mirror of
https://github.com/AsahiLinux/u-boot
synced 2024-12-26 21:13:48 +00:00
f848b4804e
strncpy() simply bails out when copying a source string whose size exceeds the destination string size, potentially leaving the destination string unterminated. One possible way to address is to pass MDIO_NAME_LEN - 1 and a previously zero-initialized destination string, but this is more difficult to maintain. The chosen alternative is to use strlcpy(), which properly limits the copy len in the (srclen >= size) case to "size - 1", and which is also more efficient than the strncpy() byte-by-byte implementation by using memcpy. The destination string returned by strlcpy() is always NULL terminated. Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Reviewed-by: Ramon Fried <rfried.dev@gmail.com>
704 lines
19 KiB
C
704 lines
19 KiB
C
// SPDX-License-Identifier: GPL-2.0+
|
|
/*
|
|
* ENETC ethernet controller driver
|
|
* Copyright 2017-2021 NXP
|
|
*/
|
|
|
|
#include <common.h>
|
|
#include <dm.h>
|
|
#include <errno.h>
|
|
#include <fdt_support.h>
|
|
#include <malloc.h>
|
|
#include <memalign.h>
|
|
#include <net.h>
|
|
#include <asm/cache.h>
|
|
#include <asm/io.h>
|
|
#include <pci.h>
|
|
#include <miiphy.h>
|
|
#include <linux/bug.h>
|
|
#include <linux/delay.h>
|
|
|
|
#include "fsl_enetc.h"
|
|
|
|
#define ENETC_DRIVER_NAME "enetc_eth"
|
|
|
|
/*
|
|
* sets the MAC address in IERB registers, this setting is persistent and
|
|
* carried over to Linux.
|
|
*/
|
|
static void enetc_set_ierb_primary_mac(struct udevice *dev, int devfn,
|
|
const u8 *enetaddr)
|
|
{
|
|
#ifdef CONFIG_ARCH_LS1028A
|
|
/*
|
|
* LS1028A is the only part with IERB at this time and there are plans to change
|
|
* its structure, keep this LS1028A specific for now
|
|
*/
|
|
#define IERB_BASE 0x1f0800000ULL
|
|
#define IERB_PFMAC(pf, vf, n) (IERB_BASE + 0x8000 + (pf) * 0x100 + (vf) * 8 \
|
|
+ (n) * 4)
|
|
|
|
static int ierb_fn_to_pf[] = {0, 1, 2, -1, -1, -1, 3};
|
|
|
|
u16 lower = *(const u16 *)(enetaddr + 4);
|
|
u32 upper = *(const u32 *)enetaddr;
|
|
|
|
if (ierb_fn_to_pf[devfn] < 0)
|
|
return;
|
|
|
|
out_le32(IERB_PFMAC(ierb_fn_to_pf[devfn], 0, 0), upper);
|
|
out_le32(IERB_PFMAC(ierb_fn_to_pf[devfn], 0, 1), (u32)lower);
|
|
#endif
|
|
}
|
|
|
|
/* sets up primary MAC addresses in DT/IERB */
|
|
void fdt_fixup_enetc_mac(void *blob)
|
|
{
|
|
struct pci_child_plat *ppdata;
|
|
struct eth_pdata *pdata;
|
|
struct udevice *dev;
|
|
struct uclass *uc;
|
|
char path[256];
|
|
int offset;
|
|
int devfn;
|
|
|
|
uclass_get(UCLASS_ETH, &uc);
|
|
uclass_foreach_dev(dev, uc) {
|
|
if (!dev->driver || !dev->driver->name ||
|
|
strcmp(dev->driver->name, ENETC_DRIVER_NAME))
|
|
continue;
|
|
|
|
pdata = dev_get_plat(dev);
|
|
ppdata = dev_get_parent_plat(dev);
|
|
devfn = PCI_FUNC(ppdata->devfn);
|
|
|
|
enetc_set_ierb_primary_mac(dev, devfn, pdata->enetaddr);
|
|
|
|
snprintf(path, 256, "/soc/pcie@1f0000000/ethernet@%x,%x",
|
|
PCI_DEV(ppdata->devfn), PCI_FUNC(ppdata->devfn));
|
|
offset = fdt_path_offset(blob, path);
|
|
if (offset < 0)
|
|
continue;
|
|
fdt_setprop(blob, offset, "mac-address", pdata->enetaddr, 6);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Bind the device:
|
|
* - set a more explicit name on the interface
|
|
*/
|
|
static int enetc_bind(struct udevice *dev)
|
|
