mirror of
https://github.com/AsahiLinux/u-boot
synced 2025-01-26 11:55:15 +00:00
2eb48ff7a2
There was for long time no activity in the 8260 area. We need to go further and convert to Kconfig, but it turned out, nobody is interested anymore in 8260, so remove it. Signed-off-by: Heiko Schocher <hs@denx.de>
930 lines
25 KiB
C
930 lines
25 KiB
C
/*
|
|
* Copyright (C) 2009 Sergey Kubushyn <ksi@koi8.net>
|
|
* Copyright (C) 2009 - 2013 Heiko Schocher <hs@denx.de>
|
|
* Changes for multibus/multiadapter I2C support.
|
|
*
|
|
* (C) Copyright 2001
|
|
* Gerald Van Baren, Custom IDEAS, vanbaren@cideas.com.
|
|
*
|
|
* SPDX-License-Identifier: GPL-2.0+
|
|
*
|
|
* The original I2C interface was
|
|
* (C) 2000 by Paolo Scaffardi (arsenio@tin.it)
|
|
* AIRVENT SAM s.p.a - RIMINI(ITALY)
|
|
* but has been changed substantially.
|
|
*/
|
|
|
|
#ifndef _I2C_H_
|
|
#define _I2C_H_
|
|
|
|
/*
|
|
* For now there are essentially two parts to this file - driver model
|
|
* here at the top, and the older code below (with CONFIG_SYS_I2C being
|
|
* most recent). The plan is to migrate everything to driver model.
|
|
* The driver model structures and API are separate as they are different
|
|
* enough as to be incompatible for compilation purposes.
|
|
*/
|
|
|
|
enum dm_i2c_chip_flags {
|
|
DM_I2C_CHIP_10BIT = 1 << 0, /* Use 10-bit addressing */
|
|
DM_I2C_CHIP_RD_ADDRESS = 1 << 1, /* Send address for each read byte */
|
|
DM_I2C_CHIP_WR_ADDRESS = 1 << 2, /* Send address for each write byte */
|
|
};
|
|
|
|
struct udevice;
|
|
/**
|
|
* struct dm_i2c_chip - information about an i2c chip
|
|
*
|
|
* An I2C chip is a device on the I2C bus. It sits at a particular address
|
|
* and normally supports 7-bit or 10-bit addressing.
|
|
*
|
|
* To obtain this structure, use dev_get_parent_platdata(dev) where dev is
|
|
* the chip to examine.
|
|
*
|
|
* @chip_addr: Chip address on bus
|
|
* @offset_len: Length of offset in bytes. A single byte offset can
|
|
* represent up to 256 bytes. A value larger than 1 may be
|
|
* needed for larger devices.
|
|
* @flags: Flags for this chip (dm_i2c_chip_flags)
|
|
* @emul: Emulator for this chip address (only used for emulation)
|
|
*/
|
|
struct dm_i2c_chip {
|
|
uint chip_addr;
|
|
uint offset_len;
|
|
uint flags;
|
|
#ifdef CONFIG_SANDBOX
|
|
struct udevice *emul;
|
|
bool test_mode;
|
|
#endif
|
|
};
|
|
|
|
/**
|
|
* struct dm_i2c_bus- information about an i2c bus
|
|
*
|
|
* An I2C bus contains 0 or more chips on it, each at its own address. The
|
|
* bus can operate at different speeds (measured in Hz, typically 100KHz
|
|
* or 400KHz).
|
|
*
|
|
* To obtain this structure, use dev_get_uclass_priv(bus) where bus is the
|
|
* I2C bus udevice.
|
|
*
|
|
* @speed_hz: Bus speed in hertz (typically 100000)
|
|
*/
|
|
struct dm_i2c_bus {
|
|
int speed_hz;
|
|
};
|
|
|
|
/*
|
|
* Not all of these flags are implemented in the U-Boot API
|
|
*/
|
|
enum dm_i2c_msg_flags {
|
|
I2C_M_TEN = 0x0010, /* ten-bit chip address */
|
|
I2C_M_RD = 0x0001, /* read data, from slave to master */
|
|
I2C_M_STOP = 0x8000, /* send stop after this message */
|
|
I2C_M_NOSTART = 0x4000, /* no start before this message */
|
|
I2C_M_REV_DIR_ADDR = 0x2000, /* invert polarity of R/W bit */
|
|
I2C_M_IGNORE_NAK = 0x1000, /* continue after NAK */
|
|
I2C_M_NO_RD_ACK = 0x0800, /* skip the Ack bit on reads */
|
|
I2C_M_RECV_LEN = 0x0400, /* length is first received byte */
|
|
};
|
|
|
|
/**
|
|
* struct i2c_msg - an I2C message
|
|
*
|
|
* @addr: Slave address
|
|
* @flags: Flags (see enum dm_i2c_msg_flags)
|
|
* @len: Length of buffer in bytes, may be 0 for a probe
|
|
* @buf: Buffer to send/receive, or NULL if no data
|
|
*/
|
|
struct i2c_msg {
|
|
uint addr;
|
|
uint flags;
|
|
uint len;
|
|
u8 *buf;
|
|
};
|
|
|
|
/**
|
|
* struct i2c_msg_list - a list of I2C messages
|
|
*
|
|
* This is called i2c_rdwr_ioctl_data in Linux but the name does not seem
|
|
* appropriate in U-Boot.
