u-boot/drivers/mtd/nand/raw/zynq_nand.c
Simon Glass c05ed00afb common: Drop linux/delay.h from common header
Move this uncommon header out of the common header.

Signed-off-by: Simon Glass <sjg@chromium.org>
2020-05-18 21:19:23 -04:00

1301 lines
36 KiB
C

// SPDX-License-Identifier: GPL-2.0+
/*
* (C) Copyright 2016 Xilinx, Inc.
*
* Xilinx Zynq NAND Flash Controller Driver
* This driver is based on plat_nand.c and mxc_nand.c drivers
*/
#include <common.h>
#include <log.h>
#include <malloc.h>
#include <asm/io.h>
#include <linux/delay.h>
#include <linux/errno.h>
#include <nand.h>
#include <linux/ioport.h>
#include <linux/mtd/mtd.h>
#include <linux/mtd/rawnand.h>
#include <linux/mtd/partitions.h>
#include <linux/mtd/nand_ecc.h>
#include <asm/arch/hardware.h>
#include <asm/arch/sys_proto.h>
#include <dm.h>
/* The NAND flash driver defines */
#define ZYNQ_NAND_CMD_PHASE 1
#define ZYNQ_NAND_DATA_PHASE 2
#define ZYNQ_NAND_ECC_SIZE 512
#define ZYNQ_NAND_SET_OPMODE_8BIT (0 << 0)
#define ZYNQ_NAND_SET_OPMODE_16BIT (1 << 0)
#define ZYNQ_NAND_ECC_STATUS (1 << 6)
#define ZYNQ_MEMC_CLRCR_INT_CLR1 (1 << 4)
#define ZYNQ_MEMC_SR_RAW_INT_ST1 (1 << 6)
#define ZYNQ_MEMC_SR_INT_ST1 (1 << 4)
#define ZYNQ_MEMC_NAND_ECC_MODE_MASK 0xC
/* Flash memory controller operating parameters */
#define ZYNQ_NAND_CLR_CONFIG ((0x1 << 1) | /* Disable interrupt */ \
(0x1 << 4) | /* Clear interrupt */ \
(0x1 << 6)) /* Disable ECC interrupt */
#ifndef CONFIG_NAND_ZYNQ_USE_BOOTLOADER1_TIMINGS
/* Assuming 50MHz clock (20ns cycle time) and 3V operation */
#define ZYNQ_NAND_SET_CYCLES ((0x2 << 20) | /* t_rr from nand_cycles */ \
(0x2 << 17) | /* t_ar from nand_cycles */ \
(0x1 << 14) | /* t_clr from nand_cycles */ \
(0x3 << 11) | /* t_wp from nand_cycles */ \
(0x2 << 8) | /* t_rea from nand_cycles */ \
(0x5 << 4) | /* t_wc from nand_cycles */ \
(0x5 << 0)) /* t_rc from nand_cycles */
#endif
#define ZYNQ_NAND_DIRECT_CMD ((0x4 << 23) | /* Chip 0 from interface 1 */ \
(0x2 << 21)) /* UpdateRegs operation */
#define ZYNQ_NAND_ECC_CONFIG ((0x1 << 2) | /* ECC available on APB */ \
(0x1 << 4) | /* ECC read at end of page */ \
(0x0 << 5)) /* No Jumping */
#define ZYNQ_NAND_ECC_CMD1 ((0x80) | /* Write command */ \
(0x00 << 8) | /* Read command */ \
(0x30 << 16) | /* Read End command */ \
(0x1 << 24)) /* Read End command calid */
#define ZYNQ_NAND_ECC_CMD2 ((0x85) | /* Write col change cmd */ \
(0x05 << 8) | /* Read col change cmd */ \
(0xE0 << 16) | /* Read col change end cmd */ \
(0x1 << 24)) /* Read col change
end cmd valid */
/* AXI Address definitions */
#define START_CMD_SHIFT 3
#define END_CMD_SHIFT 11
#define END_CMD_VALID_SHIFT 20
#define ADDR_CYCLES_SHIFT 21
#define CLEAR_CS_SHIFT 21
#define ECC_LAST_SHIFT 10
#define COMMAND_PHASE (0 << 19)
#define DATA_PHASE (1 << 19)
#define ONDIE_ECC_FEATURE_ADDR 0x90
#define ONDIE_ECC_FEATURE_ENABLE 0x08
#define ZYNQ_NAND_ECC_LAST (1 << ECC_LAST_SHIFT) /* Set ECC_Last */
#define ZYNQ_NAND_CLEAR_CS (1 << CLEAR_CS_SHIFT) /* Clear chip select */
/* ECC block registers bit position and bit mask */