{
|
|
char name[16];
|
|
static int eth_num_devices;
|
|
|
|
/*
|
|
* prefer using PCI function numbers to number interfaces, but these
|
|
* are only available if dts nodes are present. For PCI they are
|
|
* optional, handle that case too. Just in case some nodes are present
|
|
* and some are not, use different naming scheme - enetc-N based on
|
|
* PCI function # and enetc#N based on interface count
|
|
*/
|
|
if (ofnode_valid(dev_ofnode(dev)))
|
|
sprintf(name, "enetc-%u", PCI_FUNC(pci_get_devfn(dev)));
|
|
else
|
|
sprintf(name, "enetc#%u", eth_num_devices++);
|
|
device_set_name(dev, name);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* MDIO wrappers, we're using these to drive internal MDIO to get to serdes */
|
|
static int enetc_mdio_read(struct mii_dev *bus, int addr, int devad, int reg)
|
|
{
|
|
struct enetc_mdio_priv priv;
|
|
|
|
priv.regs_base = bus->priv;
|
|
return enetc_mdio_read_priv(&priv, addr, devad, reg);
|
|
}
|
|
|
|
static int enetc_mdio_write(struct mii_dev *bus, int addr, int devad, int reg,
|
|
u16 val)
|
|
{
|
|
struct enetc_mdio_priv priv;
|
|
|
|
priv.regs_base = bus->priv;
|
|
return enetc_mdio_write_priv(&priv, addr, devad, reg, val);
|
|
}
|
|
|
|
/* only interfaces that can pin out through serdes have internal MDIO */
|
|
static bool enetc_has_imdio(struct udevice *dev)
|
|
{
|
|
struct enetc_priv *priv = dev_get_priv(dev);
|
|
|
|
return !!(priv->imdio.priv);
|
|
}
|
|
|
|
/* set up serdes for SGMII */
|
|
static int enetc_init_sgmii(struct udevice *dev)
|
|
{
|
|
struct enetc_priv *priv = dev_get_priv(dev);
|
|
bool is2500 = false;
|
|
u16 reg;
|
|
|
|
if (!enetc_has_imdio(dev))
|
|
return 0;
|
|
|
|
if (priv->if_type == PHY_INTERFACE_MODE_2500BASEX)
|
|
is2500 = true;
|
|
|
|
/*
|
|
* Set to SGMII mode, for 1Gbps enable AN, for 2.5Gbps set fixed speed.
|
|
* Although fixed speed is 1Gbps, we could be running at 2.5Gbps based
|
|
* on PLL configuration. Setting 1G for 2.5G here is counter intuitive
|
|
* but intentional.
|
|
*/
|
|
reg = ENETC_PCS_IF_MODE_SGMII;
|
|
reg |= is2500 ? ENETC_PCS_IF_MODE_SPEED_1G : ENETC_PCS_IF_MODE_SGMII_AN;
|
|
enetc_mdio_write(&priv->imdio, ENETC_PCS_PHY_ADDR, MDIO_DEVAD_NONE,
|
|
ENETC_PCS_IF_MODE, reg);
|
|
|
|
/* Dev ability - SGMII */
|
|
enetc_mdio_write(&priv->imdio, ENETC_PCS_PHY_ADDR, MDIO_DEVAD_NONE,
|
|
ENETC_PCS_DEV_ABILITY, ENETC_PCS_DEV_ABILITY_SGMII);
|
|
|
|
/* Adjust link timer for SGMII */
|
|
enetc_mdio_write(&priv->imdio, ENETC_PCS_PHY_ADDR, MDIO_DEVAD_NONE,
|
|
ENETC_PCS_LINK_TIMER1, ENETC_PCS_LINK_TIMER1_VAL);
|
|
enetc_mdio_write(&priv->imdio, ENETC_PCS_PHY_ADDR, MDIO_DEVAD_NONE,
|
|
ENETC_PCS_LINK_TIMER2, ENETC_PCS_LINK_TIMER2_VAL);
|
|
|
|
reg = ENETC_PCS_CR_DEF_VAL;
|
|
reg |= is2500 ? ENETC_PCS_CR_RST : ENETC_PCS_CR_RESET_AN;
|
|
/* restart PCS AN */
|
|
enetc_mdio_write(&priv->imdio, ENETC_PCS_PHY_ADDR, MDIO_DEVAD_NONE,
|
|
ENETC_PCS_CR, reg);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* set up MAC for RGMII */
|
|
static void enetc_init_rgmii(struct udevice *dev, struct phy_device *phydev)
|
|
{
|
|
struct enetc_priv *priv = dev_get_priv(dev);
|
|
u32 old_val, val;
|
|
|
|
old_val = val = enetc_read_port(priv, ENETC_PM_IF_MODE);
|
|
|
|
/* disable unreliable RGMII in-band signaling and force the MAC into
|
|
* the speed negotiated by the PHY.
