_config_1;
|
|
|
|
/* PCIe only requires the LC-VCO parameters to be updated */
|
|
if (is_pcie) {
|
|
/* Update PLL parameters */
|
|
/* Step 1: Set GSER()_GLBL_PLL_CFG_3[PLL_VCTRL_SEL_LCVCO_VAL] = 0x2, and
|
|
* GSER()_GLBL_PLL_CFG_3[PCS_SDS_PLL_VCO_AMP] = 0
|
|
*/
|
|
pll_cfg_3.u64 = csr_rd_node(node, CVMX_GSERX_GLBL_PLL_CFG_3(qlm));
|
|
pll_cfg_3.s.pcs_sds_pll_vco_amp = 0;
|
|
pll_cfg_3.s.pll_vctrl_sel_lcvco_val = 2;
|
|
csr_wr_node(node, CVMX_GSERX_GLBL_PLL_CFG_3(qlm), pll_cfg_3.u64);
|
|
|
|
/* Step 2: Set GSER()_GLBL_MISC_CONFIG_1[PCS_SDS_TRIM_CHP_REG] = 0x2. */
|
|
misc_config_1.u64 = csr_rd_node(node, CVMX_GSERX_GLBL_MISC_CONFIG_1(qlm));
|
|
misc_config_1.s.pcs_sds_trim_chp_reg = 2;
|
|
csr_wr_node(node, CVMX_GSERX_GLBL_MISC_CONFIG_1(qlm), misc_config_1.u64);
|
|
return 0;
|
|
}
|
|
|
|
/* Applying this errata twice causes problems */
|
|
pll_cfg_3.u64 = csr_rd_node(node, CVMX_GSERX_GLBL_PLL_CFG_3(qlm));
|
|
if (pll_cfg_3.s.pll_vctrl_sel_lcvco_val == 0x2)
|
|
return 0;
|
|
|
|
/* (GSER-26150) 10 Gb temperature excursions can cause lock failure */
|
|
/* Change the calibration point of the VCO at start up to shift some
|
|
* available range of the VCO from -deltaT direction to the +deltaT
|
|
* ramp direction allowing a greater range of VCO temperatures before
|
|
* experiencing the failure.
|
|
*/
|
|
|
|
/* Check for DLMs on CN73XX and CNF75XX */
|
|
if (OCTEON_IS_MODEL(OCTEON_CN73XX) && (qlm == 5 || qlm == 6))
|
|
num_lanes = 2;
|
|
|
|
/* Put PHY in P2 Power-down state Need to Power down all lanes in a
|
|
* QLM/DLM to force PHY to P2 state
|
|
*/
|
|
for (i = 0; i < num_lanes; i++) {
|
|
cvmx_gserx_lanex_pcs_ctlifc_0_t ctlifc0;
|
|
cvmx_gserx_lanex_pcs_ctlifc_1_t ctlifc1;
|
|
cvmx_gserx_lanex_pcs_ctlifc_2_t ctlifc2;
|
|
|
|
/* Step 1: Set Set GSER()_LANE(lane_n)_PCS_CTLIFC_0[CFG_TX_PSTATE_REQ_OVERRD_VAL]
|
|
* = 0x3
|
|
* Select P2 power state for Tx lane
|
|
*/
|
|
ctlifc0.u64 = csr_rd_node(node, CVMX_GSERX_LANEX_PCS_CTLIFC_0(i, qlm));
|
|
ctlifc0.s.cfg_tx_pstate_req_ovrrd_val = 0x3;
|
|
csr_wr_node(node, CVMX_GSERX_LANEX_PCS_CTLIFC_0(i, qlm), ctlifc0.u64);
|
|
/* Step 2: Set GSER()_LANE(lane_n)_PCS_CTLIFC_1[CFG_RX_PSTATE_REQ_OVERRD_VAL]
|
|
* = 0x3
|
|
* Select P2 power state for Rx lane
|
|
*/
|
|
ctlifc1.u64 = csr_rd_node(node, CVMX_GSERX_LANEX_PCS_CTLIFC_1(i, qlm));
|
|
ctlifc1.s.cfg_rx_pstate_req_ovrrd_val = 0x3;
|
|
csr_wr_node(node, CVMX_GSERX_LANEX_PCS_CTLIFC_1(i, qlm), ctlifc1.u64);
|
|
/* Step 3: Set GSER()_LANE(lane_n)_PCS_CTLIFC_2[CFG_TX_PSTATE_REQ_OVRRD_EN] = 1
|
|
* Enable Tx power state override and Set
|
|
* GSER()_LANE(lane_n)_PCS_CTLIFC_2[CFG_RX_PSTATE_REQ_OVRRD_EN] = 1
|
|
* Enable Rx power state override
|
|
*/
|
|
ctlifc2.u64 = csr_rd_node(node, CVMX_GSERX_LANEX_PCS_CTLIFC_2(i, qlm));
|
|
ctlifc2.s.cfg_tx_pstate_req_ovrrd_en = 0x1;
|
|
ctlifc2.s.cfg_rx_pstate_req_ovrrd_en = 0x1;
|
|
csr_wr_node(node, CVMX_GSERX_LANEX_PCS_CTLIFC_2(i, qlm), ctlifc2.u64);
|
|
/* Step 4: Set GSER()_LANE(lane_n)_PCS_CTLIFC_2[CTLIFC_OVRRD_REQ] = 1
|
|
* Start the CTLIFC override state machine
|
|
*/
|
|
ctlifc2.u64 = csr_rd_node(node, CVMX_GSERX_LANEX_PCS_CTLIFC_2(i, qlm));
|
|
ctlifc2.s.ctlifc_ovrrd_req = 0x1;
|
|
csr_wr_node(node, CVMX_GSERX_LANEX_PCS_CTLIFC_2(i, qlm), ctlifc2.u64);
|
|
}
|
|
|
|
/* Update PLL parameters */
|
|
/* Step 5: Set GSER()_GLBL_PLL_CFG_3[PLL_VCTRL_SEL_LCVCO_VAL] = 0x2, and
|
|
* GSER()_GLBL_PLL_CFG_3[PCS_SDS_PLL_VCO_AMP] = 0
|
|
*/
|
|
pll_cfg_3.u64 = csr_rd_node(node, CVMX_GSERX_GLBL_PLL_CFG_3(qlm));
|
|
pll_cfg_3.s.pcs_sds_pll_vco_amp = 0;
|
|
pll_cfg_3.s.pll_vctrl_sel_lcvco_val = 2;
|
|
csr_wr_node(node, CVMX_GSERX_GLBL_PLL_CFG_3(qlm), pll_cfg_3.u64);
|
|
|
|
/* Step 6: Set GSER()_GLBL_MISC_CONFIG_1[PCS_SDS_TRIM_CHP_REG] = 0x2. */
|
|
misc_config_1.u64 = csr_rd_node(node, CVMX_GSERX_GLBL_MISC_CONFIG_1(qlm));
|
|
misc_config_1.s.pcs_sds_trim_chp_reg = 2;
|
|
csr_wr_node(node, CVMX_GSERX_GLBL_MISC_CONFIG_1(qlm), misc_config_1.u64);
|
|
|
|
/* Wake up PHY and transition to P0 Power-up state to bring-up the lanes,
|
|
* need to wake up all PHY lanes
|
|
*/
|
|
for (i = 0; i < num_lanes; i++) {
|
|
cvmx_gserx_lanex_pcs_ctlifc_0_t ctlifc0;
|
|
cvmx_gserx_lanex_pcs_ctlifc_1_t ctlifc1;
|
|
cvmx_gserx_lanex_pcs_ctlifc_2_t ctlifc2;
|
|
/* Step 7: Set GSER()_LANE(lane_n)_PCS_CTLIFC_0[CFG_TX_PSTATE_REQ_OVERRD_VAL] = 0x0
|
|
* Select P0 power state for Tx lane
|
|
*/
|
|
ctlifc0.u64 = csr_rd_node(node, CVMX_GSERX_LANEX_PCS_CTLIFC_0(i, qlm));
|
|
ctlifc0.s.cfg_tx_pstate_req_ovrrd_val = 0x0;
|
|
csr_wr_node(node, CVMX_GSERX_LANEX_PCS_CTLIFC_0(i, qlm), ctlifc0.u64);
|
|
/* Step 8: Set GSER()_LANE(lane_n)_PCS_CTLIFC_1[CFG_RX_PSTATE_REQ_OVERRD_VAL] = 0x0
|
|
* Select P0 power state for Rx lane
|
|
*/
|
|
ctlifc1.u64 = csr_rd_node(node, CVMX_GSERX_LANEX_PCS_CTLIFC_1(i, qlm));
|
|
ctlifc1.s.cfg_rx_pstate_req_ovrrd_val = 0x0;
|
|
csr_wr_node(node, CVMX_GSERX_LANEX_PCS_CTLIFC_1(i, qlm), ctlifc1.u64);
|
|
/* Step 9: Set GSER()_LANE(lane_n)_PCS_CTLIFC_2[CFG_TX_PSTATE_REQ_OVRRD_EN] = 1
|
|
* Enable Tx power state override and Set
|
|
* GSER()_LANE(lane_n)_PCS_CTLIFC_2[CFG_RX_PSTATE_REQ_OVRRD_EN] = 1
|
|
* Enable Rx power state override
|
|
*/
|
|
ctlifc2.u64 = csr_rd_node(node, CVMX_GSERX_LANEX_PCS_CTLIFC_2(i, qlm));
|
|
ctlifc2.s.cfg_tx_pstate_req_ovrrd_en = 0x1;
|
|
ctlifc2.s.cfg_rx_pstate_req_ovrrd_en = 0x1;
|
|
csr_wr_node(node, CVMX_GSERX_LANEX_PCS_CTLIFC_2(i, qlm), ctlifc2.u64);
|
|
/* Step 10: Set GSER()_LANE(lane_n)_PCS_CTLIFC_2[CTLIFC_OVRRD_REQ] = 1
|
|
* Start the CTLIFC override state machine
|
|
*/
|
|
ctlifc2.u64 = csr_rd_node(node, CVMX_GSERX_LANEX_PCS_CTLIFC_2(i, qlm));
|
|
ctlifc2.s.ctlifc_ovrrd_req = 0x1;
|
|
csr_wr_node(node, CVMX_GSERX_LANEX_PCS_CTLIFC_2(i, qlm), ctlifc2.u64);
|
|
}
|
|
|
|
/* Step 11: Wait 10 msec */
|
|
mdelay(10);
|
|
|
|
/* Release Lane Tx/Rx Power state override enables. */
|
|
for (i = 0; i < num_lanes; i++) {
|
|
cvmx_gserx_lanex_pcs_ctlifc_2_t ctlifc2;
|
|
|
|
ctlifc2.u64 = csr_rd_node(node, CVMX_GSERX_LANEX_PCS_CTLIFC_2(i, qlm));
|
|
ctlifc2.s.cfg_tx_pstate_req_ovrrd_en = 0x0;
|
|
ctlifc2.s.cfg_rx_pstate_req_ovrrd_en = 0x0;
|
|
csr_wr_node(node, CVMX_GSERX_LANEX_PCS_CTLIFC_2(i, qlm), ctlifc2.u64);
|
|
}
|
|
|
|
/* Step 12: Poll GSER()_PLL_STAT.[PLL_LOCK] = 1
|
|
* Poll and check that PLL is locked
|
|
*/
|
|
if (CVMX_WAIT_FOR_FIELD64_NODE(node, CVMX_GSERX_PLL_STAT(qlm), cvmx_gserx_pll_stat_t,
|
|
pll_lock, ==, 1, 10000)) {
|
|
printf("%d:QLM%d: Timeout waiting for GSERX_PLL_STAT[pll_lock]\n", node, qlm);
|
|
return -1;
|
|
}
|
|
|
|
/* Step 13: Poll GSER()_QLM_STAT.[RST_RDY] = 1
|
|
* Poll and check that QLM/DLM is Ready
|
|
*/
|
|
if (is_pcie == 0 &&
|
|
CVMX_WAIT_FOR_FIELD64_NODE(node, CVMX_GSERX_QLM_STAT(qlm), cvmx_gserx_qlm_stat_t,
|
|
rst_rdy, ==, 1, 10000)) {
|
|
printf("%d:QLM%d: Timeout waiting for GSERX_QLM_STAT[rst_rdy]\n", node, qlm);
|
|
return -1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* Configure all of the PLLs for a particular node and qlm
|
|
* @INTERNAL
|
|
*
|
|
* @param node Node number to configure
|
|
* @param qlm QLM number to configure
|
|
*/
|
|
static void __qlm_setup_pll_cn78xx(int node, int qlm)
|
|
{
|
|
cvmx_gserx_pll_px_mode_0_t mode_0;
|
|
cvmx_gserx_pll_px_mode_1_t mode_1;
|
|
cvmx_gserx_lane_px_mode_0_t pmode_0;
|
|
cvmx_gserx_lane_px_mode_1_t pmode_1;
|
|
int lane_mode;
|
|
int ref_clk;
|
|
const struct refclk_settings_cn78xx *clk_settings;
|
|
|
|
for (lane_mode = 0; lane_mode < R_NUM_LANE_MODES; lane_mode++) {
|
|
mode_0.u64 = csr_rd_node(node, CVMX_GSERX_PLL_PX_MODE_0(lane_mode, qlm));
|
|
mode_1.u64 = csr_rd_node(node, CVMX_GSERX_PLL_PX_MODE_1(lane_mode, qlm));
|
|
pmode_0.u64 = 0;
|
|
pmode_1.u64 = 0;
|
|
ref_clk = ref_clk_cn78xx[node][qlm][lane_mode];
|
|
clk_settings = &refclk_settings_cn78xx[lane_mode][ref_clk];
|
|
debug("%s(%d, %d): lane_mode: 0x%x, ref_clk: %d\n", __func__, node, qlm, lane_mode,
|
|
ref_clk);
|
|
|
|
if (!clk_settings->valid) {
|
|
printf("%s: Error: reference clock %d is not supported for lane mode %d on qlm %d\n",
|
|
__func__, ref_clk, lane_mode, qlm);
|
|
continue;
|
|
}
|
|
|
|
mode_0.s.pll_icp = clk_settings->mode_0.s.pll_icp;
|
|
mode_0.s.pll_rloop = clk_settings->mode_0.s.pll_rloop;
|
|
mode_0.s.pll_pcs_div = clk_settings->mode_0.s.pll_pcs_div;
|
|
|
|
mode_1.s.pll_16p5en = clk_settings->mode_1.s.pll_16p5en;
|
|
mode_1.s.pll_cpadj = clk_settings->mode_1.s.pll_cpadj;
|
|
mode_1.s.pll_pcie3en = clk_settings->mode_1.s.pll_pcie3en;
|
|
mode_1.s.pll_opr = clk_settings->mode_1.s.pll_opr;
|
|
mode_1.s.pll_div = clk_settings->mode_1.s.pll_div;
|
|
|
|
pmode_0.u64 = clk_settings->pmode_0.u64;
|
|
|
|
pmode_1.u64 = clk_settings->pmode_1.u64;
|
|
|
|
csr_wr_node(node, CVMX_GSERX_PLL_PX_MODE_1(lane_mode, qlm), mode_1.u64);
|
|
csr_wr_node(node, CVMX_GSERX_LANE_PX_MODE_0(lane_mode, qlm), pmode_0.u64);
|
|
csr_wr_node(node, CVMX_GSERX_LANE_PX_MODE_1(lane_mode, qlm), pmode_1.u64);
|
|
csr_wr_node(node, CVMX_GSERX_PLL_PX_MODE_0(lane_mode, qlm), mode_0.u64);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Get the lane mode for the specified node and QLM.
|
|
*
|
|
* @param ref_clk_sel The reference-clock selection to use to configure QLM
|
|
* 0 = REF_100MHZ
|
|
* 1 = REF_125MHZ
|
|
* 2 = REF_156MHZ
|
|
* @param baud_mhz The speed the QLM needs to be configured in Mhz.
|
|
* @param[out] alt_pll_settings If non-NULL this will be set if non-default PLL
|
|
* settings are required for the mode.