|
|
*
|
|
* @msg: Pointer to i2c_msg array
|
|
* @nmsgs: Number of elements in the array
|
|
*/
|
|
struct i2c_msg_list {
|
|
struct i2c_msg *msgs;
|
|
uint nmsgs;
|
|
};
|
|
|
|
/**
|
|
* dm_i2c_read() - read bytes from an I2C chip
|
|
*
|
|
* To obtain an I2C device (called a 'chip') given the I2C bus address you
|
|
* can use i2c_get_chip(). To obtain a bus by bus number use
|
|
* uclass_get_device_by_seq(UCLASS_I2C, <bus number>).
|
|
*
|
|
* To set the address length of a devce use i2c_set_addr_len(). It
|
|
* defaults to 1.
|
|
*
|
|
* @dev: Chip to read from
|
|
* @offset: Offset within chip to start reading
|
|
* @buffer: Place to put data
|
|
* @len: Number of bytes to read
|
|
*
|
|
* @return 0 on success, -ve on failure
|
|
*/
|
|
int dm_i2c_read(struct udevice *dev, uint offset, uint8_t *buffer, int len);
|
|
|
|
/**
|
|
* dm_i2c_write() - write bytes to an I2C chip
|
|
*
|
|
* See notes for dm_i2c_read() above.
|
|
*
|
|
* @dev: Chip to write to
|
|
* @offset: Offset within chip to start writing
|
|
* @buffer: Buffer containing data to write
|
|
* @len: Number of bytes to write
|
|
*
|
|
* @return 0 on success, -ve on failure
|
|
*/
|
|
int dm_i2c_write(struct udevice *dev, uint offset, const uint8_t *buffer,
|
|
int len);
|
|
|
|
/**
|
|
* dm_i2c_probe() - probe a particular chip address
|
|
*
|
|
* This can be useful to check for the existence of a chip on the bus.
|
|
* It is typically implemented by writing the chip address to the bus
|
|
* and checking that the chip replies with an ACK.
|
|
*
|
|
* @bus: Bus to probe
|
|
* @chip_addr: 7-bit address to probe (10-bit and others are not supported)
|
|
* @chip_flags: Flags for the probe (see enum dm_i2c_chip_flags)
|
|
* @devp: Returns the device found, or NULL if none
|
|
* @return 0 if a chip was found at that address, -ve if not
|
|
*/
|
|
int dm_i2c_probe(struct udevice *bus, uint chip_addr, uint chip_flags,
|
|
struct udevice **devp);
|
|
|
|
/**
|
|
* dm_i2c_reg_read() - Read a value from an I2C register
|
|
*
|
|
* This reads a single value from the given address in an I2C chip
|
|
*
|
|
* @dev: Device to use for transfer
|
|
* @addr: Address to read from
|
|
* @return value read, or -ve on error
|
|
*/
|
|
int dm_i2c_reg_read(struct udevice *dev, uint offset);
|
|
|
|
/**
|
|
* dm_i2c_reg_write() - Write a value to an I2C register
|
|
*
|
|
* This writes a single value to the given address in an I2C chip
|
|
*
|
|
* @dev: Device to use for transfer
|
|
* @addr: Address to write to
|
|
* @val: Value to write (normally a byte)
|
|
* @return 0 on success, -ve on error
|
|
*/
|
|
int dm_i2c_reg_write(struct udevice *dev, uint offset, unsigned int val);
|
|
|
|
/**
|
|
* dm_i2c_xfer() - Transfer messages over I2C
|
|
*
|
|
* This transfers a raw message. It is best to use dm_i2c_reg_read/write()
|
|
* instead.
|
|
*
|
|
* @dev: Device to use for transfer
|
|
* @msg: List of messages to transfer
|
|
* @nmsgs: Number of messages to transfer
|
|
* @return 0 on success, -ve on error
|
|
*/
|
|
int dm_i2c_xfer(struct udevice *dev, struct i2c_msg *msg, int nmsgs);
|
|
|
|
/**
|
|
* dm_i2c_set_bus_speed() - set the speed of a bus
|
|
*
|
|
* @bus: Bus to adjust
|
|
* @speed: Requested speed in Hz
|
|
* @return 0 if OK, -EINVAL for invalid values
|
|
*/
|
|
int dm_i2c_set_bus_speed(struct udevice *bus, unsigned int speed);
|
|
|
|
/**
|
|
* dm_i2c_get_bus_speed() - get the speed of a bus
|
|
*
|
|
* @bus: Bus to check
|
|
* @return speed of selected I2C bus in Hz, -ve on error
|
|
*/
|
|
int dm_i2c_get_bus_speed(struct udevice *bus);
|
|
|
|
/**
|
|
* i2c_set_chip_flags() - set flags for a chip
|
|
*
|
|
* Typically addresses are 7 bits, but for 10-bit addresses you should set
|
|
* flags to DM_I2C_CHIP_10BIT. All accesses will then use 10-bit addressing.