#define ZYNQ_NAND_ECC_BUSY (1 << 6) /* ECC block is busy */
#define ZYNQ_NAND_ECC_MASK 0x00FFFFFF /* ECC value mask */
#define ZYNQ_NAND_ROW_ADDR_CYCL_MASK 0x0F
#define ZYNQ_NAND_COL_ADDR_CYCL_MASK 0xF0
#define ZYNQ_NAND_MIO_NUM_NAND_8BIT 13
#define ZYNQ_NAND_MIO_NUM_NAND_16BIT 8
enum zynq_nand_bus_width {
NAND_BW_UNKNOWN = -1,
NAND_BW_8BIT,
NAND_BW_16BIT,
};
#ifndef NAND_CMD_LOCK_TIGHT
#define NAND_CMD_LOCK_TIGHT 0x2c
#endif
#ifndef NAND_CMD_LOCK_STATUS
#define NAND_CMD_LOCK_STATUS 0x7a
#endif
/* SMC register set */
struct zynq_nand_smc_regs {
u32 csr; /* 0x00 */
u32 reserved0[2];
u32 cfr; /* 0x0C */
u32 dcr; /* 0x10 */
u32 scr; /* 0x14 */
u32 sor; /* 0x18 */
u32 reserved1[249];
u32 esr; /* 0x400 */
u32 emcr; /* 0x404 */
u32 emcmd1r; /* 0x408 */
u32 emcmd2r; /* 0x40C */
u32 reserved2[2];
u32 eval0r; /* 0x418 */
};
/*
* struct nand_config - Defines the NAND flash driver instance
* @parts: Pointer to the mtd_partition structure
* @nand_base: Virtual address of the NAND flash device
* @end_cmd_pending: End command is pending
* @end_cmd: End command
*/
struct nand_config {
void __iomem *nand_base;
u8 end_cmd_pending;
u8 end_cmd;
};
struct nand_drv {
struct zynq_nand_smc_regs *reg;
struct nand_config config;
};
struct zynq_nand_info {
struct udevice *dev;
struct nand_drv nand_ctrl;
struct nand_chip nand_chip;
};
/*
* struct zynq_nand_command_format - Defines NAND flash command format
* @start_cmd: First cycle command (Start command)
* @end_cmd: Second cycle command (Last command)
* @addr_cycles: Number of address cycles required to send the address
* @end_cmd_valid: The second cycle command is valid for cmd or data phase
*/
struct zynq_nand_command_format {
u8 start_cmd;
u8 end_cmd;
u8 addr_cycles;
u8 end_cmd_valid;
};
/* The NAND flash operations command format */
static const struct zynq_nand_command_format zynq_nand_commands[] = {
{NAND_CMD_READ0, NAND_CMD_READSTART, 5, ZYNQ_NAND_CMD_PHASE},
{NAND_CMD_RNDOUT, NAND_CMD_RNDOUTSTART, 2, ZYNQ_NAND_CMD_PHASE},
{NAND_CMD_READID, NAND_CMD_NONE, 1, 0},
{NAND_CMD_STATUS, NAND_CMD_NONE, 0, 0},
{NAND_CMD_SEQIN, NAND_CMD_PAGEPROG, 5, ZYNQ_NAND_DATA_PHASE},
{NAND_CMD_RNDIN, NAND_CMD_NONE, 2, 0},
{NAND_CMD_ERASE1, NAND_CMD_ERASE2, 3, ZYNQ_NAND_CMD_PHASE},
{NAND_CMD_RESET, NAND_CMD_NONE, 0, 0},
{NAND_CMD_PARAM, NAND_CMD_NONE, 1, 0},
{NAND_CMD_GET_FEATURES, NAND_CMD_NONE, 1, 0},
{NAND_CMD_SET_FEATURES, NAND_CMD_NONE, 1, 0},
{NAND_CMD_LOCK, NAND_CMD_NONE, 0, 0},
{NAND_CMD_LOCK_TIGHT, NAND_CMD_NONE, 0, 0},
{NAND_CMD_UNLOCK1, NAND_CMD_NONE, 3, 0},
{NAND_CMD_UNLOCK2, NAND_CMD_NONE, 3, 0},
{NAND_CMD_LOCK_STATUS, NAND_CMD_NONE, 3, 0},
{NAND_CMD_NONE, NAND_CMD_NONE, 0, 0},
/* Add all the flash commands supported by the flash device */
};
/* Define default oob placement schemes for large and small page devices */
static struct nand_ecclayout nand_oob_16 = {
.eccbytes = 3,
.eccpos = {0, 1, 2},
.oobfree = {
{ .offset = 8, .length = 8 }
}
};
static struct nand_ecclayout nand_oob_64 = {
.eccbytes = 12,
.eccpos = {
52, 53, 54, 55, 56, 57,
58, 59, 60, 61, 62, 63},
.oobfree = {
{ .offset = 2, .length = 50 }