|
|
*
|
|
* @return lane mode to use or -1 on error
|
|
*
|
|
* NOTE: In some modes
|
|
*/
|
|
static int __get_lane_mode_for_speed_and_ref_clk(int ref_clk_sel, int baud_mhz,
|
|
bool *alt_pll_settings)
|
|
{
|
|
if (alt_pll_settings)
|
|
*alt_pll_settings = false;
|
|
switch (baud_mhz) {
|
|
case 98304:
|
|
case 49152:
|
|
case 24576:
|
|
case 12288:
|
|
if (ref_clk_sel != 3) {
|
|
printf("Error: Invalid ref clock\n");
|
|
return -1;
|
|
}
|
|
return 0x5;
|
|
case 6144:
|
|
case 3072:
|
|
if (ref_clk_sel != 3) {
|
|
printf("Error: Invalid ref clock\n");
|
|
return -1;
|
|
}
|
|
return 0x8;
|
|
case 1250:
|
|
if (alt_pll_settings)
|
|
*alt_pll_settings = (ref_clk_sel != 2);
|
|
return R_125G_REFCLK15625_SGMII;
|
|
case 2500:
|
|
if (ref_clk_sel == 0)
|
|
return R_2_5G_REFCLK100;
|
|
|
|
if (alt_pll_settings)
|
|
*alt_pll_settings = (ref_clk_sel != 1);
|
|
return R_2_5G_REFCLK125;
|
|
case 3125:
|
|
if (ref_clk_sel == 2) {
|
|
return R_3125G_REFCLK15625_XAUI;
|
|
} else if (ref_clk_sel == 1) {
|
|
if (alt_pll_settings)
|
|
*alt_pll_settings = true;
|
|
return R_3125G_REFCLK15625_XAUI;
|
|
}
|
|
|
|
printf("Error: Invalid speed\n");
|
|
return -1;
|
|
case 5000:
|
|
if (ref_clk_sel == 0) {
|
|
return R_5G_REFCLK100;
|
|
} else if (ref_clk_sel == 1) {
|
|
if (alt_pll_settings)
|
|
*alt_pll_settings = (ref_clk_sel != 1);
|
|
return R_5G_REFCLK125;
|
|
} else {
|
|
return R_5G_REFCLK15625_QSGMII;
|
|
}
|
|
case 6250:
|
|
if (ref_clk_sel != 0) {
|
|
if (alt_pll_settings)
|
|
*alt_pll_settings = (ref_clk_sel != 2);
|
|
return R_625G_REFCLK15625_RXAUI;
|
|
}
|
|
|
|
printf("Error: Invalid speed\n");
|
|
return -1;
|
|
case 6316:
|
|
if (ref_clk_sel != 3) {
|
|
printf("Error: Invalid speed\n");
|
|
} else {
|
|
*alt_pll_settings = true;
|
|
return R_625G_REFCLK15625_RXAUI;
|
|
}
|
|
case 8000:
|
|
if (ref_clk_sel == 0)
|
|
return R_8G_REFCLK100;
|
|
else if (ref_clk_sel == 1)
|
|
return R_8G_REFCLK125;
|
|
|
|
printf("Error: Invalid speed\n");
|
|
return -1;
|
|
case 103125:
|
|
if (ref_clk_sel == 3 && alt_pll_settings)
|
|
*alt_pll_settings = true;
|
|
|
|
if (ref_clk_sel == 2 || ref_clk_sel == 3)
|
|
return R_103125G_REFCLK15625_KR;
|
|
|
|
default:
|
|
printf("Error: Invalid speed\n");
|
|
return -1;
|
|
}
|
|
|
|
return -1;
|
|
}
|
|
|
|
/*
|
|
* Errata PEM-31375 PEM RSL accesses to PCLK registers can timeout
|
|
* during speed change. Change SLI_WINDOW_CTL[time] to 525us
|
|
*/
|
|
static void __set_sli_window_ctl_errata_31375(int node)
|
|
{
|
|
if (OCTEON_IS_MODEL(OCTEON_CN78XX) || OCTEON_IS_MODEL(OCTEON_CN73XX) ||
|
|
OCTEON_IS_MODEL(OCTEON_CNF75XX)) {
|
|
cvmx_sli_window_ctl_t window_ctl;
|
|
|
|
window_ctl.u64 = csr_rd_node(node, CVMX_PEXP_SLI_WINDOW_CTL);
|
|
/* Configure SLI_WINDOW_CTL only once */
|
|
if (window_ctl.s.time != 8191)
|
|
return;
|
|
|
|
window_ctl.s.time = gd->bus_clk * 525ull / 1000000;
|
|
csr_wr_node(node, CVMX_PEXP_SLI_WINDOW_CTL, window_ctl.u64);
|
|
}
|
|
}
|
|
|
|
static void __cvmx_qlm_pcie_errata_ep_cn78xx(int node, int pem)
|
|
{
|
|
cvmx_pciercx_cfg031_t cfg031;
|
|
cvmx_pciercx_cfg032_t cfg032;
|
|
cvmx_pciercx_cfg040_t cfg040;
|
|
cvmx_pemx_cfg_t pemx_cfg;
|
|
cvmx_pemx_on_t pemx_on;
|
|
int low_qlm, high_qlm;
|
|
int qlm, lane;
|
|
u64 start_cycle;
|
|
|
|
pemx_on.u64 = csr_rd_node(node, CVMX_PEMX_ON(pem));
|
|
|
|
/* Errata (GSER-21178) PCIe gen3 doesn't work, continued */
|
|
|
|
/* Wait for the link to come up as Gen1 */
|
|
printf("PCIe%d: Waiting for EP out of reset\n", pem);
|
|
while (pemx_on.s.pemoor == 0) {
|
|
udelay(1000);
|
|
pemx_on.u64 = csr_rd_node(node, CVMX_PEMX_ON(pem));
|
|
}
|
|
|
|
/* Enable gen3 speed selection */
|
|
printf("PCIe%d: Enabling Gen3 for EP\n", pem);
|
|
/* Force Gen1 for initial link bringup. We'll fix it later */
|
|
pemx_cfg.u64 = csr_rd_node(node, CVMX_PEMX_CFG(pem));
|
|
pemx_cfg.s.md = 2;
|
|
csr_wr_node(node, CVMX_PEMX_CFG(pem), pemx_cfg.u64);
|
|
cfg031.u32 = cvmx_pcie_cfgx_read_node(node, pem, CVMX_PCIERCX_CFG031(pem));
|
|
cfg031.s.mls = 2;
|
|
cvmx_pcie_cfgx_write_node(node, pem, CVMX_PCIERCX_CFG031(pem), cfg031.u32);
|
|
cfg040.u32 = cvmx_pcie_cfgx_read_node(node, pem, CVMX_PCIERCX_CFG040(pem));
|
|
cfg040.s.tls = 3;
|
|
cvmx_pcie_cfgx_write_node(node, pem, CVMX_PCIERCX_CFG040(pem), cfg040.u32);
|
|
|
|
/* Wait up to 10ms for the link speed change to complete */
|
|
start_cycle = get_timer(0);
|
|
do {
|
|
if (get_timer(start_cycle) > 10)
|
|
return;
|
|
|
|
mdelay(1);
|
|
cfg032.u32 = cvmx_pcie_cfgx_read_node(node, pem, CVMX_PCIERCX_CFG032(pem));
|
|
} while (cfg032.s.ls != 3);
|
|
|
|
pemx_cfg.u64 = csr_rd_node(node, CVMX_PEMX_CFG(pem));
|
|
low_qlm = pem; /* FIXME */
|
|
high_qlm = (pemx_cfg.cn78xx.lanes8) ? low_qlm + 1 : low_qlm;
|
|
|
|
/* Toggle cfg_rx_dll_locken_ovrrd_en and rx_resetn_ovrrd_en across
|
|
* all QM lanes in use
|
|
*/
|
|
for (qlm = low_qlm; qlm <= high_qlm; qlm++) {
|
|
for (lane = 0; lane < 4; lane++) {
|
|
cvmx_gserx_lanex_rx_misc_ovrrd_t misc_ovrrd;
|
|
cvmx_gserx_lanex_pwr_ctrl_t pwr_ctrl;
|
|
|
|
misc_ovrrd.u64 =
|
|
csr_rd_node(node, CVMX_GSERX_LANEX_RX_MISC_OVRRD(lane, pem));
|
|
misc_ovrrd.s.cfg_rx_dll_locken_ovrrd_en = 1;
|
|
csr_wr_node(node, CVMX_GSERX_LANEX_RX_MISC_OVRRD(lane, pem),
|
|
misc_ovrrd.u64);
|
|
pwr_ctrl.u64 = csr_rd_node(node, CVMX_GSERX_LANEX_PWR_CTRL(lane, pem));
|
|
pwr_ctrl.s.rx_resetn_ovrrd_en = 1;
|
|
csr_wr_node(node, CVMX_GSERX_LANEX_PWR_CTRL(lane, pem), pwr_ctrl.u64);
|
|
}
|
|
}
|
|
for (qlm = low_qlm; qlm <= high_qlm; qlm++) {
|
|
for (lane = 0; lane < 4; lane++) {
|
|
cvmx_gserx_lanex_rx_misc_ovrrd_t misc_ovrrd;
|
|
cvmx_gserx_lanex_pwr_ctrl_t pwr_ctrl;
|
|
|
|
misc_ovrrd.u64 =
|
|
csr_rd_node(node, CVMX_GSERX_LANEX_RX_MISC_OVRRD(lane, pem));
|
|
misc_ovrrd.s.cfg_rx_dll_locken_ovrrd_en = 0;
|
|
csr_wr_node(node, CVMX_GSERX_LANEX_RX_MISC_OVRRD(lane, pem),
|
|
misc_ovrrd.u64);
|
|
pwr_ctrl.u64 = csr_rd_node(node, CVMX_GSERX_LANEX_PWR_CTRL(lane, pem));
|
|
pwr_ctrl.s.rx_resetn_ovrrd_en = 0;
|
|
csr_wr_node(node, CVMX_GSERX_LANEX_PWR_CTRL(lane, pem), pwr_ctrl.u64);
|
|
}
|
|
}
|
|
|
|
//printf("PCIe%d: Waiting for EP link up at Gen3\n", pem);
|
|
if (CVMX_WAIT_FOR_FIELD64_NODE(node, CVMX_PEMX_ON(pem), cvmx_pemx_on_t, pemoor, ==, 1,
|
|
1000000)) {
|
|
printf("PCIe%d: Timeout waiting for EP link up at Gen3\n", pem);
|
|
return;
|
|
}
|
|
}
|
|
|
|
static void __cvmx_qlm_pcie_errata_cn78xx(int node, int qlm)
|
|
{
|
|
int pem, i, q;
|
|
int is_8lanes;
|
|
int is_high_lanes;
|
|
int low_qlm, high_qlm, is_host;
|
|
int need_ep_monitor;
|
|
cvmx_pemx_cfg_t pem_cfg, pem3_cfg;
|
|
cvmx_gserx_slice_cfg_t slice_cfg;
|
|
cvmx_gserx_rx_pwr_ctrl_p1_t pwr_ctrl_p1;
|
|
cvmx_rst_soft_prstx_t soft_prst;
|
|
|
|
/* Only applies to CN78XX pass 1.x */
|
|
if (!OCTEON_IS_MODEL(OCTEON_CN78XX_PASS1_X))
|
|
return;
|
|
|
|
/* Determine the PEM for this QLM, whether we're in 8 lane mode,
|
|
* and whether these are the top lanes of the 8
|
|
*/
|
|
switch (qlm) {
|
|
case 0: /* First 4 lanes of PEM0 */
|
|
pem_cfg.u64 = csr_rd_node(node, CVMX_PEMX_CFG(0));
|
|
pem = 0;
|
|
is_8lanes = pem_cfg.cn78xx.lanes8;
|
|
is_high_lanes = 0;
|
|
break;
|
|
case 1: /* Either last 4 lanes of PEM0, or PEM1 */
|
|
pem_cfg.u64 = csr_rd_node(node, CVMX_PEMX_CFG(0));
|
|
pem = (pem_cfg.cn78xx.lanes8) ? 0 : 1;
|
|
is_8lanes = pem_cfg.cn78xx.lanes8;
|
|
is_high_lanes = is_8lanes;
|
|
break;
|
|
case 2: /* First 4 lanes of PEM2 */
|
|
pem_cfg.u64 = csr_rd_node(node, CVMX_PEMX_CFG(2));
|
|
pem = 2;
|
|
is_8lanes = pem_cfg.cn78xx.lanes8;
|
|
is_high_lanes = 0;
|
|
break;
|
|
case 3: /* Either last 4 lanes of PEM2, or PEM3 */
|
|
pem_cfg.u64 = csr_rd_node(node, CVMX_PEMX_CFG(2));
|
|
pem3_cfg.u64 = csr_rd_node(node, CVMX_PEMX_CFG(3));
|
|
pem = (pem_cfg.cn78xx.lanes8) ? 2 : 3;
|
|
is_8lanes = (pem == 2) ? pem_cfg.cn78xx.lanes8 : pem3_cfg.cn78xx.lanes8;
|
|
is_high_lanes = (pem == 2) && is_8lanes;
|
|
break;
|
|
case 4: /* Last 4 lanes of PEM3 */
|
|
pem = 3;
|
|
is_8lanes = 1;
|
|
is_high_lanes = 1;
|
|
break;
|
|
default:
|
|
return;
|
|
}
|
|
|
|
/* These workaround must be applied once per PEM. Since we're called per
|
|
* QLM, wait for the 2nd half of 8 lane setups before doing the workaround
|
|
*/
|
|
if (is_8lanes && !is_high_lanes)
|
|
return;
|
|
|
|
pem_cfg.u64 = csr_rd_node(node, CVMX_PEMX_CFG(pem));
|
|
is_host = pem_cfg.cn78xx.hostmd;
|
|
low_qlm = (is_8lanes) ? qlm - 1 : qlm;
|
|
high_qlm = qlm;
|
|
qlm = -1;
|
|
|
|
if (!is_host) {
|
|
/* Read the current slice config value. If its at the value we will
|
|
* program then skip doing the workaround. We're probably doing a
|
|
* hot reset and the workaround is already applied
|
|
*/
|
|
slice_cfg.u64 = csr_rd_node(node, CVMX_GSERX_SLICE_CFG(low_qlm));
|
|
if (slice_cfg.s.tx_rx_detect_lvl_enc == 7 && OCTEON_IS_MODEL(OCTEON_CN78XX_PASS1_0))
|
|
return;
|
|
}
|
|
|
|
if (is_host && OCTEON_IS_MODEL(OCTEON_CN78XX_PASS1_0)) {
|
|
/* (GSER-XXXX) GSER PHY needs to be reset at initialization */
|
|
cvmx_gserx_phy_ctl_t phy_ctl;
|
|
|
|
for (q = low_qlm; q <= high_qlm; q++) {
|
|
phy_ctl.u64 = csr_rd_node(node, CVMX_GSERX_PHY_CTL(q));
|
|
phy_ctl.s.phy_reset = 1;
|
|
csr_wr_node(node, CVMX_GSERX_PHY_CTL(q), phy_ctl.u64);
|
|
}
|
|
udelay(5);
|
|
|
|
for (q = low_qlm; q <= high_qlm; q++) {
|
|
phy_ctl.u64 = csr_rd_node(node, CVMX_GSERX_PHY_CTL(q));
|
|
phy_ctl.s.phy_reset = 0;
|
|
csr_wr_node(node, CVMX_GSERX_PHY_CTL(q), phy_ctl.u64);
|
|
}
|
|
udelay(5);
|
|
}
|
|
|
|
if (OCTEON_IS_MODEL(OCTEON_CN78XX_PASS1_0)) {
|
|
/* (GSER-20936) GSER has wrong PCIe RX detect reset value */
|
|
for (q = low_qlm; q <= high_qlm; q++) {
|
|
slice_cfg.u64 = csr_rd_node(node, CVMX_GSERX_SLICE_CFG(q));
|
|
slice_cfg.s.tx_rx_detect_lvl_enc = 7;
|
|
csr_wr_node(node, CVMX_GSERX_SLICE_CFG(q), slice_cfg.u64);
|
|
}
|
|
|
|
/* Clear the bit in GSERX_RX_PWR_CTRL_P1[p1_rx_subblk_pd]
|
|
* that coresponds to "Lane DLL"
|
|
*/
|
|
for (q = low_qlm; q <= high_qlm; q++) {
|
|
pwr_ctrl_p1.u64 = csr_rd_node(node, CVMX_GSERX_RX_PWR_CTRL_P1(q));
|
|
pwr_ctrl_p1.s.p1_rx_subblk_pd &= ~4;
|
|
csr_wr_node(node, CVMX_GSERX_RX_PWR_CTRL_P1(q), pwr_ctrl_p1.u64);
|
|
}
|
|
|
|
/* Errata (GSER-20888) GSER incorrect synchronizers hurts PCIe
|
|
* Override TX Power State machine TX reset control signal
|
|
*/
|
|
for (q = low_qlm; q <= high_qlm; q++) {
|
|
for (i = 0; i < 4; i++) {
|
|