|
|
*
|
|
* @dev: Chip to adjust
|
|
* @flags: New flags
|
|
* @return 0 if OK, -EINVAL if value is unsupported, other -ve value on error
|
|
*/
|
|
int i2c_set_chip_flags(struct udevice *dev, uint flags);
|
|
|
|
/**
|
|
* i2c_get_chip_flags() - get flags for a chip
|
|
*
|
|
* @dev: Chip to check
|
|
* @flagsp: Place to put flags
|
|
* @return 0 if OK, other -ve value on error
|
|
*/
|
|
int i2c_get_chip_flags(struct udevice *dev, uint *flagsp);
|
|
|
|
/**
|
|
* i2c_set_offset_len() - set the offset length for a chip
|
|
*
|
|
* The offset used to access a chip may be up to 4 bytes long. Typically it
|
|
* is only 1 byte, which is enough for chips with 256 bytes of memory or
|
|
* registers. The default value is 1, but you can call this function to
|
|
* change it.
|
|
*
|
|
* @offset_len: New offset length value (typically 1 or 2)
|
|
*/
|
|
int i2c_set_chip_offset_len(struct udevice *dev, uint offset_len);
|
|
|
|
/**
|
|
* i2c_get_offset_len() - get the offset length for a chip
|
|
*
|
|
* @return: Current offset length value (typically 1 or 2)
|
|
*/
|
|
int i2c_get_chip_offset_len(struct udevice *dev);
|
|
|
|
/**
|
|
* i2c_deblock() - recover a bus that is in an unknown state
|
|
*
|
|
* See the deblock() method in 'struct dm_i2c_ops' for full information
|
|
*
|
|
* @bus: Bus to recover
|
|
* @return 0 if OK, -ve on error
|
|
*/
|
|
int i2c_deblock(struct udevice *bus);
|
|
|
|
#ifdef CONFIG_DM_I2C_COMPAT
|
|
/**
|
|
* i2c_probe() - Compatibility function for driver model
|
|
*
|
|
* Calls dm_i2c_probe() on the current bus
|
|
*/
|
|
int i2c_probe(uint8_t chip_addr);
|
|
|
|
/**
|
|
* i2c_read() - Compatibility function for driver model
|
|
*
|
|
* Calls dm_i2c_read() with the device corresponding to @chip_addr, and offset
|
|
* set to @addr. @alen must match the current setting for the device.
|
|
*/
|
|
int i2c_read(uint8_t chip_addr, unsigned int addr, int alen, uint8_t *buffer,
|
|
int len);
|
|
|
|
/**
|
|
* i2c_write() - Compatibility function for driver model
|
|
*
|
|
* Calls dm_i2c_write() with the device corresponding to @chip_addr, and offset
|
|
* set to @addr. @alen must match the current setting for the device.
|
|
*/
|
|
int i2c_write(uint8_t chip_addr, unsigned int addr, int alen, uint8_t *buffer,
|
|
int len);
|
|
|
|
/**
|
|
* i2c_get_bus_num_fdt() - Compatibility function for driver model
|
|
*
|
|
* @return the bus number associated with the given device tree node
|
|
*/
|
|
int i2c_get_bus_num_fdt(int node);
|
|
|
|
/**
|
|
* i2c_get_bus_num() - Compatibility function for driver model
|
|
*
|
|
* @return the 'current' bus number
|
|
*/
|
|
unsigned int i2c_get_bus_num(void);
|
|
|
|
/**
|
|
* i2c_set_bus_num() - Compatibility function for driver model
|
|
*
|
|
* Sets the 'current' bus
|
|
*/
|
|
int i2c_set_bus_num(unsigned int bus);
|
|
|
|
static inline void I2C_SET_BUS(unsigned int bus)
|
|
{
|
|
i2c_set_bus_num(bus);
|
|
}
|
|
|
|
static inline unsigned int I2C_GET_BUS(void)
|
|
{
|
|
return i2c_get_bus_num();
|
|
}
|
|
|
|
/**
|
|
* i2c_init() - Compatibility function for driver model
|
|
*
|
|
* This function does nothing.
|
|
*/
|
|
void i2c_init(int speed, int slaveaddr);
|
|
|
|
/**
|
|
* board_i2c_init() - Compatibility function for driver model
|
|
*
|
|
* @param blob Device tree blbo
|
|
* @return the number of I2C bus
|
|
*/
|
|
void board_i2c_init(const void *blob);
|
|
|
|
/*
|
|
* Compatibility functions for driver model.