|
|
*/
|
|
val &= ~ENETC_PM_IF_MODE_AN_ENA;
|
|
|
|
if (phydev->speed == SPEED_1000) {
|
|
val &= ~ENETC_PM_IFM_SSP_MASK;
|
|
val |= ENETC_PM_IFM_SSP_1000;
|
|
} else if (phydev->speed == SPEED_100) {
|
|
val &= ~ENETC_PM_IFM_SSP_MASK;
|
|
val |= ENETC_PM_IFM_SSP_100;
|
|
} else if (phydev->speed == SPEED_10) {
|
|
val &= ~ENETC_PM_IFM_SSP_MASK;
|
|
val |= ENETC_PM_IFM_SSP_10;
|
|
}
|
|
|
|
if (phydev->duplex == DUPLEX_FULL)
|
|
val |= ENETC_PM_IFM_FULL_DPX;
|
|
else
|
|
val &= ~ENETC_PM_IFM_FULL_DPX;
|
|
|
|
if (val == old_val)
|
|
return;
|
|
|
|
enetc_write_port(priv, ENETC_PM_IF_MODE, val);
|
|
}
|
|
|
|
/* set up MAC configuration for the given interface type */
|
|
static void enetc_setup_mac_iface(struct udevice *dev,
|
|
struct phy_device *phydev)
|
|
{
|
|
struct enetc_priv *priv = dev_get_priv(dev);
|
|
u32 if_mode;
|
|
|
|
switch (priv->if_type) {
|
|
case PHY_INTERFACE_MODE_RGMII:
|
|
case PHY_INTERFACE_MODE_RGMII_ID:
|
|
case PHY_INTERFACE_MODE_RGMII_RXID:
|
|
case PHY_INTERFACE_MODE_RGMII_TXID:
|
|
enetc_init_rgmii(dev, phydev);
|
|
break;
|
|
case PHY_INTERFACE_MODE_USXGMII:
|
|
case PHY_INTERFACE_MODE_10GBASER:
|
|
/* set ifmode to (US)XGMII */
|
|
if_mode = enetc_read_port(priv, ENETC_PM_IF_MODE);
|
|
if_mode &= ~ENETC_PM_IF_IFMODE_MASK;
|
|
enetc_write_port(priv, ENETC_PM_IF_MODE, if_mode);
|
|
break;
|
|
};
|
|
}
|
|
|
|
/* set up serdes for SXGMII */
|
|
static int enetc_init_sxgmii(struct udevice *dev)
|
|
{
|
|
struct enetc_priv *priv = dev_get_priv(dev);
|
|
|
|
if (!enetc_has_imdio(dev))
|
|
return 0;
|
|
|
|
/* Dev ability - SXGMII */
|
|
enetc_mdio_write(&priv->imdio, ENETC_PCS_PHY_ADDR, ENETC_PCS_DEVAD_REPL,
|
|
ENETC_PCS_DEV_ABILITY, ENETC_PCS_DEV_ABILITY_SXGMII);
|
|
|
|
/* Restart PCS AN */
|
|
enetc_mdio_write(&priv->imdio, ENETC_PCS_PHY_ADDR, ENETC_PCS_DEVAD_REPL,
|
|
ENETC_PCS_CR,
|
|
ENETC_PCS_CR_RST | ENETC_PCS_CR_RESET_AN);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Apply protocol specific configuration to MAC, serdes as needed */
|
|
static void enetc_start_pcs(struct udevice *dev)
|
|
{
|
|
struct enetc_priv *priv = dev_get_priv(dev);
|
|
const char *if_str;
|
|
|
|
priv->if_type = PHY_INTERFACE_MODE_NONE;
|
|
|
|
/* register internal MDIO for debug purposes */
|
|
if (enetc_read_port(priv, ENETC_PCAPR0) & ENETC_PCAPRO_MDIO) {
|
|
priv->imdio.read = enetc_mdio_read;
|
|
priv->imdio.write = enetc_mdio_write;
|
|
priv->imdio.priv = priv->port_regs + ENETC_PM_IMDIO_BASE;
|
|
strlcpy(priv->imdio.name, dev->name, MDIO_NAME_LEN);
|
|
if (!miiphy_get_dev_by_name(priv->imdio.name))
|
|
mdio_register(&priv->imdio);
|
|
}
|
|
|
|
if (!ofnode_valid(dev_ofnode(dev))) {
|
|
enetc_dbg(dev, "no enetc ofnode found, skipping PCS set-up\n");
