mirror of
https://github.com/AsahiLinux/u-boot
synced 2024-12-12 22:33:18 +00:00
4d0985295b
While signing images is useful, it does not provide complete protection against several types of attack. For example, it it possible to create a FIT with the same signed images, but with the configuration changed such that a different one is selected (mix and match attack). It is also possible to substitute a signed image from an older FIT version into a newer FIT (roll-back attack). Add support for signing of FIT configurations using the libfdt's region support. Please see doc/uImage.FIT/signature.txt for more information. Signed-off-by: Simon Glass <sjg@chromium.org>
382 lines
11 KiB
Text
382 lines
11 KiB
Text
U-Boot FIT Signature Verification
|
|
=================================
|
|
|
|
Introduction
|
|
------------
|
|
FIT supports hashing of images so that these hashes can be checked on
|
|
loading. This protects against corruption of the image. However it does not
|
|
prevent the substitution of one image for another.
|
|
|
|
The signature feature allows the hash to be signed with a private key such
|
|
that it can be verified using a public key later. Provided that the private
|
|
key is kept secret and the public key is stored in a non-volatile place,
|
|
any image can be verified in this way.
|
|
|
|
See verified-boot.txt for more general information on verified boot.
|
|
|
|
|
|
Concepts
|
|
--------
|
|
Some familiarity with public key cryptography is assumed in this section.
|
|
|
|
The procedure for signing is as follows:
|
|
|
|
- hash an image in the FIT
|
|
- sign the hash with a private key to produce a signature
|
|
- store the resulting signature in the FIT
|
|
|
|
The procedure for verification is:
|
|
|
|
- read the FIT
|
|
- obtain the public key
|
|
- extract the signature from the FIT
|
|
- hash the image from the FIT
|
|
- verify (with the public key) that the extracted signature matches the
|
|
hash
|
|
|
|
The signing is generally performed by mkimage, as part of making a firmware
|
|
image for the device. The verification is normally done in U-Boot on the
|
|
device.
|
|
|
|
|
|
Algorithms
|
|
----------
|
|
In principle any suitable algorithm can be used to sign and verify a hash.
|
|
At present only one class of algorithms is supported: SHA1 hashing with RSA.
|
|
This works by hashing the image to produce a 20-byte hash.
|
|
|
|
While it is acceptable to bring in large cryptographic libraries such as
|
|
openssl on the host side (e.g. mkimage), it is not desirable for U-Boot.
|
|
For the run-time verification side, it is important to keep code and data
|
|
size as small as possible.
|
|
|
|
For this reason the RSA image verification uses pre-processed public keys
|
|
which can be used with a very small amount of code - just some extraction
|
|
of data from the FDT and exponentiation mod n. Code size impact is a little
|
|
under 5KB on Tegra Seaboard, for example.
|
|
|
|
It is relatively straightforward to add new algorithms if required. If
|
|
another RSA variant is needed, then it can be added to the table in
|
|
image-sig.c. If another algorithm is needed (such as DSA) then it can be
|
|
placed alongside rsa.c, and its functions added to the table in image-sig.c
|
|
also.
|
|
|
|
|
|
Creating an RSA key and certificate
|
|
-----------------------------------
|
|
To create a new public key, size 2048 bits:
|
|
|
|
$ openssl genrsa -F4 -out keys/dev.key 2048
|
|
|
|
To create a certificate for this:
|
|
|
|
$ openssl req -batch -new -x509 -key keys/dev.key -out keys/dev.crt
|
|
|
|
If you like you can look at the public key also:
|
|
|
|
$ openssl rsa -in keys/dev.key -pubout
|
|
|
|
|
|
Device Tree Bindings
|
|
--------------------
|
|
The following properties are required in the FIT's signature node(s) to
|
|
allow thes signer to operate. These should be added to the .its file.
|
|
Signature nodes sit at the same level as hash nodes and are called
|
|
signature@1, signature@2, etc.
|
|
|
|
- algo: Algorithm name (e.g. "sha1,rs2048")
|
|
|
|
- key-name-hint: Name of key to use for signing. The keys will normally be in
|
|
a single directory (parameter -k to mkimage). For a given key <name>, its
|
|
private key is stored in <name>.key and the certificate is stored in
|
|
<name>.crt.
|
|
|
|
When the image is signed, the following properties are added (mandatory):
|
|
|
|
- value: The signature data (e.g. 256 bytes for 2048-bit RSA)
|
|
|
|
When the image is signed, the following properties are optional:
|
|
|
|
- timestamp: Time when image was signed (standard Unix time_t format)
|
|
|
|
- signer-name: Name of the signer (e.g. "mkimage")
|
|
|
|
- signer-version: Version string of the signer (e.g. "2013.01")
|
|
|
|
- comment: Additional information about the signer or image
|
|
|
|
For config bindings (see Signed Configurations below), the following
|
|
additional properties are optional:
|
|
|
|
- sign-images: A list of images to sign, each being a property of the conf
|
|
node that contains then. The default is "kernel,fdt" which means that these
|
|
two images will be looked up in the config and signed if present.