|
|
*/
|
|
uint8_t i2c_reg_read(uint8_t addr, uint8_t reg);
|
|
void i2c_reg_write(uint8_t addr, uint8_t reg, uint8_t val);
|
|
|
|
#endif
|
|
|
|
/**
|
|
* struct dm_i2c_ops - driver operations for I2C uclass
|
|
*
|
|
* Drivers should support these operations unless otherwise noted. These
|
|
* operations are intended to be used by uclass code, not directly from
|
|
* other code.
|
|
*/
|
|
struct dm_i2c_ops {
|
|
/**
|
|
* xfer() - transfer a list of I2C messages
|
|
*
|
|
* @bus: Bus to read from
|
|
* @msg: List of messages to transfer
|
|
* @nmsgs: Number of messages in the list
|
|
* @return 0 if OK, -EREMOTEIO if the slave did not ACK a byte,
|
|
* -ECOMM if the speed cannot be supported, -EPROTO if the chip
|
|
* flags cannot be supported, other -ve value on some other error
|
|
*/
|
|
int (*xfer)(struct udevice *bus, struct i2c_msg *msg, int nmsgs);
|
|
|
|
/**
|
|
* probe_chip() - probe for the presense of a chip address
|
|
*
|
|
* This function is optional. If omitted, the uclass will send a zero
|
|
* length message instead.
|
|
*
|
|
* @bus: Bus to probe
|
|
* @chip_addr: Chip address to probe
|
|
* @chip_flags: Probe flags (enum dm_i2c_chip_flags)
|
|
* @return 0 if chip was found, -EREMOTEIO if not, -ENOSYS to fall back
|
|
* to default probem other -ve value on error
|
|
*/
|
|
int (*probe_chip)(struct udevice *bus, uint chip_addr, uint chip_flags);
|
|
|
|
/**
|
|
* set_bus_speed() - set the speed of a bus (optional)
|
|
*
|
|
* The bus speed value will be updated by the uclass if this function
|
|
* does not return an error. This method is optional - if it is not
|
|
* provided then the driver can read the speed from
|
|
* dev_get_uclass_priv(bus)->speed_hz
|
|
*
|
|
* @bus: Bus to adjust
|
|
* @speed: Requested speed in Hz
|
|
* @return 0 if OK, -EINVAL for invalid values
|
|
*/
|
|
int (*set_bus_speed)(struct udevice *bus, unsigned int speed);
|
|
|
|
/**
|
|
* get_bus_speed() - get the speed of a bus (optional)
|
|
*
|
|
* Normally this can be provided by the uclass, but if you want your
|
|
* driver to check the bus speed by looking at the hardware, you can
|
|
* implement that here. This method is optional. This method would
|
|
* normally be expected to return dev_get_uclass_priv(bus)->speed_hz.
|
|
*
|
|
* @bus: Bus to check
|
|
* @return speed of selected I2C bus in Hz, -ve on error
|
|
*/
|
|
int (*get_bus_speed)(struct udevice *bus);
|
|
|
|
/**
|
|
* set_flags() - set the flags for a chip (optional)
|
|
*
|
|
* This is generally implemented by the uclass, but drivers can
|
|
* check the value to ensure that unsupported options are not used.
|
|
* This method is optional. If provided, this method will always be
|
|
* called when the flags change.
|
|
*
|
|
* @dev: Chip to adjust
|
|
* @flags: New flags value
|
|
* @return 0 if OK, -EINVAL if value is unsupported
|
|
*/
|
|
int (*set_flags)(struct udevice *dev, uint flags);
|
|
|
|
/**
|
|
* deblock() - recover a bus that is in an unknown state
|
|
*
|
|
* I2C is a synchronous protocol and resets of the processor in the
|
|
* middle of an access can block the I2C Bus until a powerdown of
|
|
* the full unit is done. This is because slaves can be stuck
|
|
* waiting for addition bus transitions for a transaction that will
|
|
* never complete. Resetting the I2C master does not help. The only
|
|
* way is to force the bus through a series of transitions to make
|
|
* sure that all slaves are done with the transaction. This method
|
|
* performs this 'deblocking' if support by the driver.
|
|
*
|
|
* This method is optional.
|
|
*/
|
|
int (*deblock)(struct udevice *bus);
|
|
};
|
|
|
|
#define i2c_get_ops(dev) ((struct dm_i2c_ops *)(dev)->driver->ops)
|
|
|
|
/**
|
|
* struct i2c_mux_ops - operations for an I2C mux
|
|
*
|
|
* The current mux state is expected to be stored in the mux itself since
|
|
* it is the only thing that knows how to make things work. The mux can
|
|
* record the current state and then avoid switching unless it is necessary.
|
|
* So select() can be skipped if the mux is already in the correct state.
|
|
* Also deselect() can be made a nop if required.
|
|
*/
|
|
struct i2c_mux_ops {
|
|
/**
|
|
* select() - select one of of I2C buses attached to a mux
|
|
*
|
|
* This will be called when there is no bus currently selected by the
|
|
* mux. This method does not need to deselect the old bus since
|
|
* deselect() will be already have been called if necessary.