|
|
return;
|
|
}
|
|
|
|
if_str = ofnode_read_string(dev_ofnode(dev), "phy-mode");
|
|
if (if_str)
|
|
priv->if_type = phy_get_interface_by_name(if_str);
|
|
else
|
|
enetc_dbg(dev,
|
|
"phy-mode property not found, defaulting to SGMII\n");
|
|
if (priv->if_type < 0)
|
|
priv->if_type = PHY_INTERFACE_MODE_NONE;
|
|
|
|
switch (priv->if_type) {
|
|
case PHY_INTERFACE_MODE_SGMII:
|
|
case PHY_INTERFACE_MODE_2500BASEX:
|
|
enetc_init_sgmii(dev);
|
|
break;
|
|
case PHY_INTERFACE_MODE_USXGMII:
|
|
case PHY_INTERFACE_MODE_10GBASER:
|
|
enetc_init_sxgmii(dev);
|
|
break;
|
|
};
|
|
}
|
|
|
|
/* Configure the actual/external ethernet PHY, if one is found */
|
|
static int enetc_config_phy(struct udevice *dev)
|
|
{
|
|
struct enetc_priv *priv = dev_get_priv(dev);
|
|
int supported;
|
|
|
|
priv->phy = dm_eth_phy_connect(dev);
|
|
if (!priv->phy)
|
|
return -ENODEV;
|
|
|
|
supported = PHY_GBIT_FEATURES | SUPPORTED_2500baseX_Full;
|
|
priv->phy->supported &= supported;
|
|
priv->phy->advertising &= supported;
|
|
|
|
return phy_config(priv->phy);
|
|
}
|
|
|
|
/*
|
|
* Probe ENETC driver:
|
|
* - initialize port and station interface BARs
|
|
*/
|
|
static int enetc_probe(struct udevice *dev)
|
|
{
|
|
struct enetc_priv *priv = dev_get_priv(dev);
|
|
|
|
if (ofnode_valid(dev_ofnode(dev)) && !ofnode_is_available(dev_ofnode(dev))) {
|
|
enetc_dbg(dev, "interface disabled\n");
|
|
return -ENODEV;
|
|
}
|
|
|
|
priv->enetc_txbd = memalign(ENETC_BD_ALIGN,
|
|
sizeof(struct enetc_tx_bd) * ENETC_BD_CNT);
|
|
priv->enetc_rxbd = memalign(ENETC_BD_ALIGN,
|
|
sizeof(union enetc_rx_bd) * ENETC_BD_CNT);
|
|
|
|
if (!priv->enetc_txbd || !priv->enetc_rxbd) {
|
|
/* free should be able to handle NULL, just free all pointers */
|
|
free(priv->enetc_txbd);
|
|
free(priv->enetc_rxbd);
|
|
|
|
return -ENOMEM;
|
|
}
|
|
|
|
/* initialize register */
|
|
priv->regs_base = dm_pci_map_bar(dev, PCI_BASE_ADDRESS_0, 0);
|
|
if (!priv->regs_base) {
|
|
enetc_dbg(dev, "failed to map BAR0\n");
|
|
return -EINVAL;
|
|
}
|
|
priv->port_regs = priv->regs_base + ENETC_PORT_REGS_OFF;
|
|
|
|
dm_pci_clrset_config16(dev, PCI_COMMAND, 0, PCI_COMMAND_MEMORY);
|
|
|
|
enetc_start_pcs(dev);
|
|
|
|
return enetc_config_phy(dev);
|
|
}
|
|
|
|
/*
|
|
* Remove the driver from an interface:
|
|
* - free up allocated memory
|
|
*/
|
|
static int enetc_remove(struct udevice *dev)
|
|
{
|
|
struct enetc_priv *priv = dev_get_priv(dev);
|
|
|
|
free(priv->enetc_txbd);
|
|
free(priv->enetc_rxbd);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* LS1028A is the only part with IERB at this time and there are plans to
|
|
* change its structure, keep this LS1028A specific for now.