|
|
|
|
For config bindings, these properties are added by the signer:
|
|
|
|
- hashed-nodes: A list of nodes which were hashed by the signer. Each is
|
|
a string - the full path to node. A typical value might be:
|
|
|
|
hashed-nodes = "/", "/configurations/conf@1", "/images/kernel@1",
|
|
"/images/kernel@1/hash@1", "/images/fdt@1",
|
|
"/images/fdt@1/hash@1";
|
|
|
|
- hashed-strings: The start and size of the string region of the FIT that
|
|
was hashed
|
|
|
|
Example: See sign-images.its for an example image tree source file and
|
|
sign-configs.its for config signing.
|
|
|
|
|
|
Public Key Storage
|
|
------------------
|
|
In order to verify an image that has been signed with a public key we need to
|
|
have a trusted public key. This cannot be stored in the signed image, since
|
|
it would be easy to alter. For this implementation we choose to store the
|
|
public key in U-Boot's control FDT (using CONFIG_OF_CONTROL).
|
|
|
|
Public keys should be stored as sub-nodes in a /signature node. Required
|
|
properties are:
|
|
|
|
- algo: Algorithm name (e.g. "sha1,rs2048")
|
|
|
|
Optional properties are:
|
|
|
|
- key-name-hint: Name of key used for signing. This is only a hint since it
|
|
is possible for the name to be changed. Verification can proceed by checking
|
|
all available signing keys until one matches.
|
|
|
|
- required: If present this indicates that the key must be verified for the
|
|
image / configuration to be considered valid. Only required keys are
|
|
normally verified by the FIT image booting algorithm. Valid values are
|
|
"image" to force verification of all images, and "conf" to force verfication
|
|
of the selected configuration (which then relies on hashes in the images to
|
|
verify those).
|
|
|
|
Each signing algorithm has its own additional properties.
|
|
|
|
For RSA the following are mandatory:
|
|
|
|
- rsa,num-bits: Number of key bits (e.g. 2048)
|
|
- rsa,modulus: Modulus (N) as a big-endian multi-word integer
|
|
- rsa,r-squared: (2^num-bits)^2 as a big-endian multi-word integer
|
|
- rsa,n0-inverse: -1 / modulus[0] mod 2^32
|
|
|
|
|
|
Signed Configurations
|
|
---------------------
|
|
While signing images is useful, it does not provide complete protection
|
|
against several types of attack. For example, it it possible to create a
|
|
FIT with the same signed images, but with the configuration changed such
|
|
that a different one is selected (mix and match attack). It is also possible
|
|
to substitute a signed image from an older FIT version into a newer FIT
|
|
(roll-back attack).
|
|
|
|
As an example, consider this FIT:
|
|
|
|
/ {
|
|
images {
|
|
kernel@1 {
|
|
data = <data for kernel1>
|
|
signature@1 {
|
|
algo = "sha1,rsa2048";
|
|
value = <...kernel signature 1...>
|
|
};
|
|
};
|
|
kernel@2 {
|
|
data = <data for kernel2>
|
|
signature@1 {
|
|
algo = "sha1,rsa2048";
|
|
value = <...kernel signature 2...>
|
|
};
|
|
};
|
|
fdt@1 {
|
|
data = <data for fdt1>;
|
|
signature@1 {
|
|
algo = "sha1,rsa2048";
|
|
vaue = <...fdt signature 1...>
|
|
};
|
|
};
|
|
fdt@2 {
|
|
data = <data for fdt2>;
|
|
signature@1 {
|
|
algo = "sha1,rsa2048";
|
|
vaue = <...fdt signature 2...>
|
|
};
|
|
};
|
|
};
|
|
configurations {
|
|
default = "conf@1";
|
|
conf@1 {
|
|
kernel = "kernel@1";
|
|
fdt = "fdt@1";
|
|
};
|
|
conf@1 {
|
|
kernel = "kernel@2";
|
|
fdt = "fdt@2";
|
|
};
|
|
};
|
|
};
|
|
|
|
Since both kernels are signed it is easy for an attacker to add a new
|
|
configuration 3 with kernel 1 and fdt 2:
|
|
|
|
configurations {
|
|
default = "conf@1";
|
|
conf@1 {
|
|
kernel = "kernel@1";
|
|
fdt = "fdt@1";
|
|
};
|
|
conf@1 {
|
|
kernel = "kernel@2";
|
|
fdt = "fdt@2";
|
|
};
|
|
conf@3 {
|
|
kernel = "kernel@1";
|
|
fdt = "fdt@2";
|
|
};
|
|
};
|
|
|
|
With signed images, nothing protects against this. Whether it gains an
|
|
advantage for the attacker is debatable, but it is not secure.