|
|
*
|
|
* @mux: Mux device
|
|
* @bus: I2C bus to select
|
|
* @channel: Channel number correponding to the bus to select
|
|
* @return 0 if OK, -ve on error
|
|
*/
|
|
int (*select)(struct udevice *mux, struct udevice *bus, uint channel);
|
|
|
|
/**
|
|
* deselect() - select one of of I2C buses attached to a mux
|
|
*
|
|
* This is used to deselect the currently selected I2C bus.
|
|
*
|
|
* @mux: Mux device
|
|
* @bus: I2C bus to deselect
|
|
* @channel: Channel number correponding to the bus to deselect
|
|
* @return 0 if OK, -ve on error
|
|
*/
|
|
int (*deselect)(struct udevice *mux, struct udevice *bus, uint channel);
|
|
};
|
|
|
|
#define i2c_mux_get_ops(dev) ((struct i2c_mux_ops *)(dev)->driver->ops)
|
|
|
|
/**
|
|
* i2c_get_chip() - get a device to use to access a chip on a bus
|
|
*
|
|
* This returns the device for the given chip address. The device can then
|
|
* be used with calls to i2c_read(), i2c_write(), i2c_probe(), etc.
|
|
*
|
|
* @bus: Bus to examine
|
|
* @chip_addr: Chip address for the new device
|
|
* @offset_len: Length of a register offset in bytes (normally 1)
|
|
* @devp: Returns pointer to new device if found or -ENODEV if not
|
|
* found
|
|
*/
|
|
int i2c_get_chip(struct udevice *bus, uint chip_addr, uint offset_len,
|
|
struct udevice **devp);
|
|
|
|
/**
|
|
* i2c_get_chip_for_busnum() - get a device to use to access a chip on
|
|
* a bus number
|
|
*
|
|
* This returns the device for the given chip address on a particular bus
|
|
* number.
|
|
*
|
|
* @busnum: Bus number to examine
|
|
* @chip_addr: Chip address for the new device
|
|
* @offset_len: Length of a register offset in bytes (normally 1)
|
|
* @devp: Returns pointer to new device if found or -ENODEV if not
|
|
* found
|
|
*/
|
|
int i2c_get_chip_for_busnum(int busnum, int chip_addr, uint offset_len,
|
|
struct udevice **devp);
|
|
|
|
/**
|
|
* i2c_chip_ofdata_to_platdata() - Decode standard I2C platform data
|
|
*
|
|
* This decodes the chip address from a device tree node and puts it into
|
|
* its dm_i2c_chip structure. This should be called in your driver's
|
|
* ofdata_to_platdata() method.
|
|
*
|
|
* @blob: Device tree blob
|
|
* @node: Node offset to read from
|
|
* @spi: Place to put the decoded information
|
|
*/
|
|
int i2c_chip_ofdata_to_platdata(struct udevice *dev, struct dm_i2c_chip *chip);
|
|
|
|
/**
|
|
* i2c_dump_msgs() - Dump a list of I2C messages
|
|
*
|
|
* This may be useful for debugging.
|
|
*
|
|
* @msg: Message list to dump
|
|
* @nmsgs: Number of messages
|
|
*/
|
|
void i2c_dump_msgs(struct i2c_msg *msg, int nmsgs);
|
|
|
|
#ifndef CONFIG_DM_I2C
|
|
|
|
/*
|
|
* WARNING WARNING WARNING WARNING WARNING WARNING WARNING WARNING
|
|
*
|
|
* The implementation MUST NOT use static or global variables if the
|
|
* I2C routines are used to read SDRAM configuration information
|
|
* because this is done before the memories are initialized. Limited
|
|
* use of stack-based variables are OK (the initial stack size is
|
|
* limited).
|
|
*
|
|
* WARNING WARNING WARNING WARNING WARNING WARNING WARNING WARNING
|
|
*/
|
|
|
|
/*
|
|
* Configuration items.