|
|
*/
|
|
#define LS1028A_IERB_BASE 0x1f0800000ULL
|
|
#define LS1028A_IERB_PSIPMAR0(pf, vf) (LS1028A_IERB_BASE + 0x8000 \
|
|
+ (pf) * 0x100 + (vf) * 8)
|
|
#define LS1028A_IERB_PSIPMAR1(pf, vf) (LS1028A_IERB_PSIPMAR0(pf, vf) + 4)
|
|
|
|
static int enetc_ls1028a_write_hwaddr(struct udevice *dev)
|
|
{
|
|
struct pci_child_plat *ppdata = dev_get_parent_plat(dev);
|
|
const int devfn_to_pf[] = {0, 1, 2, -1, -1, -1, 3};
|
|
struct eth_pdata *plat = dev_get_plat(dev);
|
|
int devfn = PCI_FUNC(ppdata->devfn);
|
|
u8 *addr = plat->enetaddr;
|
|
u32 lower, upper;
|
|
int pf;
|
|
|
|
if (devfn >= ARRAY_SIZE(devfn_to_pf))
|
|
return 0;
|
|
|
|
pf = devfn_to_pf[devfn];
|
|
if (pf < 0)
|
|
return 0;
|
|
|
|
lower = *(const u16 *)(addr + 4);
|
|
upper = *(const u32 *)addr;
|
|
|
|
out_le32(LS1028A_IERB_PSIPMAR0(pf, 0), upper);
|
|
out_le32(LS1028A_IERB_PSIPMAR1(pf, 0), lower);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int enetc_write_hwaddr(struct udevice *dev)
|
|
{
|
|
struct eth_pdata *plat = dev_get_plat(dev);
|
|
struct enetc_priv *priv = dev_get_priv(dev);
|
|
u8 *addr = plat->enetaddr;
|
|
|
|
if (IS_ENABLED(CONFIG_ARCH_LS1028A))
|
|
return enetc_ls1028a_write_hwaddr(dev);
|
|
|
|
u16 lower = *(const u16 *)(addr + 4);
|
|
u32 upper = *(const u32 *)addr;
|
|
|
|
enetc_write_port(priv, ENETC_PSIPMAR0, upper);
|
|
enetc_write_port(priv, ENETC_PSIPMAR1, lower);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Configure port parameters (# of rings, frame size, enable port) */
|
|
static void enetc_enable_si_port(struct enetc_priv *priv)
|
|
{
|
|
u32 val;
|
|
|
|
/* set Rx/Tx BDR count */
|
|
val = ENETC_PSICFGR_SET_TXBDR(ENETC_TX_BDR_CNT);
|
|
val |= ENETC_PSICFGR_SET_RXBDR(ENETC_RX_BDR_CNT);
|
|
enetc_write_port(priv, ENETC_PSICFGR(0), val);
|
|
/* set Rx max frame size */
|
|
enetc_write_port(priv, ENETC_PM_MAXFRM, ENETC_RX_MAXFRM_SIZE);
|
|
/* enable MAC port */
|
|
enetc_write_port(priv, ENETC_PM_CC, ENETC_PM_CC_RX_TX_EN);
|
|
/* enable port */
|
|
enetc_write_port(priv, ENETC_PMR, ENETC_PMR_SI0_EN);
|
|
/* set SI cache policy */
|
|
enetc_write(priv, ENETC_SICAR0,
|
|
ENETC_SICAR_RD_CFG | ENETC_SICAR_WR_CFG);
|
|
/* enable SI */
|
|
enetc_write(priv, ENETC_SIMR, ENETC_SIMR_EN);
|
|
}
|
|
|
|
/* returns DMA address for a given buffer index */
|
|
static inline u64 enetc_rxb_address(struct udevice *dev, int i)
|
|
{
|
|
return cpu_to_le64(dm_pci_virt_to_mem(dev, net_rx_packets[i]));
|
|
}
|
|
|
|
/*
|
|
* Setup a single Tx BD Ring (ID = 0):
|
|
* - set Tx buffer descriptor address
|
|
* - set the BD count
|
|
* - initialize the producer and consumer index
|
|
*/
|
|