}
};
static struct nand_ecclayout ondie_nand_oob_64 = {
.eccbytes = 32,
.eccpos = {
8, 9, 10, 11, 12, 13, 14, 15,
24, 25, 26, 27, 28, 29, 30, 31,
40, 41, 42, 43, 44, 45, 46, 47,
56, 57, 58, 59, 60, 61, 62, 63
},
.oobfree = {
{ .offset = 4, .length = 4 },
{ .offset = 20, .length = 4 },
{ .offset = 36, .length = 4 },
{ .offset = 52, .length = 4 }
}
};
/* bbt decriptors for chips with on-die ECC and
chips with 64-byte OOB */
static u8 bbt_pattern[] = {'B', 'b', 't', '0' };
static u8 mirror_pattern[] = {'1', 't', 'b', 'B' };
static struct nand_bbt_descr bbt_main_descr = {
.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE |
NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
.offs = 4,
.len = 4,
.veroffs = 20,
.maxblocks = 4,
.pattern = bbt_pattern
};
static struct nand_bbt_descr bbt_mirror_descr = {
.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE |
NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
.offs = 4,
.len = 4,
.veroffs = 20,
.maxblocks = 4,
.pattern = mirror_pattern
};
/*
* zynq_nand_waitfor_ecc_completion - Wait for ECC completion
*
* returns: status for command completion, -1 for Timeout
*/
static int zynq_nand_waitfor_ecc_completion(struct mtd_info *mtd)
{
struct nand_chip *nand_chip = mtd_to_nand(mtd);
struct nand_drv *smc = nand_get_controller_data(nand_chip);
unsigned long timeout;
u32 status;
/* Wait max 10us */
timeout = 10;
status = readl(&smc->reg->esr);
while (status & ZYNQ_NAND_ECC_BUSY) {
status = readl(&smc->reg->esr);
if (timeout == 0)
return -1;
timeout--;
udelay(1);
}
return status;
}
/*
* zynq_nand_init_nand_flash - Initialize NAND controller
* @option: Device property flags
*
* This function initializes the NAND flash interface on the NAND controller.
*
* returns: 0 on success or error value on failure
*/
static int zynq_nand_init_nand_flash(struct mtd_info *mtd, int option)
{
struct nand_chip *nand_chip = mtd_to_nand(mtd);
struct nand_drv *smc = nand_get_controller_data(nand_chip);
u32 status;
/* disable interrupts */
writel(ZYNQ_NAND_CLR_CONFIG, &smc->reg->cfr);
#ifndef CONFIG_NAND_ZYNQ_USE_BOOTLOADER1_TIMINGS
/* Initialize the NAND interface by setting cycles and operation mode */
writel(ZYNQ_NAND_SET_CYCLES, &smc->reg->scr);
#endif
if (option & NAND_BUSWIDTH_16)
writel(ZYNQ_NAND_SET_OPMODE_16BIT, &smc->reg->sor);
else
writel(ZYNQ_NAND_SET_OPMODE_8BIT, &smc->reg->sor);
writel(ZYNQ_NAND_DIRECT_CMD, &smc->reg->dcr);
/* Wait till the ECC operation is complete */
status = zynq_nand_waitfor_ecc_completion(mtd);
if (status < 0) {
printf("%s: Timeout\n", __func__);
return status;
}
/* Set the command1 and command2 register */
writel(ZYNQ_NAND_ECC_CMD1, &smc->reg->emcmd1r);
writel(ZYNQ_NAND_ECC_CMD2, &smc->reg->emcmd2r);
return 0;
}
/*
* zynq_nand_calculate_hwecc - Calculate Hardware ECC
* @mtd: Pointer to the mtd_info structure
* @data: Pointer to the page data
* @ecc_code: Pointer to the ECC buffer where ECC data needs to be stored
*
* This function retrieves the Hardware ECC data from the controller and returns
* ECC data back to the MTD subsystem.