cvmx_gserx_lanex_tx_cfg_0_t tx_cfg;
|
|
cvmx_gserx_lanex_pwr_ctrl_t pwr_ctrl;
|
|
|
|
tx_cfg.u64 = csr_rd_node(node, CVMX_GSERX_LANEX_TX_CFG_0(i, q));
|
|
tx_cfg.s.tx_resetn_ovrrd_val = 1;
|
|
csr_wr_node(node, CVMX_GSERX_LANEX_TX_CFG_0(i, q), tx_cfg.u64);
|
|
pwr_ctrl.u64 = csr_rd_node(node, CVMX_GSERX_LANEX_PWR_CTRL(i, q));
|
|
pwr_ctrl.s.tx_p2s_resetn_ovrrd_en = 1;
|
|
csr_wr_node(node, CVMX_GSERX_LANEX_PWR_CTRL(i, q), pwr_ctrl.u64);
|
|
}
|
|
}
|
|
}
|
|
|
|
if (!is_host) {
|
|
cvmx_pciercx_cfg089_t cfg089;
|
|
cvmx_pciercx_cfg090_t cfg090;
|
|
cvmx_pciercx_cfg091_t cfg091;
|
|
cvmx_pciercx_cfg092_t cfg092;
|
|
cvmx_pciercx_cfg548_t cfg548;
|
|
cvmx_pciercx_cfg554_t cfg554;
|
|
|
|
if (OCTEON_IS_MODEL(OCTEON_CN78XX_PASS1_0)) {
|
|
/* Errata (GSER-21178) PCIe gen3 doesn't work */
|
|
/* The starting equalization hints are incorrect on CN78XX pass 1.x. Fix
|
|
* them for the 8 possible lanes. It doesn't hurt to program them even
|
|
* for lanes not in use
|
|
*/
|
|
cfg089.u32 = cvmx_pcie_cfgx_read_node(node, pem, CVMX_PCIERCX_CFG089(pem));
|
|
cfg089.s.l1urph = 2;
|
|
cfg089.s.l1utp = 7;
|
|
cfg089.s.l0urph = 2;
|
|
cfg089.s.l0utp = 7;
|
|
cvmx_pcie_cfgx_write_node(node, pem, CVMX_PCIERCX_CFG089(pem), cfg089.u32);
|
|
cfg090.u32 = cvmx_pcie_cfgx_read_node(node, pem, CVMX_PCIERCX_CFG090(pem));
|
|
cfg090.s.l3urph = 2;
|
|
cfg090.s.l3utp = 7;
|
|
cfg090.s.l2urph = 2;
|
|
cfg090.s.l2utp = 7;
|
|
cvmx_pcie_cfgx_write_node(node, pem, CVMX_PCIERCX_CFG090(pem), cfg090.u32);
|
|
cfg091.u32 = cvmx_pcie_cfgx_read_node(node, pem, CVMX_PCIERCX_CFG091(pem));
|
|
cfg091.s.l5urph = 2;
|
|
cfg091.s.l5utp = 7;
|
|
cfg091.s.l4urph = 2;
|
|
cfg091.s.l4utp = 7;
|
|
cvmx_pcie_cfgx_write_node(node, pem, CVMX_PCIERCX_CFG091(pem), cfg091.u32);
|
|
cfg092.u32 = cvmx_pcie_cfgx_read_node(node, pem, CVMX_PCIERCX_CFG092(pem));
|
|
cfg092.s.l7urph = 2;
|
|
cfg092.s.l7utp = 7;
|
|
cfg092.s.l6urph = 2;
|
|
cfg092.s.l6utp = 7;
|
|
cvmx_pcie_cfgx_write_node(node, pem, CVMX_PCIERCX_CFG092(pem), cfg092.u32);
|
|
/* FIXME: Disable phase 2 and phase 3 equalization */
|
|
cfg548.u32 = cvmx_pcie_cfgx_read_node(node, pem, CVMX_PCIERCX_CFG548(pem));
|
|
cfg548.s.ep2p3d = 1;
|
|
cvmx_pcie_cfgx_write_node(node, pem, CVMX_PCIERCX_CFG548(pem), cfg548.u32);
|
|
}
|
|
/* Errata (GSER-21331) GEN3 Equalization may fail */
|
|
/* Disable preset #10 and disable the 2ms timeout */
|
|
cfg554.u32 = cvmx_pcie_cfgx_read_node(node, pem, CVMX_PCIERCX_CFG554(pem));
|
|
if (OCTEON_IS_MODEL(OCTEON_CN78XX_PASS1_0))
|
|
cfg554.s.p23td = 1;
|
|
cfg554.s.prv = 0x3ff;
|
|
cvmx_pcie_cfgx_write_node(node, pem, CVMX_PCIERCX_CFG554(pem), cfg554.u32);
|
|
|
|
if (OCTEON_IS_MODEL(OCTEON_CN78XX_PASS1_0)) {
|
|
need_ep_monitor = (pem_cfg.s.md == 2);
|
|
if (need_ep_monitor) {
|
|
cvmx_pciercx_cfg031_t cfg031;
|
|
cvmx_pciercx_cfg040_t cfg040;
|
|
|
|
/* Force Gen1 for initial link bringup. We'll
|
|
* fix it later
|
|
*/
|
|
pem_cfg.u64 = csr_rd_node(node, CVMX_PEMX_CFG(pem));
|
|
pem_cfg.s.md = 0;
|
|
csr_wr_node(node, CVMX_PEMX_CFG(pem), pem_cfg.u64);
|
|
cfg031.u32 = cvmx_pcie_cfgx_read_node(node, pem,
|
|
CVMX_PCIERCX_CFG031(pem));
|
|
cfg031.s.mls = 0;
|
|
cvmx_pcie_cfgx_write_node(node, pem, CVMX_PCIERCX_CFG031(pem),
|
|
cfg031.u32);
|
|
cfg040.u32 = cvmx_pcie_cfgx_read_node(node, pem,
|
|
CVMX_PCIERCX_CFG040(pem));
|
|
cfg040.s.tls = 1;
|
|
cvmx_pcie_cfgx_write_node(node, pem, CVMX_PCIERCX_CFG040(pem),
|
|
cfg040.u32);
|
|
__cvmx_qlm_pcie_errata_ep_cn78xx(node, pem);
|
|
}
|
|
return;
|
|
}
|
|
}
|
|
|
|
if (OCTEON_IS_MODEL(OCTEON_CN78XX_PASS1_0)) {
|
|
/* De-assert the SOFT_RST bit for this QLM (PEM), causing the PCIe
|
|
* workarounds code above to take effect.
|
|
*/
|
|
soft_prst.u64 = csr_rd_node(node, CVMX_RST_SOFT_PRSTX(pem));
|
|
soft_prst.s.soft_prst = 0;
|
|
csr_wr_node(node, CVMX_RST_SOFT_PRSTX(pem), soft_prst.u64);
|
|
udelay(1);
|
|
|
|
/* Assert the SOFT_RST bit for this QLM (PEM), putting the PCIe back into
|
|
* reset state with disturbing the workarounds.
|
|
*/
|
|
soft_prst.u64 = csr_rd_node(node, CVMX_RST_SOFT_PRSTX(pem));
|
|
soft_prst.s.soft_prst = 1;
|
|
csr_wr_node(node, CVMX_RST_SOFT_PRSTX(pem), soft_prst.u64);
|
|
}
|
|
udelay(1);
|
|
}
|
|
|
|
/**
|
|
* Setup the PEM to either driver or receive reset from PRST based on RC or EP
|
|
*
|
|
* @param node Node to use in a Numa setup
|
|
* @param pem Which PEM to setuo
|
|
* @param is_endpoint
|
|
* Non zero if PEM is a EP
|
|
*/
|
|
static void __setup_pem_reset(int node, int pem, int is_endpoint)
|
|
{
|
|
cvmx_rst_ctlx_t rst_ctl;
|
|
|
|
/* Make sure is_endpoint is either 0 or 1 */
|
|
is_endpoint = (is_endpoint != 0);
|
|
rst_ctl.u64 = csr_rd_node(node, CVMX_RST_CTLX(pem));
|
|
rst_ctl.s.prst_link = 0; /* Link down causes soft reset */
|
|
rst_ctl.s.rst_link = is_endpoint; /* EP PERST causes a soft reset */
|
|
rst_ctl.s.rst_drv = !is_endpoint; /* Drive if RC */
|
|
rst_ctl.s.rst_rcv = is_endpoint; /* Only read PERST in EP mode */
|
|
rst_ctl.s.rst_chip = 0; /* PERST doesn't pull CHIP_RESET */
|
|
csr_wr_node(node, CVMX_RST_CTLX(pem), rst_ctl.u64);
|
|
}
|
|
|
|
/**
|
|
* Configure QLM speed and mode for cn78xx.
|
|
*
|
|
* @param node Node to configure the QLM
|
|
* @param qlm The QLM to configure
|
|
* @param baud_mhz The speed the QLM needs to be configured in Mhz.
|
|
* @param mode The QLM to be configured as SGMII/XAUI/PCIe.
|
|
* @param rc Only used for PCIe, rc = 1 for root complex mode, 0 for EP mode.
|
|
* @param gen3 Only used for PCIe
|
|
* gen3 = 2 GEN3 mode
|
|
* gen3 = 1 GEN2 mode
|
|
* gen3 = 0 GEN1 mode
|
|
*
|
|
* @param ref_clk_sel The reference-clock selection to use to configure QLM
|
|
* 0 = REF_100MHZ
|
|
* 1 = REF_125MHZ
|
|
* 2 = REF_156MHZ
|
|
* 3 = REF_161MHZ
|
|
* @param ref_clk_input The reference-clock input to use to configure QLM
|
|
*
|
|
* @return Return 0 on success or -1.
|
|
*/
|
|
int octeon_configure_qlm_cn78xx(int node, int qlm, int baud_mhz, int mode, int rc, int gen3,
|
|
int ref_clk_sel, int ref_clk_input)
|
|
{
|
|
cvmx_gserx_phy_ctl_t phy_ctl;
|
|
cvmx_gserx_lane_mode_t lmode;
|
|
cvmx_gserx_cfg_t cfg;
|
|
cvmx_gserx_refclk_sel_t refclk_sel;
|
|
|
|
int is_pcie = 0;
|
|
int is_ilk = 0;
|
|
int is_bgx = 0;
|
|
int lane_mode = 0;
|
|
int lmac_type = 0;
|
|
bool alt_pll = false;
|
|
int num_ports = 0;
|
|
int lane_to_sds = 0;
|
|
|
|
debug("%s(node: %d, qlm: %d, baud_mhz: %d, mode: %d, rc: %d, gen3: %d, ref_clk_sel: %d, ref_clk_input: %d\n",
|
|
__func__, node, qlm, baud_mhz, mode, rc, gen3, ref_clk_sel, ref_clk_input);
|
|
if (OCTEON_IS_MODEL(OCTEON_CN76XX) && qlm > 4) {
|
|
debug("%s: qlm %d not present on CN76XX\n", __func__, qlm);
|
|
return -1;
|
|
}
|
|
|
|
/* Errata PEM-31375 PEM RSL accesses to PCLK registers can timeout
|
|
* during speed change. Change SLI_WINDOW_CTL[time] to 525us
|
|
*/
|
|
__set_sli_window_ctl_errata_31375(node);
|
|
|
|
cfg.u64 = csr_rd_node(node, CVMX_GSERX_CFG(qlm));
|
|
/* If PEM is in EP, no need to do anything */
|
|
|
|
if (cfg.s.pcie && rc == 0) {
|
|
debug("%s: node %d, qlm %d is in PCIe endpoint mode, returning\n",
|
|
__func__, node, qlm);
|
|
return 0;
|
|
}
|
|
|
|
/* Set the reference clock to use */
|
|
refclk_sel.u64 = 0;
|
|
if (ref_clk_input == 0) { /* External ref clock */
|
|
refclk_sel.s.com_clk_sel = 0;
|
|
refclk_sel.s.use_com1 = 0;
|
|
} else if (ref_clk_input == 1) {
|
|
refclk_sel.s.com_clk_sel = 1;
|
|
refclk_sel.s.use_com1 = 0;
|
|
} else {
|
|
refclk_sel.s.com_clk_sel = 1;
|
|
refclk_sel.s.use_com1 = 1;
|
|
}
|
|
|
|
csr_wr_node(node, CVMX_GSERX_REFCLK_SEL(qlm), refclk_sel.u64);
|
|
|
|
/* Reset the QLM after changing the reference clock */
|
|
phy_ctl.u64 = csr_rd_node(node, CVMX_GSERX_PHY_CTL(qlm));
|
|
phy_ctl.s.phy_reset = 1;
|
|
phy_ctl.s.phy_pd = 1;
|
|
csr_wr_node(node, CVMX_GSERX_PHY_CTL(qlm), phy_ctl.u64);
|
|
|
|
udelay(1000);
|
|
|
|
/* Always restore the reference clocks for a QLM */
|
|
memcpy(ref_clk_cn78xx[node][qlm], def_ref_clk_cn78xx, sizeof(def_ref_clk_cn78xx));
|
|
switch (mode) {
|
|
case CVMX_QLM_MODE_PCIE:
|
|
case CVMX_QLM_MODE_PCIE_1X8: {
|
|
cvmx_pemx_cfg_t pemx_cfg;
|
|
cvmx_pemx_on_t pemx_on;
|
|
|
|
is_pcie = 1;
|
|
|
|
if (ref_clk_sel == 0) {
|
|
refclk_sel.u64 = csr_rd_node(node, CVMX_GSERX_REFCLK_SEL(qlm));
|
|
refclk_sel.s.pcie_refclk125 = 0;
|
|
csr_wr_node(node, CVMX_GSERX_REFCLK_SEL(qlm), refclk_sel.u64);
|
|
if (gen3 == 0) /* Gen1 mode */
|
|
lane_mode = R_2_5G_REFCLK100;
|
|
else if (gen3 == 1) /* Gen2 mode */
|
|
lane_mode = R_5G_REFCLK100;
|
|
else
|
|
lane_mode = R_8G_REFCLK100;
|
|
} else if (ref_clk_sel == 1) {
|
|
refclk_sel.u64 = csr_rd_node(node, CVMX_GSERX_REFCLK_SEL(qlm));
|
|
refclk_sel.s.pcie_refclk125 = 1;
|
|
csr_wr_node(node, CVMX_GSERX_REFCLK_SEL(qlm), refclk_sel.u64);
|
|
if (gen3 == 0) /* Gen1 mode */
|
|
lane_mode = R_2_5G_REFCLK125;
|
|
else if (gen3 == 1) /* Gen2 mode */
|
|
lane_mode = R_5G_REFCLK125;
|
|
else
|
|
lane_mode = R_8G_REFCLK125;
|
|
} else {
|
|
printf("Invalid reference clock for PCIe on QLM%d\n", qlm);
|
|
return -1;
|
|
}
|
|
|
|
switch (qlm) {
|
|
case 0: /* Either x4 or x8 based on PEM0 */
|
|
{
|
|
cvmx_rst_soft_prstx_t rst_prst;
|
|
|
|
rst_prst.u64 = csr_rd_node(node, CVMX_RST_SOFT_PRSTX(0));
|
|
rst_prst.s.soft_prst = rc;
|
|
csr_wr_node(node, CVMX_RST_SOFT_PRSTX(0), rst_prst.u64);
|
|
__setup_pem_reset(node, 0, !rc);
|
|
|
|
pemx_cfg.u64 = csr_rd_node(node, CVMX_PEMX_CFG(0));
|
|
pemx_cfg.cn78xx.lanes8 = (mode == CVMX_QLM_MODE_PCIE_1X8);
|
|
pemx_cfg.cn78xx.hostmd = rc;
|
|
pemx_cfg.cn78xx.md = gen3;
|
|
csr_wr_node(node, CVMX_PEMX_CFG(0), pemx_cfg.u64);
|
|
/* x8 mode waits for QLM1 setup before turning on the PEM */
|
|
if (mode == CVMX_QLM_MODE_PCIE) {
|
|
pemx_on.u64 = csr_rd_node(node, CVMX_PEMX_ON(0));
|
|
pemx_on.s.pemon = 1;
|
|
csr_wr_node(node, CVMX_PEMX_ON(0), pemx_on.u64);
|
|
}
|
|
break;
|
|
}
|
|
case 1: /* Either PEM0 x8 or PEM1 x4 */
|
|
{
|
|
if (mode == CVMX_QLM_MODE_PCIE) {
|
|
cvmx_rst_soft_prstx_t rst_prst;
|
|
cvmx_pemx_cfg_t pemx_cfg;
|
|
|
|
rst_prst.u64 = csr_rd_node(node, CVMX_RST_SOFT_PRSTX(1));
|
|
rst_prst.s.soft_prst = rc;
|
|
csr_wr_node(node, CVMX_RST_SOFT_PRSTX(1), rst_prst.u64);
|
|
__setup_pem_reset(node, 1, !rc);
|
|
|
|
pemx_cfg.u64 = csr_rd_node(node, CVMX_PEMX_CFG(1));
|
|
pemx_cfg.cn78xx.lanes8 = 0;
|
|
pemx_cfg.cn78xx.hostmd = rc;
|
|
pemx_cfg.cn78xx.md = gen3;
|
|