static void enetc_setup_tx_bdr(struct udevice *dev)
|
|
{
|
|
struct enetc_priv *priv = dev_get_priv(dev);
|
|
struct bd_ring *tx_bdr = &priv->tx_bdr;
|
|
u64 tx_bd_add = (u64)priv->enetc_txbd;
|
|
|
|
/* used later to advance to the next Tx BD */
|
|
tx_bdr->bd_count = ENETC_BD_CNT;
|
|
tx_bdr->next_prod_idx = 0;
|
|
tx_bdr->next_cons_idx = 0;
|
|
tx_bdr->cons_idx = priv->regs_base +
|
|
ENETC_BDR(TX, ENETC_TX_BDR_ID, ENETC_TBCIR);
|
|
tx_bdr->prod_idx = priv->regs_base +
|
|
ENETC_BDR(TX, ENETC_TX_BDR_ID, ENETC_TBPIR);
|
|
|
|
/* set Tx BD address */
|
|
enetc_bdr_write(priv, TX, ENETC_TX_BDR_ID, ENETC_TBBAR0,
|
|
lower_32_bits(tx_bd_add));
|
|
enetc_bdr_write(priv, TX, ENETC_TX_BDR_ID, ENETC_TBBAR1,
|
|
upper_32_bits(tx_bd_add));
|
|
/* set Tx 8 BD count */
|
|
enetc_bdr_write(priv, TX, ENETC_TX_BDR_ID, ENETC_TBLENR,
|
|
tx_bdr->bd_count);
|
|
|
|
/* reset both producer/consumer indexes */
|
|
enetc_write_reg(tx_bdr->cons_idx, tx_bdr->next_cons_idx);
|
|
enetc_write_reg(tx_bdr->prod_idx, tx_bdr->next_prod_idx);
|
|
|
|
/* enable TX ring */
|
|
enetc_bdr_write(priv, TX, ENETC_TX_BDR_ID, ENETC_TBMR, ENETC_TBMR_EN);
|
|
}
|
|
|
|
/*
|
|
* Setup a single Rx BD Ring (ID = 0):
|
|
* - set Rx buffer descriptors address (one descriptor per buffer)
|
|
* - set buffer size as max frame size
|
|
* - enable Rx ring
|
|
* - reset consumer and producer indexes
|
|
* - set buffer for each descriptor
|
|
*/
|
|
static void enetc_setup_rx_bdr(struct udevice *dev)
|
|
{
|
|
struct enetc_priv *priv = dev_get_priv(dev);
|
|
struct bd_ring *rx_bdr = &priv->rx_bdr;
|
|
u64 rx_bd_add = (u64)priv->enetc_rxbd;
|
|
int i;
|
|
|
|
/* used later to advance to the next BD produced by ENETC HW */
|
|
rx_bdr->bd_count = ENETC_BD_CNT;
|
|
rx_bdr->next_prod_idx = 0;
|
|
rx_bdr->next_cons_idx = 0;
|
|
rx_bdr->cons_idx = priv->regs_base +
|
|
ENETC_BDR(RX, ENETC_RX_BDR_ID, ENETC_RBCIR);
|
|
rx_bdr->prod_idx = priv->regs_base +
|
|
ENETC_BDR(RX, ENETC_RX_BDR_ID, ENETC_RBPIR);
|
|
|
|
/* set Rx BD address */
|
|
enetc_bdr_write(priv, RX, ENETC_RX_BDR_ID, ENETC_RBBAR0,
|
|
lower_32_bits(rx_bd_add));
|
|
enetc_bdr_write(priv, RX, ENETC_RX_BDR_ID, ENETC_RBBAR1,
|
|
upper_32_bits(rx_bd_add));
|
|
/* set Rx BD count (multiple of 8) */
|
|
enetc_bdr_write(priv, RX, ENETC_RX_BDR_ID, ENETC_RBLENR,
|
|
rx_bdr->bd_count);
|
|
/* set Rx buffer size */
|
|
enetc_bdr_write(priv, RX, ENETC_RX_BDR_ID, ENETC_RBBSR, PKTSIZE_ALIGN);
|
|
|
|
/* fill Rx BD */
|
|
memset(priv->enetc_rxbd, 0,
|
|
rx_bdr->bd_count * sizeof(union enetc_rx_bd));
|
|
for (i = 0; i < rx_bdr->bd_count; i++) {
|
|
priv->enetc_rxbd[i].w.addr = enetc_rxb_address(dev, i);
|
|