|
|
*/
|
|
#define I2C_RXTX_LEN 128 /* maximum tx/rx buffer length */
|
|
|
|
#if !defined(CONFIG_SYS_I2C_MAX_HOPS)
|
|
/* no muxes used bus = i2c adapters */
|
|
#define CONFIG_SYS_I2C_DIRECT_BUS 1
|
|
#define CONFIG_SYS_I2C_MAX_HOPS 0
|
|
#define CONFIG_SYS_NUM_I2C_BUSES ll_entry_count(struct i2c_adapter, i2c)
|
|
#else
|
|
/* we use i2c muxes */
|
|
#undef CONFIG_SYS_I2C_DIRECT_BUS
|
|
#endif
|
|
|
|
/* define the I2C bus number for RTC and DTT if not already done */
|
|
#if !defined(CONFIG_SYS_RTC_BUS_NUM)
|
|
#define CONFIG_SYS_RTC_BUS_NUM 0
|
|
#endif
|
|
#if !defined(CONFIG_SYS_SPD_BUS_NUM)
|
|
#define CONFIG_SYS_SPD_BUS_NUM 0
|
|
#endif
|
|
|
|
struct i2c_adapter {
|
|
void (*init)(struct i2c_adapter *adap, int speed,
|
|
int slaveaddr);
|
|
int (*probe)(struct i2c_adapter *adap, uint8_t chip);
|
|
int (*read)(struct i2c_adapter *adap, uint8_t chip,
|
|
uint addr, int alen, uint8_t *buffer,
|
|
int len);
|
|
int (*write)(struct i2c_adapter *adap, uint8_t chip,
|
|
uint addr, int alen, uint8_t *buffer,
|
|
int len);
|
|
uint (*set_bus_speed)(struct i2c_adapter *adap,
|
|
uint speed);
|
|
int speed;
|
|
int waitdelay;
|
|
int slaveaddr;
|
|
int init_done;
|
|
int hwadapnr;
|
|
char *name;
|
|
};
|
|
|
|
#define U_BOOT_I2C_MKENT_COMPLETE(_init, _probe, _read, _write, \
|
|
_set_speed, _speed, _slaveaddr, _hwadapnr, _name) \
|
|
{ \
|
|
.init = _init, \
|
|
.probe = _probe, \
|
|
.read = _read, \
|
|
.write = _write, \
|
|
.set_bus_speed = _set_speed, \
|
|
.speed = _speed, \
|
|
.slaveaddr = _slaveaddr, \
|
|
.init_done = 0, \
|
|
.hwadapnr = _hwadapnr, \
|
|
.name = #_name \
|
|
};
|
|
|
|
#define U_BOOT_I2C_ADAP_COMPLETE(_name, _init, _probe, _read, _write, \
|
|
_set_speed, _speed, _slaveaddr, _hwadapnr) \
|
|
ll_entry_declare(struct i2c_adapter, _name, i2c) = \
|
|
U_BOOT_I2C_MKENT_COMPLETE(_init, _probe, _read, _write, \
|
|
_set_speed, _speed, _slaveaddr, _hwadapnr, _name);
|
|
|
|
struct i2c_adapter *i2c_get_adapter(int index);
|
|
|
|
#ifndef CONFIG_SYS_I2C_DIRECT_BUS
|
|
struct i2c_mux {
|
|
int id;
|
|
char name[16];
|
|
};
|
|
|
|
struct i2c_next_hop {
|
|
struct i2c_mux mux;
|
|
uint8_t chip;
|
|
uint8_t channel;
|
|
};
|
|
|
|
struct i2c_bus_hose {
|
|
int adapter;
|
|
struct i2c_next_hop next_hop[CONFIG_SYS_I2C_MAX_HOPS];
|
|
};
|
|
#define I2C_NULL_HOP {{-1, ""}, 0, 0}
|
|
extern struct i2c_bus_hose i2c_bus[];
|
|
|
|
#define I2C_ADAPTER(bus) i2c_bus[bus].adapter
|
|
#else
|
|
#define I2C_ADAPTER(bus) bus
|
|
#endif
|
|
#define I2C_BUS gd->cur_i2c_bus
|
|
|
|
#define I2C_ADAP_NR(bus) i2c_get_adapter(I2C_ADAPTER(bus))
|
|
#define I2C_ADAP I2C_ADAP_NR(gd->cur_i2c_bus)
|
|
#define I2C_ADAP_HWNR (I2C_ADAP->hwadapnr)
|
|
|
|
#ifndef CONFIG_SYS_I2C_DIRECT_BUS
|
|
#define I2C_MUX_PCA9540_ID 1
|
|
#define I2C_MUX_PCA9540 {I2C_MUX_PCA9540_ID, "PCA9540B"}
|
|
#define I2C_MUX_PCA9542_ID 2
|
|
#define I2C_MUX_PCA9542 {I2C_MUX_PCA9542_ID, "PCA9542A"}
|
|
#define I2C_MUX_PCA9544_ID 3
|
|
#define I2C_MUX_PCA9544 {I2C_MUX_PCA9544_ID, "PCA9544A"}
|
|
#define I2C_MUX_PCA9547_ID 4
|
|
#define I2C_MUX_PCA9547 {I2C_MUX_PCA9547_ID, "PCA9547A"}
|
|
#define I2C_MUX_PCA9548_ID 5
|
|
#define I2C_MUX_PCA9548 {I2C_MUX_PCA9548_ID, "PCA9548"}
|
|
#endif
|
|
|
|
#ifndef I2C_SOFT_DECLARATIONS
|
|
# if (defined(CONFIG_AT91RM9200) || \
|
|
defined(CONFIG_AT91SAM9260) || defined(CONFIG_AT91SAM9261) || \
|
|
defined(CONFIG_AT91SAM9263))
|
|
# define I2C_SOFT_DECLARATIONS at91_pio_t *pio = (at91_pio_t *) ATMEL_BASE_PIOA;
|
|
# else
|
|
# define I2C_SOFT_DECLARATIONS
|
|
# endif
|
|
#endif
|
|
|
|
/*
|
|
* Many boards/controllers/drivers don't support an I2C slave interface so
|
|
* provide a default slave address for them for use in common code. A real
|
|
* value for CONFIG_SYS_I2C_SLAVE should be defined for any board which does
|
|
* support a slave interface.