csr_wr_node(node, CVMX_PEMX_CFG(1), pemx_cfg.u64);
|
|
|
|
pemx_on.u64 = csr_rd_node(node, CVMX_PEMX_ON(1));
|
|
pemx_on.s.pemon = 1;
|
|
csr_wr_node(node, CVMX_PEMX_ON(1), pemx_on.u64);
|
|
} else {
|
|
pemx_on.u64 = csr_rd_node(node, CVMX_PEMX_ON(0));
|
|
pemx_on.s.pemon = 1;
|
|
csr_wr_node(node, CVMX_PEMX_ON(0), pemx_on.u64);
|
|
}
|
|
break;
|
|
}
|
|
case 2: /* Either PEM2 x4 or PEM2 x8 */
|
|
{
|
|
cvmx_rst_soft_prstx_t rst_prst;
|
|
|
|
rst_prst.u64 = csr_rd_node(node, CVMX_RST_SOFT_PRSTX(2));
|
|
rst_prst.s.soft_prst = rc;
|
|
csr_wr_node(node, CVMX_RST_SOFT_PRSTX(2), rst_prst.u64);
|
|
__setup_pem_reset(node, 2, !rc);
|
|
|
|
pemx_cfg.u64 = csr_rd_node(node, CVMX_PEMX_CFG(2));
|
|
pemx_cfg.cn78xx.lanes8 = (mode == CVMX_QLM_MODE_PCIE_1X8);
|
|
pemx_cfg.cn78xx.hostmd = rc;
|
|
pemx_cfg.cn78xx.md = gen3;
|
|
csr_wr_node(node, CVMX_PEMX_CFG(2), pemx_cfg.u64);
|
|
/* x8 mode waits for QLM3 setup before turning on the PEM */
|
|
if (mode == CVMX_QLM_MODE_PCIE) {
|
|
pemx_on.u64 = csr_rd_node(node, CVMX_PEMX_ON(2));
|
|
pemx_on.s.pemon = 1;
|
|
csr_wr_node(node, CVMX_PEMX_ON(2), pemx_on.u64);
|
|
}
|
|
break;
|
|
}
|
|
case 3: /* Either PEM2 x8 or PEM3 x4 */
|
|
{
|
|
pemx_cfg.u64 = csr_rd_node(node, CVMX_PEMX_CFG(2));
|
|
if (pemx_cfg.cn78xx.lanes8) {
|
|
/* Last 4 lanes of PEM2 */
|
|
/* PEMX_CFG already setup */
|
|
pemx_on.u64 = csr_rd_node(node, CVMX_PEMX_ON(2));
|
|
pemx_on.s.pemon = 1;
|
|
csr_wr_node(node, CVMX_PEMX_ON(2), pemx_on.u64);
|
|
}
|
|
/* Check if PEM3 uses QLM3 and in x4 lane mode */
|
|
if (mode == CVMX_QLM_MODE_PCIE) {
|
|
cvmx_rst_soft_prstx_t rst_prst;
|
|
|
|
rst_prst.u64 = csr_rd_node(node, CVMX_RST_SOFT_PRSTX(3));
|
|
rst_prst.s.soft_prst = rc;
|
|
csr_wr_node(node, CVMX_RST_SOFT_PRSTX(3), rst_prst.u64);
|
|
__setup_pem_reset(node, 3, !rc);
|
|
|
|
pemx_cfg.u64 = csr_rd_node(node, CVMX_PEMX_CFG(3));
|
|
pemx_cfg.cn78xx.lanes8 = 0;
|
|
pemx_cfg.cn78xx.hostmd = rc;
|
|
pemx_cfg.cn78xx.md = gen3;
|
|
csr_wr_node(node, CVMX_PEMX_CFG(3), pemx_cfg.u64);
|
|
|
|
pemx_on.u64 = csr_rd_node(node, CVMX_PEMX_ON(3));
|
|
pemx_on.s.pemon = 1;
|
|
csr_wr_node(node, CVMX_PEMX_ON(3), pemx_on.u64);
|
|
}
|
|
break;
|
|
}
|
|
case 4: /* Either PEM3 x4 or PEM3 x8 */
|
|
{
|
|
if (mode == CVMX_QLM_MODE_PCIE_1X8) {
|
|
/* Last 4 lanes of PEM3 */
|
|
/* PEMX_CFG already setup */
|
|
pemx_on.u64 = csr_rd_node(node, CVMX_PEMX_ON(3));
|
|
pemx_on.s.pemon = 1;
|
|
csr_wr_node(node, CVMX_PEMX_ON(3), pemx_on.u64);
|
|
} else {
|
|
/* 4 lanes of PEM3 */
|
|
cvmx_pemx_qlm_t pemx_qlm;
|
|
cvmx_rst_soft_prstx_t rst_prst;
|
|
|
|
rst_prst.u64 = csr_rd_node(node, CVMX_RST_SOFT_PRSTX(3));
|
|
rst_prst.s.soft_prst = rc;
|
|
csr_wr_node(node, CVMX_RST_SOFT_PRSTX(3), rst_prst.u64);
|
|
__setup_pem_reset(node, 3, !rc);
|
|
|
|
pemx_cfg.u64 = csr_rd_node(node, CVMX_PEMX_CFG(3));
|
|
pemx_cfg.cn78xx.lanes8 = 0;
|
|
pemx_cfg.cn78xx.hostmd = rc;
|
|
pemx_cfg.cn78xx.md = gen3;
|
|
csr_wr_node(node, CVMX_PEMX_CFG(3), pemx_cfg.u64);
|
|
/* PEM3 is on QLM4 */
|
|
pemx_qlm.u64 = csr_rd_node(node, CVMX_PEMX_QLM(3));
|
|
pemx_qlm.cn78xx.pem3qlm = 1;
|
|
csr_wr_node(node, CVMX_PEMX_QLM(3), pemx_qlm.u64);
|
|
pemx_on.u64 = csr_rd_node(node, CVMX_PEMX_ON(3));
|
|
pemx_on.s.pemon = 1;
|
|
csr_wr_node(node, CVMX_PEMX_ON(3), pemx_on.u64);
|
|
}
|
|
break;
|
|
}
|
|
default:
|
|
break;
|
|
}
|
|
break;
|
|
}
|
|
case CVMX_QLM_MODE_ILK:
|
|
is_ilk = 1;
|
|
lane_mode = __get_lane_mode_for_speed_and_ref_clk(ref_clk_sel, baud_mhz, &alt_pll);
|
|
if (lane_mode == -1)
|
|
return -1;
|
|
/* FIXME: Set lane_mode for other speeds */
|
|
break;
|
|
case CVMX_QLM_MODE_SGMII:
|
|
is_bgx = 1;
|
|
lmac_type = 0;
|
|
lane_to_sds = 1;
|
|
num_ports = 4;
|
|
lane_mode = __get_lane_mode_for_speed_and_ref_clk(ref_clk_sel, baud_mhz, &alt_pll);
|
|
debug("%s: SGMII lane mode: %d, alternate PLL: %s\n", __func__, lane_mode,
|
|
alt_pll ? "true" : "false");
|
|
if (lane_mode == -1)
|
|
return -1;
|
|
break;
|
|
case CVMX_QLM_MODE_XAUI:
|
|
is_bgx = 5;
|
|
lmac_type = 1;
|
|
lane_to_sds = 0xe4;
|
|
num_ports = 1;
|
|
lane_mode = __get_lane_mode_for_speed_and_ref_clk(ref_clk_sel, baud_mhz, &alt_pll);
|
|
debug("%s: XAUI lane mode: %d\n", __func__, lane_mode);
|
|
if (lane_mode == -1)
|
|
return -1;
|
|
break;
|
|
case CVMX_QLM_MODE_RXAUI:
|
|
is_bgx = 3;
|
|
lmac_type = 2;
|
|
lane_to_sds = 0;
|
|
num_ports = 2;
|
|
debug("%s: RXAUI lane mode: %d\n", __func__, lane_mode);
|
|
lane_mode = __get_lane_mode_for_speed_and_ref_clk(ref_clk_sel, baud_mhz, &alt_pll);
|
|
if (lane_mode == -1)
|
|
return -1;
|
|
break;
|
|
case CVMX_QLM_MODE_XFI: /* 10GR_4X1 */
|
|
case CVMX_QLM_MODE_10G_KR:
|
|
is_bgx = 1;
|
|
lmac_type = 3;
|
|
lane_to_sds = 1;
|
|
num_ports = 4;
|
|
lane_mode = __get_lane_mode_for_speed_and_ref_clk(ref_clk_sel, baud_mhz, &alt_pll);
|
|
debug("%s: XFI/10G_KR lane mode: %d\n", __func__, lane_mode);
|
|
if (lane_mode == -1)
|
|
return -1;
|
|
break;
|
|
case CVMX_QLM_MODE_XLAUI: /* 40GR4_1X4 */
|
|
case CVMX_QLM_MODE_40G_KR4:
|
|
is_bgx = 5;
|
|
lmac_type = 4;
|
|
lane_to_sds = 0xe4;
|
|
num_ports = 1;
|
|
lane_mode = __get_lane_mode_for_speed_and_ref_clk(ref_clk_sel, baud_mhz, &alt_pll);
|
|
debug("%s: XLAUI/40G_KR4 lane mode: %d\n", __func__, lane_mode);
|
|
if (lane_mode == -1)
|
|
return -1;
|
|
break;
|
|
case CVMX_QLM_MODE_DISABLED:
|
|
/* Power down the QLM */
|
|
phy_ctl.u64 = csr_rd_node(node, CVMX_GSERX_PHY_CTL(qlm));
|
|
phy_ctl.s.phy_pd = 1;
|
|
phy_ctl.s.phy_reset = 1;
|
|
csr_wr_node(node, CVMX_GSERX_PHY_CTL(qlm), phy_ctl.u64);
|
|
/* Disable all modes */
|
|
csr_wr_node(node, CVMX_GSERX_CFG(qlm), 0);
|
|
/* Do nothing */
|
|
return 0;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
if (alt_pll) {
|
|
debug("%s: alternate PLL settings used for node %d, qlm %d, lane mode %d, reference clock %d\n",
|
|
__func__, node, qlm, lane_mode, ref_clk_sel);
|
|
if (__set_qlm_ref_clk_cn78xx(node, qlm, lane_mode, ref_clk_sel)) {
|
|
printf("%s: Error: reference clock %d is not supported for node %d, qlm %d\n",
|
|
__func__, ref_clk_sel, node, qlm);
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
/* Power up PHY, but keep it in reset */
|
|
phy_ctl.u64 = csr_rd_node(node, CVMX_GSERX_PHY_CTL(qlm));
|
|
phy_ctl.s.phy_pd = 0;
|
|
phy_ctl.s.phy_reset = 1;
|
|
csr_wr_node(node, CVMX_GSERX_PHY_CTL(qlm), phy_ctl.u64);
|
|
|
|
/* Errata GSER-20788: GSER(0..13)_CFG[BGX_QUAD]=1 is broken. Force the
|
|
* BGX_QUAD bit to be clear for CN78XX pass 1.x
|
|
*/
|
|
if (OCTEON_IS_MODEL(OCTEON_CN78XX_PASS1_X))
|
|
is_bgx &= 3;
|
|
|
|
/* Set GSER for the interface mode */
|
|
cfg.u64 = csr_rd_node(node, CVMX_GSERX_CFG(qlm));
|
|
cfg.s.ila = is_ilk;
|
|
cfg.s.bgx = is_bgx & 1;
|
|
cfg.s.bgx_quad = (is_bgx >> 2) & 1;
|
|
cfg.s.bgx_dual = (is_bgx >> 1) & 1;
|
|
cfg.s.pcie = is_pcie;
|
|
csr_wr_node(node, CVMX_GSERX_CFG(qlm), cfg.u64);
|
|
|
|
/* Lane mode */
|
|
lmode.u64 = csr_rd_node(node, CVMX_GSERX_LANE_MODE(qlm));
|
|
lmode.s.lmode = lane_mode;
|
|
csr_wr_node(node, CVMX_GSERX_LANE_MODE(qlm), lmode.u64);
|
|
|
|
/* BGX0-1 can connect to QLM0-1 or QLM 2-3. Program the select bit if we're
|
|
* one of these QLMs and we're using BGX
|
|
*/
|
|
if (qlm < 4 && is_bgx) {
|
|
int bgx = qlm & 1;
|
|
int use_upper = (qlm >> 1) & 1;
|
|
cvmx_bgxx_cmr_global_config_t global_cfg;
|
|
|
|
global_cfg.u64 = csr_rd_node(node, CVMX_BGXX_CMR_GLOBAL_CONFIG(bgx));
|
|
global_cfg.s.pmux_sds_sel = use_upper;
|
|
csr_wr_node(node, CVMX_BGXX_CMR_GLOBAL_CONFIG(bgx), global_cfg.u64);
|
|
}
|
|
|
|
/* Bring phy out of reset */
|
|
phy_ctl.u64 = csr_rd_node(node, CVMX_GSERX_PHY_CTL(qlm));
|
|
phy_ctl.s.phy_reset = 0;
|
|
csr_wr_node(node, CVMX_GSERX_PHY_CTL(qlm), phy_ctl.u64);
|
|
csr_rd_node(node, CVMX_GSERX_PHY_CTL(qlm));
|
|
|
|
/*
|
|
* Wait 250 ns until the management interface is ready to accept
|
|
* read/write commands.
|
|
*/
|
|
udelay(1);
|
|
|
|
if (is_bgx) {
|
|
int bgx = (qlm < 2) ? qlm : qlm - 2;
|
|
cvmx_bgxx_cmrx_config_t cmr_config;
|
|
int index;
|
|
|
|
for (index = 0; index < num_ports; index++) {
|
|
cmr_config.u64 = csr_rd_node(node, CVMX_BGXX_CMRX_CONFIG(index, bgx));
|
|
cmr_config.s.enable = 0;
|
|
cmr_config.s.data_pkt_tx_en = 0;
|
|
cmr_config.s.data_pkt_rx_en = 0;
|
|
cmr_config.s.lmac_type = lmac_type;
|
|
cmr_config.s.lane_to_sds = ((lane_to_sds == 1) ?
|
|
index : ((lane_to_sds == 0) ?
|
|
(index ? 0xe : 4) :
|
|
lane_to_sds));
|
|
csr_wr_node(node, CVMX_BGXX_CMRX_CONFIG(index, bgx), cmr_config.u64);
|
|
}
|
|
csr_wr_node(node, CVMX_BGXX_CMR_TX_LMACS(bgx), num_ports);
|
|
csr_wr_node(node, CVMX_BGXX_CMR_RX_LMACS(bgx), num_ports);
|
|
|
|
/* Enable/disable training for 10G_KR/40G_KR4/XFI/XLAUI modes */
|
|
for (index = 0; index < num_ports; index++) {
|
|
cvmx_bgxx_spux_br_pmd_control_t spu_pmd_control;
|
|
|
|
spu_pmd_control.u64 =
|
|
csr_rd_node(node, CVMX_BGXX_SPUX_BR_PMD_CONTROL(index, bgx));
|
|
|
|
if (mode == CVMX_QLM_MODE_10G_KR || mode == CVMX_QLM_MODE_40G_KR4)
|
|
spu_pmd_control.s.train_en = 1;
|
|
else if (mode == CVMX_QLM_MODE_XFI || mode == CVMX_QLM_MODE_XLAUI)
|
|
spu_pmd_control.s.train_en = 0;
|
|
|
|
csr_wr_node(node, CVMX_BGXX_SPUX_BR_PMD_CONTROL(index, bgx),
|
|
spu_pmd_control.u64);
|
|
}
|
|
}
|
|
|
|
/* Configure the gser pll */
|
|
if (!is_pcie)
|
|
__qlm_setup_pll_cn78xx(node, qlm);
|
|
|
|
/* Wait for reset to complete and the PLL to lock */
|
|
if (CVMX_WAIT_FOR_FIELD64_NODE(node, CVMX_GSERX_PLL_STAT(qlm),
|
|
cvmx_gserx_pll_stat_t,
|
|
pll_lock, ==, 1, 10000)) {
|
|
printf("%d:QLM%d: Timeout waiting for GSERX_PLL_STAT[pll_lock]\n",
|
|
node, qlm);
|
|
return -1;
|
|
}
|
|
|
|
/* Perform PCIe errata workaround */
|
|
if (is_pcie)
|
|
__cvmx_qlm_pcie_errata_cn78xx(node, qlm);
|
|
else
|
|
__qlm_init_errata_20844(node, qlm);
|
|
|
|
/* Wait for reset to complete and the PLL to lock */
|
|
/* PCIe mode doesn't become ready until the PEM block attempts to bring
|
|
* the interface up. Skip this check for PCIe
|
|
*/
|
|
if (!is_pcie && CVMX_WAIT_FOR_FIELD64_NODE(node, CVMX_GSERX_QLM_STAT(qlm),
|
|
cvmx_gserx_qlm_stat_t, rst_rdy,
|
|
==, 1, 10000)) {
|
|
printf("%d:QLM%d: Timeout waiting for GSERX_QLM_STAT[rst_rdy]\n",
|
|
node, qlm);
|
|
return -1;
|
|
}
|
|
|
|
/* Errata GSER-26150: 10G PHY PLL Temperature Failure */
|
|
/* This workaround must be completed after the final deassertion of
|
|
* GSERx_PHY_CTL[PHY_RESET].