/* each RX buffer must be aligned to 64B */
|
|
WARN_ON(priv->enetc_rxbd[i].w.addr & (ARCH_DMA_MINALIGN - 1));
|
|
}
|
|
|
|
/* reset producer (ENETC owned) and consumer (SW owned) index */
|
|
enetc_write_reg(rx_bdr->cons_idx, rx_bdr->next_cons_idx);
|
|
enetc_write_reg(rx_bdr->prod_idx, rx_bdr->next_prod_idx);
|
|
|
|
/* enable Rx ring */
|
|
enetc_bdr_write(priv, RX, ENETC_RX_BDR_ID, ENETC_RBMR, ENETC_RBMR_EN);
|
|
}
|
|
|
|
/*
|
|
* Start ENETC interface:
|
|
* - perform FLR
|
|
* - enable access to port and SI registers
|
|
* - set mac address
|
|
* - setup TX/RX buffer descriptors
|
|
* - enable Tx/Rx rings
|
|
*/
|
|
static int enetc_start(struct udevice *dev)
|
|
{
|
|
struct enetc_priv *priv = dev_get_priv(dev);
|
|
|
|
/* reset and enable the PCI device */
|
|
dm_pci_flr(dev);
|
|
dm_pci_clrset_config16(dev, PCI_COMMAND, 0,
|
|
PCI_COMMAND_MEMORY | PCI_COMMAND_MASTER);
|
|
|
|
enetc_enable_si_port(priv);
|
|
|
|
/* setup Tx/Rx buffer descriptors */
|
|
enetc_setup_tx_bdr(dev);
|
|
enetc_setup_rx_bdr(dev);
|
|
|
|
enetc_setup_mac_iface(dev, priv->phy);
|
|
|
|
return phy_startup(priv->phy);
|
|
}
|
|
|
|
/*
|
|
* Stop the network interface:
|
|
* - just quiesce it, we can wipe all configuration as _start starts from
|
|
* scratch each time
|
|
*/
|
|
static void enetc_stop(struct udevice *dev)
|
|
{
|
|
/* FLR is sufficient to quiesce the device */
|
|
dm_pci_flr(dev);
|
|
/* leave the BARs accessible after we stop, this is needed to use
|
|
* internal MDIO in command line.
|
|
*/
|
|
dm_pci_clrset_config16(dev, PCI_COMMAND, 0, PCI_COMMAND_MEMORY);
|
|
}
|
|
|
|
/*
|
|
* ENETC transmit packet:
|
|
* - check if Tx BD ring is full
|
|
* - set buffer/packet address (dma address)
|
|
* - set final fragment flag
|
|
* - try while producer index equals consumer index or timeout
|
|
*/
|
|
static int enetc_send(struct udevice *dev, void *packet, int length)
|
|
{
|
|
struct enetc_priv *priv = dev_get_priv(dev);
|
|
struct bd_ring *txr = &priv->tx_bdr;
|
|
void *nv_packet = (void *)packet;
|
|
int tries = ENETC_POLL_TRIES;
|
|
u32 pi, ci;
|
|
|
|
pi = txr->next_prod_idx;
|
|
ci = enetc_read_reg(txr->cons_idx) & ENETC_BDR_IDX_MASK;
|
|
/* Tx ring is full when */
|
|
if (((pi + 1) % txr->bd_count) == ci) {
|
|
enetc_dbg(dev, "Tx BDR full\n");
|
|
return -ETIMEDOUT;
|
|
}
|
|
enetc_dbg(dev, "TxBD[%d]send: pkt_len=%d, buff @0x%x%08x\n", pi, length,
|
|
upper_32_bits((u64)nv_packet), lower_32_bits((u64)nv_packet));
|
|
|
|
/* prepare Tx BD */
|
|
memset(&priv->enetc_txbd[pi], 0x0, sizeof(struct enetc_tx_bd));
|
|
priv->enetc_txbd[pi].addr =
|
|
cpu_to_le64(dm_pci_virt_to_mem(dev, nv_packet));
|