|
|
*/
|
|
#ifndef CONFIG_SYS_I2C_SLAVE
|
|
#define CONFIG_SYS_I2C_SLAVE 0xfe
|
|
#endif
|
|
|
|
/*
|
|
* Initialization, must be called once on start up, may be called
|
|
* repeatedly to change the speed and slave addresses.
|
|
*/
|
|
#ifdef CONFIG_SYS_I2C_EARLY_INIT
|
|
void i2c_early_init_f(void);
|
|
#endif
|
|
void i2c_init(int speed, int slaveaddr);
|
|
void i2c_init_board(void);
|
|
|
|
#ifdef CONFIG_SYS_I2C
|
|
/*
|
|
* i2c_get_bus_num:
|
|
*
|
|
* Returns index of currently active I2C bus. Zero-based.
|
|
*/
|
|
unsigned int i2c_get_bus_num(void);
|
|
|
|
/*
|
|
* i2c_set_bus_num:
|
|
*
|
|
* Change the active I2C bus. Subsequent read/write calls will
|
|
* go to this one.
|
|
*
|
|
* bus - bus index, zero based
|
|
*
|
|
* Returns: 0 on success, not 0 on failure
|
|
*
|
|
*/
|
|
int i2c_set_bus_num(unsigned int bus);
|
|
|
|
/*
|
|
* i2c_init_all():
|
|
*
|
|
* Initializes all I2C adapters in the system. All i2c_adap structures must
|
|
* be initialized beforehead with function pointers and data, including
|
|
* speed and slaveaddr. Returns 0 on success, non-0 on failure.
|
|
*/
|
|
void i2c_init_all(void);
|
|
|
|
/*
|
|
* Probe the given I2C chip address. Returns 0 if a chip responded,
|
|
* not 0 on failure.
|
|
*/
|
|
int i2c_probe(uint8_t chip);
|
|
|
|
/*
|
|
* Read/Write interface:
|
|
* chip: I2C chip address, range 0..127
|
|
* addr: Memory (register) address within the chip
|
|
* alen: Number of bytes to use for addr (typically 1, 2 for larger
|
|
* memories, 0 for register type devices with only one
|
|
* register)
|
|
* buffer: Where to read/write the data
|
|
* len: How many bytes to read/write
|
|
*
|
|
* Returns: 0 on success, not 0 on failure
|
|
*/
|
|
int i2c_read(uint8_t chip, unsigned int addr, int alen,
|
|
uint8_t *buffer, int len);
|
|
|
|
int i2c_write(uint8_t chip, unsigned int addr, int alen,
|
|
uint8_t *buffer, int len);
|
|
|
|
/*
|
|
* Utility routines to read/write registers.
|
|
*/
|
|
uint8_t i2c_reg_read(uint8_t addr, uint8_t reg);
|
|
|
|
void i2c_reg_write(uint8_t addr, uint8_t reg, uint8_t val);
|
|
|
|
/*
|
|
* i2c_set_bus_speed:
|
|
*
|
|
* Change the speed of the active I2C bus
|
|
*
|
|
* speed - bus speed in Hz
|
|
*
|
|
* Returns: new bus speed
|
|
*
|
|
*/
|
|
unsigned int i2c_set_bus_speed(unsigned int speed);
|
|
|
|
/*
|
|
* i2c_get_bus_speed:
|
|
*
|
|
* Returns speed of currently active I2C bus in Hz
|
|
*/
|
|
|
|
unsigned int i2c_get_bus_speed(void);
|
|
|
|
#else
|
|
|
|
/*
|
|
* Probe the given I2C chip address. Returns 0 if a chip responded,
|
|
* not 0 on failure.
|
|
*/
|
|
int i2c_probe(uchar chip);
|
|
|
|
/*
|
|
* Read/Write interface:
|
|
* chip: I2C chip address, range 0..127
|
|
* addr: Memory (register) address within the chip
|
|
* alen: Number of bytes to use for addr (typically 1, 2 for larger
|
|
* memories, 0 for register type devices with only one
|
|
* register)
|
|
* buffer: Where to read/write the data
|
|
* len: How many bytes to read/write
|
|
*
|
|
* Returns: 0 on success, not 0 on failure
|
|
*/
|
|
int i2c_read(uchar chip, uint addr, int alen, uchar *buffer, int len);
|
|
int i2c_write(uchar chip, uint addr, int alen, uchar *buffer, int len);
|
|
|
|
/*
|
|
* Utility routines to read/write registers.