|
|
* Apply the workaround to 10.3125Gbps and 8Gbps only.
|
|
*/
|
|
if (OCTEON_IS_MODEL(OCTEON_CN78XX_PASS1_X) &&
|
|
(baud_mhz == 103125 || (is_pcie && gen3 == 2)))
|
|
__qlm_errata_gser_26150(0, qlm, is_pcie);
|
|
|
|
/* Errata GSER-26636: 10G-KR/40G-KR - Inverted Tx Coefficient Direction
|
|
* Change. Applied to all 10G standards (required for KR) but also
|
|
* applied to other standards in case software training is used
|
|
*/
|
|
if (OCTEON_IS_MODEL(OCTEON_CN78XX_PASS1_X) && baud_mhz == 103125)
|
|
__qlm_kr_inc_dec_gser26636(node, qlm);
|
|
|
|
/* Errata GSER-25992: RX EQ Default Settings Update (CTLE Bias) */
|
|
/* This workaround will only be applied to Pass 1.x */
|
|
/* It will also only be applied if the SERDES data-rate is 10G */
|
|
/* or if PCIe Gen3 (gen3=2 is PCIe Gen3) */
|
|
if (OCTEON_IS_MODEL(OCTEON_CN78XX_PASS1_X) &&
|
|
(baud_mhz == 103125 || (is_pcie && gen3 == 2)))
|
|
cvmx_qlm_gser_errata_25992(node, qlm);
|
|
|
|
/* Errata GSER-27140: Updating the RX EQ settings due to temperature
|
|
* drift sensitivities
|
|
*/
|
|
/* This workaround will also only be applied if the SERDES data-rate is 10G */
|
|
if (baud_mhz == 103125)
|
|
__qlm_rx_eq_temp_gser27140(node, qlm);
|
|
|
|
/* Reduce the voltage amplitude coming from Marvell PHY and also change
|
|
* DFE threshold settings for RXAUI interface
|
|
*/
|
|
if (is_bgx && mode == CVMX_QLM_MODE_RXAUI) {
|
|
int l;
|
|
|
|
for (l = 0; l < 4; l++) {
|
|
cvmx_gserx_lanex_rx_cfg_4_t cfg4;
|
|
cvmx_gserx_lanex_tx_cfg_0_t cfg0;
|
|
/* Change the Q/QB error sampler 0 threshold from 0xD to 0xF */
|
|
cfg4.u64 = csr_rd_node(node, CVMX_GSERX_LANEX_RX_CFG_4(l, qlm));
|
|
cfg4.s.cfg_rx_errdet_ctrl = 0xcf6f;
|
|
csr_wr_node(node, CVMX_GSERX_LANEX_RX_CFG_4(l, qlm), cfg4.u64);
|
|
/* Reduce the voltage swing to roughly 460mV */
|
|
cfg0.u64 = csr_rd_node(node, CVMX_GSERX_LANEX_TX_CFG_0(l, qlm));
|
|
cfg0.s.cfg_tx_swing = 0x12;
|
|
csr_wr_node(node, CVMX_GSERX_LANEX_TX_CFG_0(l, qlm), cfg0.u64);
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int __is_qlm_valid_bgx_cn73xx(int qlm)
|
|
{
|
|
if (qlm == 2 || qlm == 3 || qlm == 5 || qlm == 6)
|
|
return 0;
|
|
return 1;
|
|
}
|
|
|
|
/**
|
|
* Configure QLM/DLM speed and mode for cn73xx.
|
|
*
|
|
* @param qlm The QLM to configure
|
|
* @param baud_mhz The speed the QLM needs to be configured in Mhz.
|
|
* @param mode The QLM to be configured as SGMII/XAUI/PCIe.
|
|
* @param rc Only used for PCIe, rc = 1 for root complex mode, 0 for EP mode.
|
|
* @param gen3 Only used for PCIe
|
|
* gen3 = 2 GEN3 mode
|
|
* gen3 = 1 GEN2 mode
|
|
* gen3 = 0 GEN1 mode
|
|
*
|
|
* @param ref_clk_sel The reference-clock selection to use to configure QLM
|
|
* 0 = REF_100MHZ
|
|
* 1 = REF_125MHZ
|
|
* 2 = REF_156MHZ
|
|
* 3 = REF_161MHZ
|
|
*
|
|
* @param ref_clk_input The reference-clock input to use to configure QLM
|
|
* 0 = QLM/DLM reference clock input
|
|
* 1 = common reference clock input 0
|
|
* 2 = common reference clock input 1
|
|
*
|
|
* @return Return 0 on success or -1.
|
|
*/
|
|
static int octeon_configure_qlm_cn73xx(int qlm, int baud_mhz, int mode, int rc, int gen3,
|
|
int ref_clk_sel, int ref_clk_input)
|
|
{
|
|
cvmx_gserx_phy_ctl_t phy_ctl;
|
|
cvmx_gserx_lane_mode_t lmode;
|
|
cvmx_gserx_cfg_t cfg;
|
|
cvmx_gserx_refclk_sel_t refclk_sel;
|
|
int is_pcie = 0;
|
|
int is_bgx = 0;
|
|
int lane_mode = 0;
|
|
short lmac_type[4] = { 0 };
|
|
short sds_lane[4] = { 0 };
|
|
bool alt_pll = false;
|
|
int enable_training = 0;
|
|
int additional_lmacs = 0;
|
|
|
|
debug("%s(qlm: %d, baud_mhz: %d, mode: %d, rc: %d, gen3: %d, ref_clk_sel: %d, ref_clk_input: %d\n",
|
|
__func__, qlm, baud_mhz, mode, rc, gen3, ref_clk_sel, ref_clk_input);
|
|
|
|
/* Don't configure QLM4 if it is not in SATA mode */
|
|
if (qlm == 4) {
|
|
if (mode == CVMX_QLM_MODE_SATA_2X1)
|
|
return __setup_sata(qlm, baud_mhz, ref_clk_sel, ref_clk_input);
|
|
|
|
printf("Invalid mode for QLM4\n");
|
|
return 0;
|
|
}
|
|
|
|
cfg.u64 = csr_rd(CVMX_GSERX_CFG(qlm));
|
|
|
|
/* Errata PEM-31375 PEM RSL accesses to PCLK registers can timeout
|
|
* during speed change. Change SLI_WINDOW_CTL[time] to 525us
|
|
*/
|
|
__set_sli_window_ctl_errata_31375(0);
|
|
/* If PEM is in EP, no need to do anything */
|
|
if (cfg.s.pcie && rc == 0 &&
|
|
(mode == CVMX_QLM_MODE_PCIE || mode == CVMX_QLM_MODE_PCIE_1X8 ||
|
|
mode == CVMX_QLM_MODE_PCIE_1X2)) {
|
|
debug("%s: qlm %d is in PCIe endpoint mode, returning\n", __func__, qlm);
|
|
return 0;
|
|
}
|
|
|
|
/* Set the reference clock to use */
|
|
refclk_sel.u64 = 0;
|
|
if (ref_clk_input == 0) { /* External ref clock */
|
|
refclk_sel.s.com_clk_sel = 0;
|
|
refclk_sel.s.use_com1 = 0;
|
|
} else if (ref_clk_input == 1) {
|
|
refclk_sel.s.com_clk_sel = 1;
|
|
refclk_sel.s.use_com1 = 0;
|
|
} else {
|
|
refclk_sel.s.com_clk_sel = 1;
|
|
refclk_sel.s.use_com1 = 1;
|
|
}
|
|
|
|
csr_wr(CVMX_GSERX_REFCLK_SEL(qlm), refclk_sel.u64);
|
|
|
|
/* Reset the QLM after changing the reference clock */
|
|
phy_ctl.u64 = csr_rd(CVMX_GSERX_PHY_CTL(qlm));
|
|
phy_ctl.s.phy_reset = 1;
|
|
phy_ctl.s.phy_pd = 1;
|
|
csr_wr(CVMX_GSERX_PHY_CTL(qlm), phy_ctl.u64);
|
|
|
|
udelay(1000);
|
|
|
|
/* Check if QLM is a valid BGX interface */
|
|
if (mode != CVMX_QLM_MODE_PCIE && mode != CVMX_QLM_MODE_PCIE_1X2 &&
|
|
mode != CVMX_QLM_MODE_PCIE_1X8) {
|
|
if (__is_qlm_valid_bgx_cn73xx(qlm))
|
|
return -1;
|
|
}
|
|
|
|
switch (mode) {
|
|
case CVMX_QLM_MODE_PCIE:
|
|
case CVMX_QLM_MODE_PCIE_1X2:
|
|
case CVMX_QLM_MODE_PCIE_1X8: {
|
|
cvmx_pemx_cfg_t pemx_cfg;
|
|
cvmx_pemx_on_t pemx_on;
|
|
cvmx_pemx_qlm_t pemx_qlm;
|
|
cvmx_rst_soft_prstx_t rst_prst;
|
|
int port = 0;
|
|
|
|
is_pcie = 1;
|
|
|
|
if (qlm < 5 && mode == CVMX_QLM_MODE_PCIE_1X2) {
|
|
printf("Invalid PCIe mode(%d) for QLM%d\n", mode, qlm);
|
|
return -1;
|
|
}
|
|
|
|
if (ref_clk_sel == 0) {
|
|
refclk_sel.u64 = csr_rd(CVMX_GSERX_REFCLK_SEL(qlm));
|
|
refclk_sel.s.pcie_refclk125 = 0;
|
|
csr_wr(CVMX_GSERX_REFCLK_SEL(qlm), refclk_sel.u64);
|
|
if (gen3 == 0) /* Gen1 mode */
|
|
lane_mode = R_2_5G_REFCLK100;
|
|
else if (gen3 == 1) /* Gen2 mode */
|
|
lane_mode = R_5G_REFCLK100;
|
|
else
|
|
lane_mode = R_8G_REFCLK100;
|
|
} else if (ref_clk_sel == 1) {
|
|
refclk_sel.u64 = csr_rd(CVMX_GSERX_REFCLK_SEL(qlm));
|
|
refclk_sel.s.pcie_refclk125 = 1;
|
|
csr_wr(CVMX_GSERX_REFCLK_SEL(qlm), refclk_sel.u64);
|
|
if (gen3 == 0) /* Gen1 mode */
|
|
lane_mode = R_2_5G_REFCLK125;
|
|
else if (gen3 == 1) /* Gen2 mode */
|
|
lane_mode = R_5G_REFCLK125;
|
|
else
|
|
lane_mode = R_8G_REFCLK125;
|
|
} else {
|
|
printf("Invalid reference clock for PCIe on QLM%d\n", qlm);
|
|
return -1;
|
|
}
|
|
|
|
switch (qlm) {
|
|
case 0: /* Either x4 or x8 based on PEM0 */
|
|
rst_prst.u64 = csr_rd(CVMX_RST_SOFT_PRSTX(0));
|
|
rst_prst.s.soft_prst = rc;
|
|
csr_wr(CVMX_RST_SOFT_PRSTX(0), rst_prst.u64);
|
|
__setup_pem_reset(0, 0, !rc);
|
|
|
|
pemx_cfg.u64 = csr_rd(CVMX_PEMX_CFG(0));
|
|
pemx_cfg.cn78xx.lanes8 = (mode == CVMX_QLM_MODE_PCIE_1X8);
|
|
pemx_cfg.cn78xx.hostmd = rc;
|
|
pemx_cfg.cn78xx.md = gen3;
|
|
csr_wr(CVMX_PEMX_CFG(0), pemx_cfg.u64);
|
|
/* x8 mode waits for QLM1 setup before turning on the PEM */
|
|
if (mode == CVMX_QLM_MODE_PCIE) {
|
|
pemx_on.u64 = csr_rd(CVMX_PEMX_ON(0));
|
|
pemx_on.s.pemon = 1;
|
|
csr_wr(CVMX_PEMX_ON(0), pemx_on.u64);
|
|
}
|
|
break;
|
|
case 1: /* Either PEM0 x8 or PEM1 x4 */
|
|
if (mode == CVMX_QLM_MODE_PCIE) {
|
|
rst_prst.u64 = csr_rd(CVMX_RST_SOFT_PRSTX(1));
|
|
rst_prst.s.soft_prst = rc;
|
|
csr_wr(CVMX_RST_SOFT_PRSTX(1), rst_prst.u64);
|
|
__setup_pem_reset(0, 1, !rc);
|
|
|
|
pemx_cfg.u64 = csr_rd(CVMX_PEMX_CFG(1));
|
|
pemx_cfg.cn78xx.lanes8 = 0;
|
|
pemx_cfg.cn78xx.hostmd = rc;
|
|
pemx_cfg.cn78xx.md = gen3;
|
|
csr_wr(CVMX_PEMX_CFG(1), pemx_cfg.u64);
|
|
|
|
pemx_on.u64 = csr_rd(CVMX_PEMX_ON(1));
|
|
pemx_on.s.pemon = 1;
|
|
csr_wr(CVMX_PEMX_ON(1), pemx_on.u64);
|
|
} else { /* x8 mode */
|
|
pemx_on.u64 = csr_rd(CVMX_PEMX_ON(0));
|
|
pemx_on.s.pemon = 1;
|
|
csr_wr(CVMX_PEMX_ON(0), pemx_on.u64);
|
|
}
|
|
break;
|
|
case 2: /* Either PEM2 x4 or PEM2 x8 or BGX0 */
|
|
{
|
|
pemx_qlm.u64 = csr_rd(CVMX_PEMX_QLM(2));
|
|
pemx_qlm.cn73xx.pemdlmsel = 0;
|
|
csr_wr(CVMX_PEMX_QLM(2), pemx_qlm.u64);
|
|
|
|
rst_prst.u64 = csr_rd(CVMX_RST_SOFT_PRSTX(2));
|
|
rst_prst.s.soft_prst = rc;
|
|
csr_wr(CVMX_RST_SOFT_PRSTX(2), rst_prst.u64);
|
|
__setup_pem_reset(0, 2, !rc);
|
|
|
|
pemx_cfg.u64 = csr_rd(CVMX_PEMX_CFG(2));
|
|
pemx_cfg.cn78xx.lanes8 = (mode == CVMX_QLM_MODE_PCIE_1X8);
|
|
pemx_cfg.cn78xx.hostmd = rc;
|
|
pemx_cfg.cn78xx.md = gen3;
|
|
csr_wr(CVMX_PEMX_CFG(2), pemx_cfg.u64);
|
|
/* x8 mode waits for QLM3 setup before turning on the PEM */
|
|
if (mode == CVMX_QLM_MODE_PCIE) {
|
|
pemx_on.u64 = csr_rd(CVMX_PEMX_ON(2));
|
|
pemx_on.s.pemon = 1;
|
|
csr_wr(CVMX_PEMX_ON(2), pemx_on.u64);
|
|
}
|
|
break;
|
|
}
|
|
case 3: /* Either PEM2 x8 or PEM3 x4 or BGX1 */
|
|
/* PEM2/PEM3 are configured to use QLM2/3 */
|
|
pemx_cfg.u64 = csr_rd(CVMX_PEMX_CFG(2));
|
|
if (pemx_cfg.cn78xx.lanes8) {
|
|
/* Last 4 lanes of PEM2 */
|
|
/* PEMX_CFG already setup */
|
|
pemx_on.u64 = csr_rd(CVMX_PEMX_ON(2));
|
|
pemx_on.s.pemon = 1;
|
|
csr_wr(CVMX_PEMX_ON(2), pemx_on.u64);
|
|
}
|
|
/* Check if PEM3 uses QLM3 and in x4 lane mode */
|
|
if (mode == CVMX_QLM_MODE_PCIE) {
|
|