|
|
|
|
To solved this problem, we support signed configurations. In this case it
|
|
is the configurations that are signed, not the image. Each image has its
|
|
own hash, and we include the hash in the configuration signature.
|
|
|
|
So the above example is adjusted to look like this:
|
|
|
|
/ {
|
|
images {
|
|
kernel@1 {
|
|
data = <data for kernel1>
|
|
hash@1 {
|
|
algo = "sha1";
|
|
value = <...kernel hash 1...>
|
|
};
|
|
};
|
|
kernel@2 {
|
|
data = <data for kernel2>
|
|
hash@1 {
|
|
algo = "sha1";
|
|
value = <...kernel hash 2...>
|
|
};
|
|
};
|
|
fdt@1 {
|
|
data = <data for fdt1>;
|
|
hash@1 {
|
|
algo = "sha1";
|
|
value = <...fdt hash 1...>
|
|
};
|
|
};
|
|
fdt@2 {
|
|
data = <data for fdt2>;
|
|
hash@1 {
|
|
algo = "sha1";
|
|
value = <...fdt hash 2...>
|
|
};
|
|
};
|
|
};
|
|
configurations {
|
|
default = "conf@1";
|
|
conf@1 {
|
|
kernel = "kernel@1";
|
|
fdt = "fdt@1";
|
|
signature@1 {
|
|
algo = "sha1,rsa2048";
|
|
value = <...conf 1 signature...>;
|
|
};
|
|
};
|
|
conf@2 {
|
|
kernel = "kernel@2";
|
|
fdt = "fdt@2";
|
|
signature@1 {
|
|
algo = "sha1,rsa2048";
|
|
value = <...conf 1 signature...>;
|
|
};
|
|
};
|
|
};
|
|
};
|
|
|
|
|
|
You can see that we have added hashes for all images (since they are no
|
|
longer signed), and a signature to each configuration. In the above example,
|
|
mkimage will sign configurations/conf@1, the kernel and fdt that are
|
|
pointed to by the configuration (/images/kernel@1, /images/kernel@1/hash@1,
|
|
/images/fdt@1, /images/fdt@1/hash@1) and the root structure of the image
|
|
(so that it isn't possible to add or remove root nodes). The signature is
|
|
written into /configurations/conf@1/signature@1/value. It can easily be
|
|
verified later even if the FIT has been signed with other keys in the
|
|
meantime.
|
|
|
|
|
|
Verification
|
|
------------
|
|
FITs are verified when loaded. After the configuration is selected a list
|
|
of required images is produced. If there are 'required' public keys, then
|
|
each image must be verified against those keys. This means that every image
|
|
that might be used by the target needs to be signed with 'required' keys.
|
|
|
|
This happens automatically as part of a bootm command when FITs are used.
|
|
|
|
|
|
Enabling FIT Verification
|
|
-------------------------
|
|
In addition to the options to enable FIT itself, the following CONFIGs must
|
|
be enabled:
|
|
|
|
CONFIG_FIT_SIGNATURE - enable signing and verfication in FITs
|
|
CONFIG_RSA - enable RSA algorithm for signing
|
|
|
|
|
|
Testing
|
|
-------
|
|
An easy way to test signing and verfication is to use the test script
|
|
provided in test/vboot/vboot_test.sh. This uses sandbox (a special version
|
|
of U-Boot which runs under Linux) to show the operation of a 'bootm'
|
|
command loading and verifying images.
|
|
|
|
A sample run is show below:
|
|
|
|
$ make O=sandbox sandbox_config
|
|
$ make O=sandbox
|
|
$ O=sandbox ./test/vboot/vboot_test.sh
|
|
Simple Verified Boot Test
|
|
=========================
|
|
|
|
Please see doc/uImage.FIT/verified-boot.txt for more information
|
|
|
|
Build keys
|
|
Build FIT with signed images
|
|
Test Verified Boot Run: unsigned signatures:: OK
|
|
Sign images
|
|
Test Verified Boot Run: signed images: OK
|
|
Build FIT with signed configuration
|
|
Test Verified Boot Run: unsigned config: OK
|
|
Sign images
|
|
Test Verified Boot Run: signed config: OK
|
|
|
|
Test passed
|
|
|
|
|
|
Future Work
|
|
-----------
|
|
- Roll-back protection using a TPM is done using the tpm command. This can
|
|
be scripted, but we might consider a default way of doing this, built into
|
|
bootm.
|
|
|
|
|
|
Possible Future Work
|
|
--------------------
|
|
- Add support for other RSA/SHA variants, such as rsa4096,sha512.
|
|
- Other algorithms besides RSA
|
|
- More sandbox tests for failure modes
|
|
- Passwords for keys/certificates
|
|
- Perhaps implement OAEP
|
|
- Enhance bootm to permit scripted signature verification (so that a script
|
|
can verify an image but not actually boot it)
|
|
|
|
|
|
Simon Glass
|
|
sjg@chromium.org
|
|
1-1-13
|