|
|
*/
|
|
static inline u8 i2c_reg_read(u8 addr, u8 reg)
|
|
{
|
|
u8 buf;
|
|
|
|
#ifdef DEBUG
|
|
printf("%s: addr=0x%02x, reg=0x%02x\n", __func__, addr, reg);
|
|
#endif
|
|
|
|
i2c_read(addr, reg, 1, &buf, 1);
|
|
|
|
return buf;
|
|
}
|
|
|
|
static inline void i2c_reg_write(u8 addr, u8 reg, u8 val)
|
|
{
|
|
#ifdef DEBUG
|
|
printf("%s: addr=0x%02x, reg=0x%02x, val=0x%02x\n",
|
|
__func__, addr, reg, val);
|
|
#endif
|
|
|
|
i2c_write(addr, reg, 1, &val, 1);
|
|
}
|
|
|
|
/*
|
|
* Functions for setting the current I2C bus and its speed
|
|
*/
|
|
|
|
/*
|
|
* i2c_set_bus_num:
|
|
*
|
|
* Change the active I2C bus. Subsequent read/write calls will
|
|
* go to this one.
|
|
*
|
|
* bus - bus index, zero based
|
|
*
|
|
* Returns: 0 on success, not 0 on failure
|
|
*
|
|
*/
|
|
int i2c_set_bus_num(unsigned int bus);
|
|
|
|
/*
|
|
* i2c_get_bus_num:
|
|
*
|
|
* Returns index of currently active I2C bus. Zero-based.
|
|
*/
|
|
|
|
unsigned int i2c_get_bus_num(void);
|
|
|
|
/*
|
|
* i2c_set_bus_speed:
|
|
*
|
|
* Change the speed of the active I2C bus
|
|
*
|
|
* speed - bus speed in Hz
|
|
*
|
|
* Returns: 0 on success, not 0 on failure
|
|
*
|
|
*/
|
|
int i2c_set_bus_speed(unsigned int);
|
|
|
|
/*
|
|
* i2c_get_bus_speed:
|
|
*
|
|
* Returns speed of currently active I2C bus in Hz
|
|
*/
|
|
|
|
unsigned int i2c_get_bus_speed(void);
|
|
#endif /* CONFIG_SYS_I2C */
|
|
|
|
/*
|
|
* only for backwardcompatibility, should go away if we switched
|
|
* completely to new multibus support.
|
|
*/
|
|
#if defined(CONFIG_SYS_I2C) || defined(CONFIG_I2C_MULTI_BUS)
|
|
# if !defined(CONFIG_SYS_MAX_I2C_BUS)
|
|
# define CONFIG_SYS_MAX_I2C_BUS 2
|
|
# endif
|
|
# define I2C_MULTI_BUS 1
|
|
#else
|
|
# define CONFIG_SYS_MAX_I2C_BUS 1
|
|
# define I2C_MULTI_BUS 0
|
|
#endif
|
|
|
|
/* NOTE: These two functions MUST be always_inline to avoid code growth! */
|
|
static inline unsigned int I2C_GET_BUS(void) __attribute__((always_inline));
|
|
static inline unsigned int I2C_GET_BUS(void)
|
|
{
|
|
return I2C_MULTI_BUS ? i2c_get_bus_num() : 0;
|
|
}
|
|
|
|
static inline void I2C_SET_BUS(unsigned int bus) __attribute__((always_inline));
|
|
static inline void I2C_SET_BUS(unsigned int bus)
|
|
{
|
|
if (I2C_MULTI_BUS)
|
|
i2c_set_bus_num(bus);
|
|
}
|
|
|
|
/* Multi I2C definitions */
|
|
enum {
|
|
I2C_0, I2C_1, I2C_2, I2C_3, I2C_4, I2C_5, I2C_6, I2C_7,
|
|
I2C_8, I2C_9, I2C_10,
|
|
};
|
|
|
|
/**
|
|
* Get FDT values for i2c bus.
|
|
*
|
|
* @param blob Device tree blbo
|
|
* @return the number of I2C bus
|
|
*/
|
|
void board_i2c_init(const void *blob);
|
|
|
|
/**
|
|
* Find the I2C bus number by given a FDT I2C node.
|
|
*
|
|
* @param blob Device tree blbo
|
|
* @param node FDT I2C node to find
|
|
* @return the number of I2C bus (zero based), or -1 on error
|
|
*/
|
|
int i2c_get_bus_num_fdt(int node);
|
|
|
|
/**
|
|
* Reset the I2C bus represented by the given a FDT I2C node.
|
|
*
|
|
* @param blob Device tree blbo
|
|
* @param node FDT I2C node to find
|
|
* @return 0 if port was reset, -1 if not found
|
|
*/
|
|
int i2c_reset_port_fdt(const void *blob, int node);
|
|
|
|
#endif /* !CONFIG_DM_I2C */
|
|
|
|
#endif /* _I2C_H_ */
|