pemx_qlm.u64 = csr_rd(CVMX_PEMX_QLM(3));
|
|
pemx_qlm.cn73xx.pemdlmsel = 0;
|
|
csr_wr(CVMX_PEMX_QLM(3), pemx_qlm.u64);
|
|
|
|
rst_prst.u64 = csr_rd(CVMX_RST_SOFT_PRSTX(3));
|
|
rst_prst.s.soft_prst = rc;
|
|
csr_wr(CVMX_RST_SOFT_PRSTX(3), rst_prst.u64);
|
|
__setup_pem_reset(0, 3, !rc);
|
|
|
|
pemx_cfg.u64 = csr_rd(CVMX_PEMX_CFG(3));
|
|
pemx_cfg.cn78xx.lanes8 = 0;
|
|
pemx_cfg.cn78xx.hostmd = rc;
|
|
pemx_cfg.cn78xx.md = gen3;
|
|
csr_wr(CVMX_PEMX_CFG(3), pemx_cfg.u64);
|
|
|
|
pemx_on.u64 = csr_rd(CVMX_PEMX_ON(3));
|
|
pemx_on.s.pemon = 1;
|
|
csr_wr(CVMX_PEMX_ON(3), pemx_on.u64);
|
|
}
|
|
break;
|
|
case 5: /* PEM2/PEM3 x2 or BGX2 */
|
|
case 6:
|
|
port = (qlm == 5) ? 2 : 3;
|
|
if (mode == CVMX_QLM_MODE_PCIE_1X2) {
|
|
/* PEM2/PEM3 are configured to use DLM5/6 */
|
|
pemx_qlm.u64 = csr_rd(CVMX_PEMX_QLM(port));
|
|
pemx_qlm.cn73xx.pemdlmsel = 1;
|
|
csr_wr(CVMX_PEMX_QLM(port), pemx_qlm.u64);
|
|
/* 2 lanes of PEM3 */
|
|
rst_prst.u64 = csr_rd(CVMX_RST_SOFT_PRSTX(port));
|
|
rst_prst.s.soft_prst = rc;
|
|
csr_wr(CVMX_RST_SOFT_PRSTX(port), rst_prst.u64);
|
|
__setup_pem_reset(0, port, !rc);
|
|
|
|
pemx_cfg.u64 = csr_rd(CVMX_PEMX_CFG(port));
|
|
pemx_cfg.cn78xx.lanes8 = 0;
|
|
pemx_cfg.cn78xx.hostmd = rc;
|
|
pemx_cfg.cn78xx.md = gen3;
|
|
csr_wr(CVMX_PEMX_CFG(port), pemx_cfg.u64);
|
|
|
|
pemx_on.u64 = csr_rd(CVMX_PEMX_ON(port));
|
|
pemx_on.s.pemon = 1;
|
|
csr_wr(CVMX_PEMX_ON(port), pemx_on.u64);
|
|
}
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
break;
|
|
}
|
|
case CVMX_QLM_MODE_SGMII:
|
|
is_bgx = 1;
|
|
lmac_type[0] = 0;
|
|
lmac_type[1] = 0;
|
|
lmac_type[2] = 0;
|
|
lmac_type[3] = 0;
|
|
sds_lane[0] = 0;
|
|
sds_lane[1] = 1;
|
|
sds_lane[2] = 2;
|
|
sds_lane[3] = 3;
|
|
break;
|
|
case CVMX_QLM_MODE_SGMII_2X1:
|
|
if (qlm == 5) {
|
|
is_bgx = 1;
|
|
lmac_type[0] = 0;
|
|
lmac_type[1] = 0;
|
|
lmac_type[2] = -1;
|
|
lmac_type[3] = -1;
|
|
sds_lane[0] = 0;
|
|
sds_lane[1] = 1;
|
|
} else if (qlm == 6) {
|
|
is_bgx = 1;
|
|
lmac_type[0] = -1;
|
|
lmac_type[1] = -1;
|
|
lmac_type[2] = 0;
|
|
lmac_type[3] = 0;
|
|
sds_lane[2] = 2;
|
|
sds_lane[3] = 3;
|
|
additional_lmacs = 2;
|
|
}
|
|
break;
|
|
case CVMX_QLM_MODE_XAUI:
|
|
is_bgx = 5;
|
|
lmac_type[0] = 1;
|
|
lmac_type[1] = -1;
|
|
lmac_type[2] = -1;
|
|
lmac_type[3] = -1;
|
|
sds_lane[0] = 0xe4;
|
|
break;
|
|
case CVMX_QLM_MODE_RXAUI:
|
|
is_bgx = 3;
|
|
lmac_type[0] = 2;
|
|
lmac_type[1] = 2;
|
|
lmac_type[2] = -1;
|
|
lmac_type[3] = -1;
|
|
sds_lane[0] = 0x4;
|
|
sds_lane[1] = 0xe;
|
|
break;
|
|
case CVMX_QLM_MODE_RXAUI_1X2:
|
|
if (qlm == 5) {
|
|
is_bgx = 3;
|
|
lmac_type[0] = 2;
|
|
lmac_type[1] = -1;
|
|
lmac_type[2] = -1;
|
|
lmac_type[3] = -1;
|
|
sds_lane[0] = 0x4;
|
|
}
|
|
if (qlm == 6) {
|
|
is_bgx = 3;
|
|
lmac_type[0] = -1;
|
|
lmac_type[1] = -1;
|
|
lmac_type[2] = 2;
|
|
lmac_type[3] = -1;
|
|
sds_lane[2] = 0xe;
|
|
additional_lmacs = 2;
|
|
}
|
|
break;
|
|
case CVMX_QLM_MODE_10G_KR:
|
|
enable_training = 1;
|
|
case CVMX_QLM_MODE_XFI: /* 10GR_4X1 */
|
|
is_bgx = 1;
|
|
lmac_type[0] = 3;
|
|
lmac_type[1] = 3;
|
|
lmac_type[2] = 3;
|
|
lmac_type[3] = 3;
|
|
sds_lane[0] = 0;
|
|
sds_lane[1] = 1;
|
|
sds_lane[2] = 2;
|
|
sds_lane[3] = 3;
|
|
break;
|
|
case CVMX_QLM_MODE_10G_KR_1X2:
|
|
enable_training = 1;
|
|
case CVMX_QLM_MODE_XFI_1X2:
|
|
if (qlm == 5) {
|
|
is_bgx = 1;
|
|
lmac_type[0] = 3;
|
|
lmac_type[1] = 3;
|
|
lmac_type[2] = -1;
|
|
lmac_type[3] = -1;
|
|
sds_lane[0] = 0;
|
|
sds_lane[1] = 1;
|
|
} else if (qlm == 6) {
|
|
is_bgx = 1;
|
|
lmac_type[0] = -1;
|
|
lmac_type[1] = -1;
|
|
lmac_type[2] = 3;
|
|
lmac_type[3] = 3;
|
|
sds_lane[2] = 2;
|
|
sds_lane[3] = 3;
|
|
additional_lmacs = 2;
|
|
}
|
|
break;
|
|
case CVMX_QLM_MODE_40G_KR4:
|
|
enable_training = 1;
|
|
case CVMX_QLM_MODE_XLAUI: /* 40GR4_1X4 */
|
|
is_bgx = 5;
|
|
lmac_type[0] = 4;
|
|
lmac_type[1] = -1;
|
|
lmac_type[2] = -1;
|
|
lmac_type[3] = -1;
|
|
sds_lane[0] = 0xe4;
|
|
break;
|
|
case CVMX_QLM_MODE_RGMII_SGMII:
|
|
is_bgx = 1;
|
|
lmac_type[0] = 5;
|
|
lmac_type[1] = 0;
|
|
lmac_type[2] = 0;
|
|
lmac_type[3] = 0;
|
|
sds_lane[0] = 0;
|
|
sds_lane[1] = 1;
|
|
sds_lane[2] = 2;
|
|
sds_lane[3] = 3;
|
|
break;
|
|
case CVMX_QLM_MODE_RGMII_SGMII_1X1:
|
|
if (qlm == 5) {
|
|
is_bgx = 1;
|
|
lmac_type[0] = 5;
|
|
lmac_type[1] = 0;
|
|
lmac_type[2] = -1;
|
|
lmac_type[3] = -1;
|
|
sds_lane[0] = 0;
|
|
sds_lane[1] = 1;
|
|
}
|
|
break;
|
|
case CVMX_QLM_MODE_RGMII_SGMII_2X1:
|
|
if (qlm == 6) {
|
|
is_bgx = 1;
|
|
lmac_type[0] = 5;
|
|
lmac_type[1] = -1;
|
|
lmac_type[2] = 0;
|
|
lmac_type[3] = 0;
|
|
sds_lane[0] = 0;
|
|
sds_lane[2] = 0;
|
|
sds_lane[3] = 1;
|
|
}
|
|
break;
|
|
case CVMX_QLM_MODE_RGMII_10G_KR:
|
|
enable_training = 1;
|
|
case CVMX_QLM_MODE_RGMII_XFI:
|
|
is_bgx = 1;
|
|
lmac_type[0] = 5;
|
|
lmac_type[1] = 3;
|
|
lmac_type[2] = 3;
|
|
lmac_type[3] = 3;
|
|
sds_lane[0] = 0;
|
|
sds_lane[1] = 1;
|
|
sds_lane[2] = 2;
|
|
sds_lane[3] = 3;
|
|
break;
|
|
case CVMX_QLM_MODE_RGMII_10G_KR_1X1:
|
|
enable_training = 1;
|
|
case CVMX_QLM_MODE_RGMII_XFI_1X1:
|
|
if (qlm == 5) {
|
|
is_bgx = 3;
|
|
lmac_type[0] = 5;
|
|
lmac_type[1] = 3;
|
|
lmac_type[2] = -1;
|
|
lmac_type[3] = -1;
|
|
sds_lane[0] = 0;
|
|
sds_lane[1] = 1;
|
|
}
|
|
break;
|
|
case CVMX_QLM_MODE_RGMII_40G_KR4:
|
|
enable_training = 1;
|
|
case CVMX_QLM_MODE_RGMII_XLAUI:
|
|
is_bgx = 5;
|
|
lmac_type[0] = 5;
|
|
lmac_type[1] = 4;
|
|
lmac_type[2] = -1;
|
|
lmac_type[3] = -1;
|
|
sds_lane[0] = 0x0;
|
|
sds_lane[1] = 0xe4;
|
|
break;
|
|
case CVMX_QLM_MODE_RGMII_RXAUI:
|
|
is_bgx = 3;
|
|
lmac_type[0] = 5;
|
|
lmac_type[1] = 2;
|
|
lmac_type[2] = 2;
|
|
lmac_type[3] = -1;
|
|
sds_lane[0] = 0x0;
|
|
sds_lane[1] = 0x4;
|
|
sds_lane[2] = 0xe;
|
|
break;
|
|
case CVMX_QLM_MODE_RGMII_XAUI:
|
|
is_bgx = 5;
|
|
lmac_type[0] = 5;
|
|
lmac_type[1] = 1;
|
|
lmac_type[2] = -1;
|
|
lmac_type[3] = -1;
|
|
sds_lane[0] = 0;
|
|
sds_lane[1] = 0xe4;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
if (is_pcie == 0)
|
|
lane_mode = __get_lane_mode_for_speed_and_ref_clk(ref_clk_sel, baud_mhz, &alt_pll);
|
|
debug("%s: %d lane mode: %d, alternate PLL: %s\n", __func__, mode, lane_mode,
|
|
alt_pll ? "true" : "false");
|
|
if (lane_mode == -1)
|
|
return -1;
|
|
|
|
if (alt_pll) {
|
|
debug("%s: alternate PLL settings used for qlm %d, lane mode %d, reference clock %d\n",
|
|
__func__, qlm, lane_mode, ref_clk_sel);
|
|
if (__set_qlm_ref_clk_cn78xx(0, qlm, lane_mode, ref_clk_sel)) {
|
|
printf("%s: Error: reference clock %d is not supported for qlm %d, lane mode: 0x%x\n",
|
|
__func__, ref_clk_sel, qlm, lane_mode);
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
/* Power up PHY, but keep it in reset */
|
|
phy_ctl.u64 = csr_rd(CVMX_GSERX_PHY_CTL(qlm));
|
|
phy_ctl.s.phy_pd = 0;
|
|
phy_ctl.s.phy_reset = 1;
|
|
csr_wr(CVMX_GSERX_PHY_CTL(qlm), phy_ctl.u64);
|
|
|
|
/* Set GSER for the interface mode */
|
|
cfg.u64 = csr_rd(CVMX_GSERX_CFG(qlm));
|
|
cfg.s.bgx = is_bgx & 1;
|
|
cfg.s.bgx_quad = (is_bgx >> 2) & 1;
|
|
cfg.s.bgx_dual = (is_bgx >> 1) & 1;
|
|
cfg.s.pcie = is_pcie;
|
|
csr_wr(CVMX_GSERX_CFG(qlm), cfg.u64);
|
|
|
|
/* Lane mode */
|
|
lmode.u64 = csr_rd(CVMX_GSERX_LANE_MODE(qlm));
|
|
lmode.s.lmode = lane_mode;
|
|
csr_wr(CVMX_GSERX_LANE_MODE(qlm), lmode.u64);
|
|
|
|
/* Program lmac_type to figure out the type of BGX interface configured */
|
|
if (is_bgx) {
|
|
int bgx = (qlm < 4) ? qlm - 2 : 2;
|
|
cvmx_bgxx_cmrx_config_t cmr_config;
|
|
cvmx_bgxx_cmr_rx_lmacs_t rx_lmacs;
|
|
cvmx_bgxx_spux_br_pmd_control_t spu_pmd_control;
|
|
int index, total_lmacs = 0;
|
|
|
|
for (index = 0; index < 4; index++) {
|
|
cmr_config.u64 = csr_rd(CVMX_BGXX_CMRX_CONFIG(index, bgx));
|
|
cmr_config.s.enable = 0;
|
|
cmr_config.s.data_pkt_rx_en = 0;
|
|
cmr_config.s.data_pkt_tx_en = 0;
|
|
if (lmac_type[index] != -1) {
|
|
cmr_config.s.lmac_type = lmac_type[index];
|
|
cmr_config.s.lane_to_sds = sds_lane[index];
|
|
total_lmacs++;
|
|
/* RXAUI takes up 2 lmacs */
|
|
if (lmac_type[index] == 2)
|
|
total_lmacs += 1;
|
|
}
|
|
csr_wr(CVMX_BGXX_CMRX_CONFIG(index, bgx), cmr_config.u64);
|
|
|
|
/* Errata (TBD) RGMII doesn't turn on clock if its by
|
|
* itself. Force them on
|
|
*/
|
|
if (lmac_type[index] == 5) {
|
|
cvmx_bgxx_cmr_global_config_t global_config;
|
|
|
|
global_config.u64 = csr_rd(CVMX_BGXX_CMR_GLOBAL_CONFIG(bgx));
|
|
global_config.s.bgx_clk_enable = 1;
|
|
csr_wr(CVMX_BGXX_CMR_GLOBAL_CONFIG(bgx), global_config.u64);
|
|
}
|
|
|
|
/* Enable training for 10G_KR/40G_KR4 modes */
|
|
if (enable_training == 1 &&
|
|
(lmac_type[index] == 3 || lmac_type[index] == 4)) {
|
|
spu_pmd_control.u64 =
|
|
csr_rd(CVMX_BGXX_SPUX_BR_PMD_CONTROL(index, bgx));
|
|
spu_pmd_control.s.train_en = 1;
|
|
csr_wr(CVMX_BGXX_SPUX_BR_PMD_CONTROL(index, bgx),
|
|
spu_pmd_control.u64);
|
|
}
|
|
}
|
|
|
|
/* Update the total number of lmacs */
|
|
rx_lmacs.u64 = csr_rd(CVMX_BGXX_CMR_RX_LMACS(bgx));
|
|
rx_lmacs.s.lmacs = total_lmacs + additional_lmacs;
|
|
csr_wr(CVMX_BGXX_CMR_RX_LMACS(bgx), rx_lmacs.u64);
|
|
csr_wr(CVMX_BGXX_CMR_TX_LMACS(bgx), rx_lmacs.u64);
|
|
}
|
|
|
|
/* Bring phy out of reset */
|
|
phy_ctl.u64 = csr_rd(CVMX_GSERX_PHY_CTL(qlm));
|
|
phy_ctl.s.phy_reset = 0;
|
|
csr_wr(CVMX_GSERX_PHY_CTL(qlm), phy_ctl.u64);
|
|
|
|
/*
|
|
* Wait 1us until the management interface is ready to accept
|
|
* read/write commands.