*
* returns: 0 on success or error value on failure
*/
static int zynq_nand_calculate_hwecc(struct mtd_info *mtd, const u8 *data,
u8 *ecc_code)
{
struct nand_chip *nand_chip = mtd_to_nand(mtd);
struct nand_drv *smc = nand_get_controller_data(nand_chip);
u32 ecc_value = 0;
u8 ecc_reg, ecc_byte;
u32 ecc_status;
/* Wait till the ECC operation is complete */
ecc_status = zynq_nand_waitfor_ecc_completion(mtd);
if (ecc_status < 0) {
printf("%s: Timeout\n", __func__);
return ecc_status;
}
for (ecc_reg = 0; ecc_reg < 4; ecc_reg++) {
/* Read ECC value for each block */
ecc_value = readl(&smc->reg->eval0r + ecc_reg);
/* Get the ecc status from ecc read value */
ecc_status = (ecc_value >> 24) & 0xFF;
/* ECC value valid */
if (ecc_status & ZYNQ_NAND_ECC_STATUS) {
for (ecc_byte = 0; ecc_byte < 3; ecc_byte++) {
/* Copy ECC bytes to MTD buffer */
*ecc_code = ecc_value & 0xFF;
ecc_value = ecc_value >> 8;
ecc_code++;
}
} else {
debug("%s: ecc status failed\n", __func__);
}
}
return 0;
}
/*
* onehot - onehot function
* @value: value to check for onehot
*
* This function checks whether a value is onehot or not.
* onehot is if and only if one bit is set.
*
* FIXME: Try to move this in common.h
*/
static bool onehot(unsigned short value)
{
bool onehot;
onehot = value && !(value & (value - 1));
return onehot;
}
/*
* zynq_nand_correct_data - ECC correction function
* @mtd: Pointer to the mtd_info structure
* @buf: Pointer to the page data
* @read_ecc: Pointer to the ECC value read from spare data area
* @calc_ecc: Pointer to the calculated ECC value
*
* This function corrects the ECC single bit errors & detects 2-bit errors.
*
* returns: 0 if no ECC errors found
* 1 if single bit error found and corrected.
* -1 if multiple ECC errors found.
*/
static int zynq_nand_correct_data(struct mtd_info *mtd, unsigned char *buf,
unsigned char *read_ecc, unsigned char *calc_ecc)
{
unsigned char bit_addr;
unsigned int byte_addr;
unsigned short ecc_odd, ecc_even;
unsigned short read_ecc_lower, read_ecc_upper;
unsigned short calc_ecc_lower, calc_ecc_upper;
read_ecc_lower = (read_ecc[0] | (read_ecc[1] << 8)) & 0xfff;
read_ecc_upper = ((read_ecc[1] >> 4) | (read_ecc[2] << 4)) & 0xfff;
calc_ecc_lower = (calc_ecc[0] | (calc_ecc[1] << 8)) & 0xfff;
calc_ecc_upper = ((calc_ecc[1] >> 4) | (calc_ecc[2] << 4)) & 0xfff;
ecc_odd = read_ecc_lower ^ calc_ecc_lower;
ecc_even = read_ecc_upper ^ calc_ecc_upper;
if ((ecc_odd == 0) && (ecc_even == 0))
return 0; /* no error */
if (ecc_odd == (~ecc_even & 0xfff)) {
/* bits [11:3] of error code is byte offset */
byte_addr = (ecc_odd >> 3) & 0x1ff;
/* bits [2:0] of error code is bit offset */
bit_addr = ecc_odd & 0x7;
/* Toggling error bit */
buf[byte_addr] ^= (1 << bit_addr);
return 1;
}
if (onehot(ecc_odd | ecc_even))
return 1; /* one error in parity */
return -1; /* Uncorrectable error */
}
/*
* zynq_nand_read_oob - [REPLACABLE] the most common OOB data read function
* @mtd: mtd info structure
* @chip: nand chip info structure
* @page: page number to read
* @sndcmd: flag whether to issue read command or not
*/
static int zynq_nand_read_oob(struct mtd_info *mtd, struct nand_chip *chip,
int page)
{
unsigned long data_phase_addr = 0;
int data_width = 4;
u8 *p;
chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, page);
p = chip->oob_poi;
chip->read_buf(mtd, p, (mtd->oobsize - data_width));
p += mtd->oobsize - data_width;
data_phase_addr = (unsigned long)chip->IO_ADDR_R;