|
priv->enetc_txbd[pi].buf_len = cpu_to_le16(length);
|
|
priv->enetc_txbd[pi].frm_len = cpu_to_le16(length);
|
|
priv->enetc_txbd[pi].flags = cpu_to_le16(ENETC_TXBD_FLAGS_F);
|
|
dmb();
|
|
/* send frame: increment producer index */
|
|
pi = (pi + 1) % txr->bd_count;
|
|
txr->next_prod_idx = pi;
|
|
enetc_write_reg(txr->prod_idx, pi);
|
|
while ((--tries >= 0) &&
|
|
(pi != (enetc_read_reg(txr->cons_idx) & ENETC_BDR_IDX_MASK)))
|
|
udelay(10);
|
|
|
|
return tries > 0 ? 0 : -ETIMEDOUT;
|
|
}
|
|
|
|
/*
|
|
* Receive frame:
|
|
* - wait for the next BD to get ready bit set
|
|
* - clean up the descriptor
|
|
* - move on and indicate to HW that the cleaned BD is available for Rx
|
|
*/
|
|
static int enetc_recv(struct udevice *dev, int flags, uchar **packetp)
|
|
{
|
|
struct enetc_priv *priv = dev_get_priv(dev);
|
|
struct bd_ring *rxr = &priv->rx_bdr;
|
|
int tries = ENETC_POLL_TRIES;
|
|
int pi = rxr->next_prod_idx;
|
|
int ci = rxr->next_cons_idx;
|
|
u32 status;
|
|
int len;
|
|
u8 rdy;
|
|
|
|
do {
|
|
dmb();
|
|
status = le32_to_cpu(priv->enetc_rxbd[pi].r.lstatus);
|
|
/* check if current BD is ready to be consumed */
|
|
rdy = ENETC_RXBD_STATUS_R(status);
|
|
} while (--tries >= 0 && !rdy);
|
|
|
|
if (!rdy)
|
|
return -EAGAIN;
|
|
|
|
dmb();
|
|
len = le16_to_cpu(priv->enetc_rxbd[pi].r.buf_len);
|
|
*packetp = (uchar *)enetc_rxb_address(dev, pi);
|
|
enetc_dbg(dev, "RxBD[%d]: len=%d err=%d pkt=0x%x%08x\n", pi, len,
|
|
ENETC_RXBD_STATUS_ERRORS(status),
|
|
upper_32_bits((u64)*packetp), lower_32_bits((u64)*packetp));
|
|
|
|
/* BD clean up and advance to next in ring */
|
|
memset(&priv->enetc_rxbd[pi], 0, sizeof(union enetc_rx_bd));
|
|
priv->enetc_rxbd[pi].w.addr = enetc_rxb_address(dev, pi);
|
|
rxr->next_prod_idx = (pi + 1) % rxr->bd_count;
|
|
ci = (ci + 1) % rxr->bd_count;
|
|
rxr->next_cons_idx = ci;
|
|
dmb();
|
|
/* free up the slot in the ring for HW */
|
|
enetc_write_reg(rxr->cons_idx, ci);
|
|
|
|
return len;
|
|
}
|
|
|
|
static const struct eth_ops enetc_ops = {
|
|
.start = enetc_start,
|
|
.send = enetc_send,
|
|
.recv = enetc_recv,
|
|
.stop = enetc_stop,
|
|
.write_hwaddr = enetc_write_hwaddr,
|
|
};
|
|
|
|
U_BOOT_DRIVER(eth_enetc) = {
|
|
.name = ENETC_DRIVER_NAME,
|
|
.id = UCLASS_ETH,
|
|
.bind = enetc_bind,
|
|
.probe = enetc_probe,
|
|
.remove = enetc_remove,
|
|
.ops = &enetc_ops,
|
|
.priv_auto = sizeof(struct enetc_priv),
|
|
.plat_auto = sizeof(struct eth_pdata),
|
|
};
|
|
|
|
static struct pci_device_id enetc_ids[] = {
|
|
{ PCI_DEVICE(PCI_VENDOR_ID_FREESCALE, PCI_DEVICE_ID_ENETC_ETH) },
|
|
{}
|
|
};
|
|
|
|
U_BOOT_PCI_DEVICE(eth_enetc, enetc_ids);
|