|
|
*/
|
|
udelay(1);
|
|
|
|
/* Wait for reset to complete and the PLL to lock */
|
|
/* PCIe mode doesn't become ready until the PEM block attempts to bring
|
|
* the interface up. Skip this check for PCIe
|
|
*/
|
|
if (!is_pcie && CVMX_WAIT_FOR_FIELD64(CVMX_GSERX_QLM_STAT(qlm),
|
|
cvmx_gserx_qlm_stat_t,
|
|
rst_rdy, ==, 1, 10000)) {
|
|
printf("QLM%d: Timeout waiting for GSERX_QLM_STAT[rst_rdy]\n", qlm);
|
|
return -1;
|
|
}
|
|
|
|
/* Configure the gser pll */
|
|
if (!is_pcie)
|
|
__qlm_setup_pll_cn78xx(0, qlm);
|
|
|
|
/* Wait for reset to complete and the PLL to lock */
|
|
if (CVMX_WAIT_FOR_FIELD64(CVMX_GSERX_PLL_STAT(qlm), cvmx_gserx_pll_stat_t,
|
|
pll_lock, ==, 1, 10000)) {
|
|
printf("QLM%d: Timeout waiting for GSERX_PLL_STAT[pll_lock]\n", qlm);
|
|
return -1;
|
|
}
|
|
|
|
/* Errata GSER-26150: 10G PHY PLL Temperature Failure */
|
|
/* This workaround must be completed after the final deassertion of
|
|
* GSERx_PHY_CTL[PHY_RESET].
|
|
* Apply the workaround to 10.3125Gbps and 8Gbps only.
|
|
*/
|
|
if (OCTEON_IS_MODEL(OCTEON_CN73XX_PASS1_0) &&
|
|
(baud_mhz == 103125 || (is_pcie && gen3 == 2)))
|
|
__qlm_errata_gser_26150(0, qlm, is_pcie);
|
|
|
|
/* Errata GSER-26636: 10G-KR/40G-KR - Inverted Tx Coefficient Direction
|
|
* Change. Applied to all 10G standards (required for KR) but also
|
|
* applied to other standards in case software training is used
|
|
*/
|
|
if (baud_mhz == 103125)
|
|
__qlm_kr_inc_dec_gser26636(0, qlm);
|
|
|
|
/* Errata GSER-25992: RX EQ Default Settings Update (CTLE Bias) */
|
|
/* This workaround will only be applied to Pass 1.x */
|
|
/* It will also only be applied if the SERDES data-rate is 10G */
|
|
/* or if PCIe Gen3 (gen3=2 is PCIe Gen3) */
|
|
if (baud_mhz == 103125 || (is_pcie && gen3 == 2))
|
|
cvmx_qlm_gser_errata_25992(0, qlm);
|
|
|
|
/* Errata GSER-27140: Updating the RX EQ settings due to temperature
|
|
* drift sensitivities
|
|
*/
|
|
/* This workaround will also only be applied if the SERDES data-rate is 10G */
|
|
if (baud_mhz == 103125)
|
|
__qlm_rx_eq_temp_gser27140(0, qlm);
|
|
|
|
/* Reduce the voltage amplitude coming from Marvell PHY and also change
|
|
* DFE threshold settings for RXAUI interface
|
|
*/
|
|
if (is_bgx) {
|
|
int l;
|
|
|
|
for (l = 0; l < 4; l++) {
|
|
cvmx_gserx_lanex_rx_cfg_4_t cfg4;
|
|
cvmx_gserx_lanex_tx_cfg_0_t cfg0;
|
|
|
|
if (lmac_type[l] == 2) {
|
|
/* Change the Q/QB error sampler 0 threshold from 0xD to 0xF */
|
|
cfg4.u64 = csr_rd(CVMX_GSERX_LANEX_RX_CFG_4(l, qlm));
|
|
cfg4.s.cfg_rx_errdet_ctrl = 0xcf6f;
|
|
csr_wr(CVMX_GSERX_LANEX_RX_CFG_4(l, qlm), cfg4.u64);
|
|
/* Reduce the voltage swing to roughly 460mV */
|
|
cfg0.u64 = csr_rd(CVMX_GSERX_LANEX_TX_CFG_0(l, qlm));
|
|
cfg0.s.cfg_tx_swing = 0x12;
|
|
csr_wr(CVMX_GSERX_LANEX_TX_CFG_0(l, qlm), cfg0.u64);
|
|
}
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int __rmac_pll_config(int baud_mhz, int qlm, int mode)
|
|
{
|
|
cvmx_gserx_pll_px_mode_0_t pmode0;
|
|
cvmx_gserx_pll_px_mode_1_t pmode1;
|
|
cvmx_gserx_lane_px_mode_0_t lmode0;
|
|
cvmx_gserx_lane_px_mode_1_t lmode1;
|
|
cvmx_gserx_lane_mode_t lmode;
|
|
|
|
switch (baud_mhz) {
|
|
case 98304:
|
|
pmode0.u64 = 0x1a0a;
|
|
pmode1.u64 = 0x3228;
|
|
lmode0.u64 = 0x600f;
|
|
lmode1.u64 = 0xa80f;
|
|
break;
|
|
case 49152:
|
|
if (mode == CVMX_QLM_MODE_SDL) {
|
|
pmode0.u64 = 0x3605;
|
|
pmode1.u64 = 0x0814;
|
|
lmode0.u64 = 0x000f;
|
|
lmode1.u64 = 0x6814;
|
|
} else {
|
|
pmode0.u64 = 0x1a0a;
|
|
pmode1.u64 = 0x3228;
|
|
lmode0.u64 = 0x650f;
|
|
lmode1.u64 = 0xe80f;
|
|
}
|
|
break;
|
|
case 24576:
|
|
pmode0.u64 = 0x1a0a;
|
|
pmode1.u64 = 0x3228;
|
|
lmode0.u64 = 0x6a0f;
|
|
lmode1.u64 = 0xe80f;
|
|
break;
|
|
case 12288:
|
|
pmode0.u64 = 0x1a0a;
|
|
pmode1.u64 = 0x3228;
|
|
lmode0.u64 = 0x6f0f;
|
|
lmode1.u64 = 0xe80f;
|
|
break;
|
|
case 6144:
|
|
pmode0.u64 = 0x160a;
|
|
pmode1.u64 = 0x1019;
|
|
lmode0.u64 = 0x000f;
|
|
lmode1.u64 = 0x2814;
|
|
break;
|
|
case 3072:
|
|
pmode0.u64 = 0x160a;
|
|
pmode1.u64 = 0x1019;
|
|
lmode0.u64 = 0x050f;
|
|
lmode1.u64 = 0x6814;
|
|
break;
|
|
default:
|
|
printf("Invalid speed for CPRI/SDL configuration\n");
|
|
return -1;
|
|
}
|
|
|
|
lmode.u64 = csr_rd(CVMX_GSERX_LANE_MODE(qlm));
|
|
csr_wr(CVMX_GSERX_PLL_PX_MODE_0(lmode.s.lmode, qlm), pmode0.u64);
|
|
csr_wr(CVMX_GSERX_PLL_PX_MODE_1(lmode.s.lmode, qlm), pmode1.u64);
|
|
csr_wr(CVMX_GSERX_LANE_PX_MODE_0(lmode.s.lmode, qlm), lmode0.u64);
|
|
csr_wr(CVMX_GSERX_LANE_PX_MODE_1(lmode.s.lmode, qlm), lmode1.u64);
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* Configure QLM/DLM speed and mode for cnf75xx.
|
|
*
|
|
* @param qlm The QLM to configure
|
|
* @param baud_mhz The speed the QLM needs to be configured in Mhz.
|
|
* @param mode The QLM to be configured as SGMII/XAUI/PCIe.
|
|
* @param rc Only used for PCIe, rc = 1 for root complex mode, 0 for EP mode.
|
|
* @param gen3 Only used for PCIe
|
|
* gen3 = 2 GEN3 mode
|
|
* gen3 = 1 GEN2 mode
|
|
* gen3 = 0 GEN1 mode
|
|
*
|
|
* @param ref_clk_sel The reference-clock selection to use to configure QLM
|
|
* 0 = REF_100MHZ
|
|
* 1 = REF_125MHZ
|
|
* 2 = REF_156MHZ
|
|
* 3 = REF_122MHZ
|
|
* @param ref_clk_input The reference-clock input to use to configure QLM
|
|
*
|
|
* @return Return 0 on success or -1.
|
|
*/
|
|
static int octeon_configure_qlm_cnf75xx(int qlm, int baud_mhz, int mode, int rc, int gen3,
|
|
int ref_clk_sel, int ref_clk_input)
|
|
{
|
|
cvmx_gserx_phy_ctl_t phy_ctl;
|
|
cvmx_gserx_lane_mode_t lmode;
|
|
cvmx_gserx_cfg_t cfg;
|
|
cvmx_gserx_refclk_sel_t refclk_sel;
|
|
int is_pcie = 0;
|
|
int is_bgx = 0;
|
|
int is_srio = 0;
|
|
int is_rmac = 0;
|
|
int is_rmac_pipe = 0;
|
|
int lane_mode = 0;
|
|
short lmac_type[4] = { 0 };
|
|
short sds_lane[4] = { 0 };
|
|
bool alt_pll = false;
|
|
int enable_training = 0;
|
|
int additional_lmacs = 0;
|
|
int port = (qlm == 3) ? 1 : 0;
|
|
cvmx_sriox_status_reg_t status_reg;
|
|
|
|
debug("%s(qlm: %d, baud_mhz: %d, mode: %d, rc: %d, gen3: %d, ref_clk_sel: %d, ref_clk_input: %d\n",
|
|
__func__, qlm, baud_mhz, mode, rc, gen3, ref_clk_sel, ref_clk_input);
|
|
if (qlm > 8) {
|
|
printf("Invalid qlm%d passed\n", qlm);
|
|
return -1;
|
|
}
|
|
|
|
/* Errata PEM-31375 PEM RSL accesses to PCLK registers can timeout
|
|
* during speed change. Change SLI_WINDOW_CTL[time] to 525us
|
|
*/
|
|
__set_sli_window_ctl_errata_31375(0);
|
|
|
|
cfg.u64 = csr_rd(CVMX_GSERX_CFG(qlm));
|
|
|
|
/* If PEM is in EP, no need to do anything */
|
|
if (cfg.s.pcie && rc == 0) {
|
|
debug("%s: qlm %d is in PCIe endpoint mode, returning\n", __func__, qlm);
|
|
return 0;
|
|
}
|
|
|
|
if (cfg.s.srio && rc == 0) {
|
|
debug("%s: qlm %d is in SRIO endpoint mode, returning\n", __func__, qlm);
|
|
return 0;
|
|
}
|
|
|
|
/* Set the reference clock to use */
|
|
refclk_sel.u64 = 0;
|
|
if (ref_clk_input == 0) { /* External ref clock */
|
|
refclk_sel.s.com_clk_sel = 0;
|
|
refclk_sel.s.use_com1 = 0;
|
|
} else if (ref_clk_input == 1) {
|
|
refclk_sel.s.com_clk_sel = 1;
|
|
refclk_sel.s.use_com1 = 0;
|
|
} else {
|
|
refclk_sel.s.com_clk_sel = 1;
|
|
refclk_sel.s.use_com1 = 1;
|
|
}
|
|
|
|
csr_wr(CVMX_GSERX_REFCLK_SEL(qlm), refclk_sel.u64);
|
|
|
|
/* Reset the QLM after changing the reference clock */
|
|
phy_ctl.u64 = csr_rd(CVMX_GSERX_PHY_CTL(qlm));
|
|
phy_ctl.s.phy_reset = 1;
|
|
phy_ctl.s.phy_pd = 1;
|
|
csr_wr(CVMX_GSERX_PHY_CTL(qlm), phy_ctl.u64);
|
|
|
|
udelay(1000);
|
|
|
|
switch (mode) {
|
|
case CVMX_QLM_MODE_PCIE:
|
|
case CVMX_QLM_MODE_PCIE_1X2:
|
|
case CVMX_QLM_MODE_PCIE_2X1: {
|
|
cvmx_pemx_cfg_t pemx_cfg;
|
|
cvmx_pemx_on_t pemx_on;
|
|
cvmx_rst_soft_prstx_t rst_prst;
|
|
|
|
is_pcie = 1;
|
|
|
|
if (qlm > 1) {
|
|
printf("Invalid PCIe mode for QLM%d\n", qlm);
|
|
return -1;
|
|
}
|
|
|
|
if (ref_clk_sel == 0) {
|
|
refclk_sel.u64 = csr_rd(CVMX_GSERX_REFCLK_SEL(qlm));
|
|
refclk_sel.s.pcie_refclk125 = 0;
|
|
csr_wr(CVMX_GSERX_REFCLK_SEL(qlm), refclk_sel.u64);
|
|
if (gen3 == 0) /* Gen1 mode */
|
|
lane_mode = R_2_5G_REFCLK100;
|
|
else if (gen3 == 1) /* Gen2 mode */
|
|
lane_mode = R_5G_REFCLK100;
|
|
else
|
|
lane_mode = R_8G_REFCLK100;
|
|
} else if (ref_clk_sel == 1) {
|
|
refclk_sel.u64 = csr_rd(CVMX_GSERX_REFCLK_SEL(qlm));
|
|
refclk_sel.s.pcie_refclk125 = 1;
|
|
csr_wr(CVMX_GSERX_REFCLK_SEL(qlm), refclk_sel.u64);
|
|
if (gen3 == 0) /* Gen1 mode */
|
|
lane_mode = R_2_5G_REFCLK125;
|
|
else if (gen3 == 1) /* Gen2 mode */
|
|
lane_mode = R_5G_REFCLK125;
|
|
else
|
|
lane_mode = R_8G_REFCLK125;
|
|
} else {
|
|
printf("Invalid reference clock for PCIe on QLM%d\n", qlm);
|
|
return -1;
|
|
}
|
|
|
|
switch (qlm) {
|
|
case 0: /* Either x4 or x2 based on PEM0 */
|
|
rst_prst.u64 = csr_rd(CVMX_RST_SOFT_PRSTX(0));
|
|
rst_prst.s.soft_prst = rc;
|
|
csr_wr(CVMX_RST_SOFT_PRSTX(0), rst_prst.u64);
|
|
__setup_pem_reset(0, 0, !rc);
|
|
|
|
pemx_cfg.u64 = csr_rd(CVMX_PEMX_CFG(0));
|
|
pemx_cfg.cnf75xx.hostmd = rc;
|
|
pemx_cfg.cnf75xx.lanes8 = (mode == CVMX_QLM_MODE_PCIE);
|
|
pemx_cfg.cnf75xx.md = gen3;
|
|
csr_wr(CVMX_PEMX_CFG(0), pemx_cfg.u64);
|
|
/* x4 mode waits for QLM1 setup before turning on the PEM */
|
|
if (mode == CVMX_QLM_MODE_PCIE_1X2 || mode == CVMX_QLM_MODE_PCIE_2X1) {
|
|
pemx_on.u64 = csr_rd(CVMX_PEMX_ON(0));
|
|
pemx_on.s.pemon = 1;
|
|
csr_wr(CVMX_PEMX_ON(0), pemx_on.u64);
|
|
}
|
|
break;
|
|
case 1: /* Either PEM0 x4 or PEM1 x2 */
|
|
if (mode == CVMX_QLM_MODE_PCIE_1X2 || mode == CVMX_QLM_MODE_PCIE_2X1) {
|
|
rst_prst.u64 = csr_rd(CVMX_RST_SOFT_PRSTX(1));
|
|
rst_prst.s.soft_prst = rc;
|
|
csr_wr(CVMX_RST_SOFT_PRSTX(1), rst_prst.u64);
|
|
__setup_pem_reset(0, 1, !rc);
|
|
|
|
pemx_cfg.u64 = csr_rd(CVMX_PEMX_CFG(1));
|
|
pemx_cfg.cnf75xx.hostmd = rc;
|
|
pemx_cfg.cnf75xx.md = gen3;
|
|
csr_wr(CVMX_PEMX_CFG(1), pemx_cfg.u64);
|
|
|
|
pemx_on.u64 = csr_rd(CVMX_PEMX_ON(1));
|
|
pemx_on.s.pemon = 1;
|
|
csr_wr(CVMX_PEMX_ON(1), pemx_on.u64);
|
|
} else {
|
|
pemx_on.u64 = csr_rd(CVMX_PEMX_ON(0));
|
|
pemx_on.s.pemon = 1;
|
|
csr_wr(CVMX_PEMX_ON(0), pemx_on.u64);
|
|
}
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
break;
|
|
}
|
|
case CVMX_QLM_MODE_SRIO_1X4:
|
|
case CVMX_QLM_MODE_SRIO_2X2:
|
|