data_phase_addr |= ZYNQ_NAND_CLEAR_CS;
chip->IO_ADDR_R = (void __iomem *)data_phase_addr;
chip->read_buf(mtd, p, data_width);
return 0;
}
/*
* zynq_nand_write_oob - [REPLACABLE] the most common OOB data write function
* @mtd: mtd info structure
* @chip: nand chip info structure
* @page: page number to write
*/
static int zynq_nand_write_oob(struct mtd_info *mtd, struct nand_chip *chip,
int page)
{
int status = 0, data_width = 4;
const u8 *buf = chip->oob_poi;
unsigned long data_phase_addr = 0;
chip->cmdfunc(mtd, NAND_CMD_SEQIN, mtd->writesize, page);
chip->write_buf(mtd, buf, (mtd->oobsize - data_width));
buf += mtd->oobsize - data_width;
data_phase_addr = (unsigned long)chip->IO_ADDR_W;
data_phase_addr |= ZYNQ_NAND_CLEAR_CS;
data_phase_addr |= (1 << END_CMD_VALID_SHIFT);
chip->IO_ADDR_W = (void __iomem *)data_phase_addr;
chip->write_buf(mtd, buf, data_width);
/* Send command to program the OOB data */
chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
status = chip->waitfunc(mtd, chip);
return status & NAND_STATUS_FAIL ? -EIO : 0;
}
/*
* zynq_nand_read_page_raw - [Intern] read raw page data without ecc
* @mtd: mtd info structure
* @chip: nand chip info structure
* @buf: buffer to store read data
* @oob_required: must write chip->oob_poi to OOB
* @page: page number to read
*/
static int zynq_nand_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
u8 *buf, int oob_required, int page)
{
unsigned long data_width = 4;
unsigned long data_phase_addr = 0;
u8 *p;
chip->read_buf(mtd, buf, mtd->writesize);
p = chip->oob_poi;
chip->read_buf(mtd, p, (mtd->oobsize - data_width));
p += (mtd->oobsize - data_width);
data_phase_addr = (unsigned long)chip->IO_ADDR_R;
data_phase_addr |= ZYNQ_NAND_CLEAR_CS;
chip->IO_ADDR_R = (void __iomem *)data_phase_addr;
chip->read_buf(mtd, p, data_width);
return 0;
}
static int zynq_nand_read_page_raw_nooob(struct mtd_info *mtd,
struct nand_chip *chip, u8 *buf, int oob_required, int page)
{
chip->read_buf(mtd, buf, mtd->writesize);
return 0;
}
static int zynq_nand_read_subpage_raw(struct mtd_info *mtd,
struct nand_chip *chip, u32 data_offs,
u32 readlen, u8 *buf, int page)
{
if (data_offs != 0) {
chip->cmdfunc(mtd, NAND_CMD_RNDOUT, data_offs, -1);
buf += data_offs;
}
chip->read_buf(mtd, buf, readlen);
return 0;
}
/*
* zynq_nand_write_page_raw - [Intern] raw page write function
* @mtd: mtd info structure
* @chip: nand chip info structure
* @buf: data buffer
* @oob_required: must write chip->oob_poi to OOB
*/
static int zynq_nand_write_page_raw(struct mtd_info *mtd,
struct nand_chip *chip, const u8 *buf, int oob_required, int page)
{
unsigned long data_width = 4;
unsigned long data_phase_addr = 0;
u8 *p;
chip->write_buf(mtd, buf, mtd->writesize);
p = chip->oob_poi;
chip->write_buf(mtd, p, (mtd->oobsize - data_width));
p += (mtd->oobsize - data_width);
data_phase_addr = (unsigned long)chip->IO_ADDR_W;
data_phase_addr |= ZYNQ_NAND_CLEAR_CS;
data_phase_addr |= (1 << END_CMD_VALID_SHIFT);
chip->IO_ADDR_W = (void __iomem *)data_phase_addr;
chip->write_buf(mtd, p, data_width);
return 0;
}
/*
* nand_write_page_hwecc - Hardware ECC based page write function
* @mtd: Pointer to the mtd info structure
* @chip: Pointer to the NAND chip info structure
* @buf: Pointer to the data buffer
* @oob_required: must write chip->oob_poi to OOB
*
* This functions writes data and hardware generated ECC values in to the page.