case CVMX_QLM_MODE_SRIO_4X1: {
|
|
int spd = 0xf;
|
|
|
|
if (cvmx_fuse_read(1601)) {
|
|
debug("SRIO is not supported on cnf73xx model\n");
|
|
return -1;
|
|
}
|
|
|
|
switch (baud_mhz) {
|
|
case 1250:
|
|
switch (ref_clk_sel) {
|
|
case 0: /* 100 MHz ref clock */
|
|
spd = 0x3;
|
|
break;
|
|
case 1: /* 125 MHz ref clock */
|
|
spd = 0xa;
|
|
break;
|
|
case 2: /* 156.25 MHz ref clock */
|
|
spd = 0x4;
|
|
break;
|
|
default:
|
|
spd = 0xf; /* Disabled */
|
|
break;
|
|
}
|
|
break;
|
|
case 2500:
|
|
switch (ref_clk_sel) {
|
|
case 0: /* 100 MHz ref clock */
|
|
spd = 0x2;
|
|
break;
|
|
case 1: /* 125 MHz ref clock */
|
|
spd = 0x9;
|
|
break;
|
|
case 2: /* 156.25 MHz ref clock */
|
|
spd = 0x7;
|
|
break;
|
|
default:
|
|
spd = 0xf; /* Disabled */
|
|
break;
|
|
}
|
|
break;
|
|
case 3125:
|
|
switch (ref_clk_sel) {
|
|
case 1: /* 125 MHz ref clock */
|
|
spd = 0x8;
|
|
break;
|
|
case 2: /* 156.25 MHz ref clock */
|
|
spd = 0xe;
|
|
break;
|
|
default:
|
|
spd = 0xf; /* Disabled */
|
|
break;
|
|
}
|
|
break;
|
|
case 5000:
|
|
switch (ref_clk_sel) {
|
|
case 0: /* 100 MHz ref clock */
|
|
spd = 0x0;
|
|
break;
|
|
case 1: /* 125 MHz ref clock */
|
|
spd = 0x6;
|
|
break;
|
|
case 2: /* 156.25 MHz ref clock */
|
|
spd = 0xb;
|
|
break;
|
|
default:
|
|
spd = 0xf; /* Disabled */
|
|
break;
|
|
}
|
|
break;
|
|
default:
|
|
spd = 0xf;
|
|
break;
|
|
}
|
|
|
|
if (spd == 0xf) {
|
|
printf("ERROR: Invalid SRIO speed (%d) configured for QLM%d\n", baud_mhz,
|
|
qlm);
|
|
return -1;
|
|
}
|
|
|
|
status_reg.u64 = csr_rd(CVMX_SRIOX_STATUS_REG(port));
|
|
status_reg.s.spd = spd;
|
|
csr_wr(CVMX_SRIOX_STATUS_REG(port), status_reg.u64);
|
|
is_srio = 1;
|
|
break;
|
|
}
|
|
|
|
case CVMX_QLM_MODE_SGMII_2X1:
|
|
if (qlm == 4) {
|
|
is_bgx = 1;
|
|
lmac_type[0] = 0;
|
|
lmac_type[1] = 0;
|
|
lmac_type[2] = -1;
|
|
lmac_type[3] = -1;
|
|
sds_lane[0] = 0;
|
|
sds_lane[1] = 1;
|
|
} else if (qlm == 5) {
|
|
is_bgx = 1;
|
|
lmac_type[0] = -1;
|
|
lmac_type[1] = -1;
|
|
lmac_type[2] = 0;
|
|
lmac_type[3] = 0;
|
|
sds_lane[2] = 2;
|
|
sds_lane[3] = 3;
|
|
additional_lmacs = 2;
|
|
}
|
|
break;
|
|
case CVMX_QLM_MODE_10G_KR_1X2:
|
|
enable_training = 1;
|
|
case CVMX_QLM_MODE_XFI_1X2:
|
|
if (qlm == 5) {
|
|
is_bgx = 1;
|
|
lmac_type[0] = -1;
|
|
lmac_type[1] = -1;
|
|
lmac_type[2] = 3;
|
|
lmac_type[3] = 3;
|
|
sds_lane[2] = 2;
|
|
sds_lane[3] = 3;
|
|
additional_lmacs = 2;
|
|
}
|
|
break;
|
|
case CVMX_QLM_MODE_CPRI: /* CPRI / JESD204B */
|
|
is_rmac = 1;
|
|
break;
|
|
case CVMX_QLM_MODE_SDL: /* Serdes Lite (SDL) */
|
|
is_rmac = 1;
|
|
is_rmac_pipe = 1;
|
|
lane_mode = 1;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
if (is_rmac_pipe == 0 && is_pcie == 0) {
|
|
lane_mode = __get_lane_mode_for_speed_and_ref_clk(ref_clk_sel, baud_mhz,
|
|
&alt_pll);
|
|
}
|
|
|
|
debug("%s: %d lane mode: %d, alternate PLL: %s\n", __func__, mode, lane_mode,
|
|
alt_pll ? "true" : "false");
|
|
if (lane_mode == -1)
|
|
return -1;
|
|
|
|
if (alt_pll) {
|
|
debug("%s: alternate PLL settings used for qlm %d, lane mode %d, reference clock %d\n",
|
|
__func__, qlm, lane_mode, ref_clk_sel);
|
|
if (__set_qlm_ref_clk_cn78xx(0, qlm, lane_mode, ref_clk_sel)) {
|
|
printf("%s: Error: reference clock %d is not supported for qlm %d\n",
|
|
__func__, ref_clk_sel, qlm);
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
/* Power up PHY, but keep it in reset */
|
|
phy_ctl.u64 = csr_rd(CVMX_GSERX_PHY_CTL(qlm));
|
|
phy_ctl.s.phy_pd = 0;
|
|
phy_ctl.s.phy_reset = 1;
|
|
csr_wr(CVMX_GSERX_PHY_CTL(qlm), phy_ctl.u64);
|
|
|
|
/* Set GSER for the interface mode */
|
|
cfg.u64 = csr_rd(CVMX_GSERX_CFG(qlm));
|
|
cfg.s.bgx = is_bgx & 1;
|
|
cfg.s.bgx_quad = (is_bgx >> 2) & 1;
|
|
cfg.s.bgx_dual = (is_bgx >> 1) & 1;
|
|
cfg.s.pcie = is_pcie;
|
|
cfg.s.srio = is_srio;
|
|
cfg.s.rmac = is_rmac;
|
|
cfg.s.rmac_pipe = is_rmac_pipe;
|
|
csr_wr(CVMX_GSERX_CFG(qlm), cfg.u64);
|
|
|
|
/* Lane mode */
|
|
lmode.u64 = csr_rd(CVMX_GSERX_LANE_MODE(qlm));
|
|
lmode.s.lmode = lane_mode;
|
|
csr_wr(CVMX_GSERX_LANE_MODE(qlm), lmode.u64);
|
|
|
|
/* Because of the Errata where quad mode does not work, program
|
|
* lmac_type to figure out the type of BGX interface configured
|
|
*/
|
|
if (is_bgx) {
|
|
int bgx = 0;
|
|
cvmx_bgxx_cmrx_config_t cmr_config;
|
|
cvmx_bgxx_cmr_rx_lmacs_t rx_lmacs;
|
|
cvmx_bgxx_spux_br_pmd_control_t spu_pmd_control;
|
|
int index, total_lmacs = 0;
|
|
|
|
for (index = 0; index < 4; index++) {
|
|
cmr_config.u64 = csr_rd(CVMX_BGXX_CMRX_CONFIG(index, bgx));
|
|
cmr_config.s.enable = 0;
|
|
cmr_config.s.data_pkt_rx_en = 0;
|
|
cmr_config.s.data_pkt_tx_en = 0;
|
|
if (lmac_type[index] != -1) {
|
|
cmr_config.s.lmac_type = lmac_type[index];
|
|
cmr_config.s.lane_to_sds = sds_lane[index];
|
|
total_lmacs++;
|
|
}
|
|
csr_wr(CVMX_BGXX_CMRX_CONFIG(index, bgx), cmr_config.u64);
|
|
|
|
/* Enable training for 10G_KR/40G_KR4 modes */
|
|
if (enable_training == 1 &&
|
|
(lmac_type[index] == 3 || lmac_type[index] == 4)) {
|
|
spu_pmd_control.u64 =
|
|
csr_rd(CVMX_BGXX_SPUX_BR_PMD_CONTROL(index, bgx));
|
|
spu_pmd_control.s.train_en = 1;
|
|
csr_wr(CVMX_BGXX_SPUX_BR_PMD_CONTROL(index, bgx),
|
|
spu_pmd_control.u64);
|
|
}
|
|
}
|
|
|
|
/* Update the total number of lmacs */
|
|
rx_lmacs.u64 = csr_rd(CVMX_BGXX_CMR_RX_LMACS(bgx));
|
|
rx_lmacs.s.lmacs = total_lmacs + additional_lmacs;
|
|
csr_wr(CVMX_BGXX_CMR_RX_LMACS(bgx), rx_lmacs.u64);
|
|
csr_wr(CVMX_BGXX_CMR_TX_LMACS(bgx), rx_lmacs.u64);
|
|
}
|
|
|
|
/* Bring phy out of reset */
|
|
phy_ctl.u64 = csr_rd(CVMX_GSERX_PHY_CTL(qlm));
|
|
phy_ctl.s.phy_reset = 0;
|
|
csr_wr(CVMX_GSERX_PHY_CTL(qlm), phy_ctl.u64);
|
|
|
|
/*
|
|
* Wait 1us until the management interface is ready to accept
|
|
* read/write commands.
|
|
*/
|
|
udelay(1);
|
|
|
|
if (is_srio) {
|
|
status_reg.u64 = csr_rd(CVMX_SRIOX_STATUS_REG(port));
|
|
status_reg.s.srio = 1;
|
|
csr_wr(CVMX_SRIOX_STATUS_REG(port), status_reg.u64);
|
|
return 0;
|
|
}
|
|
|
|
/* Wait for reset to complete and the PLL to lock */
|
|
/* PCIe mode doesn't become ready until the PEM block attempts to bring
|
|
* the interface up. Skip this check for PCIe
|
|
*/
|
|
if (!is_pcie && CVMX_WAIT_FOR_FIELD64(CVMX_GSERX_QLM_STAT(qlm), cvmx_gserx_qlm_stat_t,
|
|
rst_rdy, ==, 1, 10000)) {
|
|
printf("QLM%d: Timeout waiting for GSERX_QLM_STAT[rst_rdy]\n", qlm);
|
|
return -1;
|
|
}
|
|
|
|
/* Configure the gser pll */
|
|
if (is_rmac)
|
|
__rmac_pll_config(baud_mhz, qlm, mode);
|
|
else if (!(is_pcie || is_srio))
|
|
__qlm_setup_pll_cn78xx(0, qlm);
|
|
|
|
/* Wait for reset to complete and the PLL to lock */
|
|
if (CVMX_WAIT_FOR_FIELD64(CVMX_GSERX_PLL_STAT(qlm), cvmx_gserx_pll_stat_t,
|
|
pll_lock, ==, 1, 10000)) {
|
|
printf("QLM%d: Timeout waiting for GSERX_PLL_STAT[pll_lock]\n", qlm);
|
|
return -1;
|
|
}
|
|
|
|
/* Errata GSER-27140: Updating the RX EQ settings due to temperature
|
|
* drift sensitivities
|
|
*/
|
|
/* This workaround will also only be applied if the SERDES data-rate is 10G */
|
|
if (baud_mhz == 103125)
|
|
__qlm_rx_eq_temp_gser27140(0, qlm);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* Configure qlm/dlm speed and mode.
|
|
* @param qlm The QLM or DLM to configure
|
|
* @param speed The speed the QLM needs to be configured in Mhz.
|
|
* @param mode The QLM to be configured as SGMII/XAUI/PCIe.
|
|
* @param rc Only used for PCIe, rc = 1 for root complex mode, 0 for EP
|
|
* mode.
|
|
* @param pcie_mode Only used when qlm/dlm are in pcie mode.
|
|
* @param ref_clk_sel Reference clock to use for 70XX where:
|
|
* 0: 100MHz
|
|
* 1: 125MHz
|
|
* 2: 156.25MHz
|
|
* 3: 122MHz (Used by RMAC)
|
|
* @param ref_clk_input This selects which reference clock input to use. For
|
|
* cn70xx:
|
|
* 0: DLMC_REF_CLK0
|
|
* 1: DLMC_REF_CLK1
|
|
* 2: DLM0_REF_CLK
|
|
* cn61xx: (not used)
|
|
* cn78xx/cn76xx/cn73xx:
|
|
* 0: Internal clock (QLM[0-7]_REF_CLK)
|
|
* 1: QLMC_REF_CLK0
|
|
* 2: QLMC_REF_CLK1
|
|
*
|
|
* @return Return 0 on success or -1.
|
|
*/
|
|
int octeon_configure_qlm(int qlm, int speed, int mode, int rc, int pcie_mode, int ref_clk_sel,
|
|
int ref_clk_input)
|
|
{
|
|
int node = 0; // ToDo: corrently only node 0 is supported
|
|
|
|
debug("%s(%d, %d, %d, %d, %d, %d, %d)\n", __func__, qlm, speed, mode, rc, pcie_mode,
|
|
ref_clk_sel, ref_clk_input);
|
|
if (OCTEON_IS_MODEL(OCTEON_CN61XX) || OCTEON_IS_MODEL(OCTEON_CNF71XX))
|
|
return octeon_configure_qlm_cn61xx(qlm, speed, mode, rc, pcie_mode);
|
|
else if (OCTEON_IS_MODEL(OCTEON_CN70XX))
|
|
return octeon_configure_qlm_cn70xx(qlm, speed, mode, rc, pcie_mode, ref_clk_sel,
|
|
ref_clk_input);
|
|
else if (OCTEON_IS_MODEL(OCTEON_CN78XX))
|
|
return octeon_configure_qlm_cn78xx(node, qlm, speed, mode, rc, pcie_mode,
|
|
ref_clk_sel, ref_clk_input);
|
|
else if (OCTEON_IS_MODEL(OCTEON_CN73XX))
|
|
return octeon_configure_qlm_cn73xx(qlm, speed, mode, rc, pcie_mode, ref_clk_sel,
|
|
ref_clk_input);
|
|
else if (OCTEON_IS_MODEL(OCTEON_CNF75XX))
|
|
return octeon_configure_qlm_cnf75xx(qlm, speed, mode, rc, pcie_mode, ref_clk_sel,
|
|
ref_clk_input);
|
|
else
|
|
return -1;
|
|
}
|
|
|
|
void octeon_init_qlm(int node)
|
|
{
|
|
int qlm;
|
|
cvmx_gserx_phy_ctl_t phy_ctl;
|
|
cvmx_gserx_cfg_t cfg;
|
|
int baud_mhz;
|
|
int pem;
|
|
|
|
if (!OCTEON_IS_MODEL(OCTEON_CN78XX))
|
|
return;
|
|
|
|
for (qlm = 0; qlm < 8; qlm++) {
|
|
phy_ctl.u64 = csr_rd_node(node, CVMX_GSERX_PHY_CTL(qlm));
|
|
if (phy_ctl.s.phy_reset == 0) {
|
|
cfg.u64 = csr_rd_node(node, CVMX_GSERX_CFG(qlm));
|
|
if (cfg.s.pcie)
|
|
__cvmx_qlm_pcie_errata_cn78xx(node, qlm);
|
|
else
|
|
__qlm_init_errata_20844(node, qlm);
|
|
|
|
baud_mhz = cvmx_qlm_get_gbaud_mhz_node(node, qlm);
|
|
if (baud_mhz == 6250 || baud_mhz == 6316)
|
|
octeon_qlm_tune_v3(node, qlm, baud_mhz, 0xa, 0xa0, -1, -1);
|
|
else if (baud_mhz == 103125)
|
|
octeon_qlm_tune_v3(node, qlm, baud_mhz, 0xd, 0xd0, -1, -1);
|
|
}
|
|
}
|
|
|
|
/* Setup how each PEM drives the PERST lines */
|
|
for (pem = 0; pem < 4; pem++) {
|
|
cvmx_rst_ctlx_t rst_ctl;
|
|
|
|
rst_ctl.u64 = csr_rd_node(node, CVMX_RST_CTLX(pem));
|
|
__setup_pem_reset(node, pem, !rst_ctl.s.host_mode);
|
|
}
|
|
}
|