*/
static int zynq_nand_write_page_hwecc(struct mtd_info *mtd,
struct nand_chip *chip, const u8 *buf, int oob_required, int page)
{
int i, eccsteps, eccsize = chip->ecc.size;
u8 *ecc_calc = chip->buffers->ecccalc;
const u8 *p = buf;
u32 *eccpos = chip->ecc.layout->eccpos;
unsigned long data_phase_addr = 0;
unsigned long data_width = 4;
u8 *oob_ptr;
for (eccsteps = chip->ecc.steps; (eccsteps - 1); eccsteps--) {
chip->write_buf(mtd, p, eccsize);
p += eccsize;
}
chip->write_buf(mtd, p, (eccsize - data_width));
p += eccsize - data_width;
/* Set ECC Last bit to 1 */
data_phase_addr = (unsigned long) chip->IO_ADDR_W;
data_phase_addr |= ZYNQ_NAND_ECC_LAST;
chip->IO_ADDR_W = (void __iomem *)data_phase_addr;
chip->write_buf(mtd, p, data_width);
/* Wait for ECC to be calculated and read the error values */
p = buf;
chip->ecc.calculate(mtd, p, &ecc_calc[0]);
for (i = 0; i < chip->ecc.total; i++)
chip->oob_poi[eccpos[i]] = ~(ecc_calc[i]);
/* Clear ECC last bit */
data_phase_addr = (unsigned long)chip->IO_ADDR_W;
data_phase_addr &= ~ZYNQ_NAND_ECC_LAST;
chip->IO_ADDR_W = (void __iomem *)data_phase_addr;
/* Write the spare area with ECC bytes */
oob_ptr = chip->oob_poi;
chip->write_buf(mtd, oob_ptr, (mtd->oobsize - data_width));
data_phase_addr = (unsigned long)chip->IO_ADDR_W;
data_phase_addr |= ZYNQ_NAND_CLEAR_CS;
data_phase_addr |= (1 << END_CMD_VALID_SHIFT);
chip->IO_ADDR_W = (void __iomem *)data_phase_addr;
oob_ptr += (mtd->oobsize - data_width);
chip->write_buf(mtd, oob_ptr, data_width);
return 0;
}
/*
* zynq_nand_write_page_swecc - [REPLACABLE] software ecc based page
* write function
* @mtd: mtd info structure
* @chip: nand chip info structure
* @buf: data buffer
* @oob_required: must write chip->oob_poi to OOB
*/
static int zynq_nand_write_page_swecc(struct mtd_info *mtd,
struct nand_chip *chip, const u8 *buf, int oob_required, int page)
{
int i, eccsize = chip->ecc.size;
int eccbytes = chip->ecc.bytes;
int eccsteps = chip->ecc.steps;
u8 *ecc_calc = chip->buffers->ecccalc;
const u8 *p = buf;
u32 *eccpos = chip->ecc.layout->eccpos;
/* Software ecc calculation */
for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize)
chip->ecc.calculate(mtd, p, &ecc_calc[i]);
for (i = 0; i < chip->ecc.total; i++)
chip->oob_poi[eccpos[i]] = ecc_calc[i];
return chip->ecc.write_page_raw(mtd, chip, buf, 1, page);
}
/*
* nand_read_page_hwecc - Hardware ECC based page read function
* @mtd: Pointer to the mtd info structure
* @chip: Pointer to the NAND chip info structure
* @buf: Pointer to the buffer to store read data
* @oob_required: must write chip->oob_poi to OOB
* @page: page number to read
*
* This functions reads data and checks the data integrity by comparing hardware
* generated ECC values and read ECC values from spare area.
*
* returns: 0 always and updates ECC operation status in to MTD structure
*/
static int zynq_nand_read_page_hwecc(struct mtd_info *mtd,
struct nand_chip *chip, u8 *buf, int oob_required, int page)
{
int i, stat, eccsteps, eccsize = chip->ecc.size;
int eccbytes = chip->ecc.bytes;
u8 *p = buf;
u8 *ecc_calc = chip->buffers->ecccalc;
u8 *ecc_code = chip->buffers->ecccode;
u32 *eccpos = chip->ecc.layout->eccpos;
unsigned long data_phase_addr = 0;
unsigned long data_width = 4;
u8 *oob_ptr;
for (eccsteps = chip->ecc.steps; (eccsteps - 1); eccsteps--) {
chip->read_buf(mtd, p, eccsize);
p += eccsize;
}
chip->read_buf(mtd, p, (eccsize - data_width));
p += eccsize - data_width;
/* Set ECC Last bit to 1 */
data_phase_addr = (unsigned long)chip->IO_ADDR_R;
data_phase_addr |= ZYNQ_NAND_ECC_LAST;
chip->IO_ADDR_R = (void __iomem *)data_phase_addr;
chip->read_buf(mtd, p, data_width);
/* Read the calculated ECC value */
p = buf;
chip->ecc.calculate(mtd, p, &ecc_calc[0]);
/* Clear ECC last bit */
data_phase_addr = (unsigned long)chip->IO_ADDR_R;
data_phase_addr &= ~ZYNQ_NAND_ECC_LAST;
chip->IO_ADDR_R = (void __iomem *)data_phase_addr;
/* Read the stored ECC value */
oob_ptr = chip->oob_poi;
chip->read_buf(mtd, oob_ptr, (mtd->oobsize - data_width));
/* de-assert chip select */
data_phase_addr = (unsigned long)chip->IO_ADDR_R;
data_phase_addr |= ZYNQ_NAND_CLEAR_CS;
chip->IO_ADDR_R = (void __iomem *)data_phase_addr;
oob_ptr += (mtd->oobsize - data_width);
chip->read_buf(mtd, oob_ptr, data_width);
for (i = 0; i < chip->ecc.total; i++)
ecc_code[i] = ~(chip->oob_poi[eccpos[i]]);
eccsteps = chip->ecc.steps;
p = buf;
/* Check ECC error for all blocks and correct if it is correctable */
for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
if (stat < 0)
mtd->ecc_stats.failed++;
else
mtd->ecc_stats.corrected += stat;
}
return 0;
}
/*
* zynq_nand_read_page_swecc - [REPLACABLE] software ecc based page
* read function
* @mtd: mtd info structure
* @chip: nand chip info structure
* @buf: buffer to store read data
* @page: page number to read
*/
static int zynq_nand_read_page_swecc(struct mtd_info *mtd,
struct nand_chip *chip, u8 *buf, int oob_required, int page)
{
int i, eccsize = chip->ecc.size;
int eccbytes = chip->ecc.bytes;
int eccsteps = chip->ecc.steps;
u8 *p = buf;
u8 *ecc_calc = chip->buffers->ecccalc;
u8 *ecc_code = chip->buffers->ecccode;
u32 *eccpos = chip->ecc.layout->eccpos;
chip->ecc.read_page_raw(mtd, chip, buf, 1, page);
for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize)
chip->ecc.calculate(mtd, p, &ecc_calc[i]);
for (i = 0; i < chip->ecc.total; i++)
ecc_code[i] = chip->oob_poi[eccpos[i]];
eccsteps = chip->ecc.steps;
p = buf;
for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
int stat;
stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
if (stat < 0)
mtd->ecc_stats.failed++;
else
mtd->ecc_stats.corrected += stat;
}
return 0;
}
/*
* zynq_nand_select_chip - Select the flash device
* @mtd: Pointer to the mtd_info structure
* @chip: Chip number to be selected
*
* This function is empty as the NAND controller handles chip select line
* internally based on the chip address passed in command and data phase.
*/
static void zynq_nand_select_chip(struct mtd_info *mtd, int chip)
{
/* Not support multiple chips yet */
}
/*
* zynq_nand_cmd_function - Send command to NAND device
* @mtd: Pointer to the mtd_info structure
* @command: The command to be sent to the flash device
* @column: The column address for this command, -1 if none
* @page_addr: The page address for this command, -1 if none
*/
static void zynq_nand_cmd_function(struct mtd_info *mtd, unsigned int command,
int column, int page_addr)
{
struct nand_chip *chip = mtd_to_nand(mtd);
struct nand_drv *smc = nand_get_controller_data(chip);
const struct zynq_nand_command_format *curr_cmd = NULL;
u8 addr_cycles = 0;
struct nand_config *xnand = &smc->config;
void *cmd_addr;
unsigned long cmd_data = 0;
unsigned long cmd_phase_addr = 0;
unsigned long data_phase_addr = 0;
u8 end_cmd = 0;
u8 end_cmd_valid = 0;
u32 index;
if (xnand->end_cmd_pending) {
/* Check for end command if this command request is same as the
* pending command then return
*/
if (xnand->end_cmd == command) {
xnand->end_cmd = 0;
xnand->end_cmd_pending = 0;
return;
}
}
/* Emulate NAND_CMD_READOOB for large page device */
if ((mtd->writesize > ZYNQ_NAND_ECC_SIZE) &&
(command == NAND_CMD_READOOB)) {
column += mtd->writesize;
command = NAND_CMD_READ0;
}
/* Get the command format */
for (index = 0; index < ARRAY_SIZE(zynq_nand_commands); index++)
if (command == zynq_nand_commands[index].start_cmd)
break;
if (index == ARRAY_SIZE(zynq_nand_commands)) {
printf("%s: Unsupported start cmd %02x\n", __func__, command);
return;
}
curr_cmd = &zynq_nand_commands[index];
/* Clear interrupt */
writel(ZYNQ_MEMC_CLRCR_INT_CLR1, &smc->reg->cfr);
/* Get the command phase address */
if (curr_cmd->end_cmd_valid == ZYNQ_NAND_CMD_PHASE)
end_cmd_valid = 1;
if (curr_cmd->end_cmd == (u8)NAND_CMD_NONE)
end_cmd = 0x0;
else
end_cmd = curr_cmd->end_cmd;
if (command == NAND_CMD_READ0 ||
command == NAND_CMD_SEQIN) {
addr_cycles = chip->onfi_params.addr_cycles &
ZYNQ_NAND_ROW_ADDR_CYCL_MASK;
addr_cycles += ((chip->onfi_params.addr_cycles &
ZYNQ_NAND_COL_ADDR_CYCL_MASK) >> 4);
} else {
addr_cycles = curr_cmd->addr_cycles;
}
cmd_phase_addr = (unsigned long)xnand->nand_base |
(addr_cycles << ADDR_CYCLES_SHIFT) |
(end_cmd_valid << END_CMD_VALID_SHIFT) |
(COMMAND_PHASE) |
(end_cmd << END_CMD_SHIFT) |
(curr_cmd->start_cmd << START_CMD_SHIFT);
cmd_addr = (void __iomem *)cmd_phase_addr;
/* Get the data phase address */
end_cmd_valid = 0;
data_phase_addr = (unsigned long)xnand->nand_base |
(0x0 << CLEAR_CS_SHIFT) |
(end_cmd_valid << END_CMD_VALID_SHIFT) |
(DATA_PHASE) |
(end_cmd << END_CMD_SHIFT) |
(0x0 << ECC_LAST_SHIFT);
chip->IO_ADDR_R = (void __iomem *)data_phase_addr;
chip->IO_ADDR_W = chip->IO_ADDR_R;
/* Command phase AXI Read & Write */
if (column != -1 && page_addr != -1) {
/* Adjust columns for 16 bit bus width */
if (chip->options & NAND_BUSWIDTH_16)
column >>= 1;
cmd_data = column;
if (mtd->writesize > ZYNQ_NAND_ECC_SIZE) {
cmd_data |= page_addr << 16;
/* Another address cycle for devices > 128MiB */
if (chip->chipsize > (128 << 20)) {
writel(cmd_data, cmd_addr);
cmd_data = (page_addr >> 16);
}
} else {
cmd_data |= page_addr << 8;
}
} else if (page_addr != -1) { /* Erase */
cmd_data = page_addr;
} else if (column != -1) { /* Change read/write column, read id etc */
/* Adjust columns for 16 bit bus width */
if ((chip->options & NAND_BUSWIDTH_16) &&
((command == NAND_CMD_READ0) ||
(command == NAND_CMD_SEQIN) ||
(command == NAND_CMD_RNDOUT) ||
(command == NAND_CMD_RNDIN)))
column >>= 1;
cmd_data = column;
}
writel(cmd_data, cmd_addr);
if (curr_cmd->end_cmd_valid) {
xnand->end_cmd = curr_cmd->end_cmd;
xnand->end_cmd_pending = 1;
}
ndelay(100);
if ((command == NAND_CMD_READ0) ||
(command == NAND_CMD_RESET) ||
(command == NAND_CMD_PARAM) ||
(command == NAND_CMD_GET_FEATURES))
/* wait until command is processed */
nand_wait_ready(mtd);
}
/*
* zynq_nand_read_buf - read chip data into buffer
* @mtd: MTD device structure
* @buf: buffer to store date
* @len: number of bytes to read
*/
static void zynq_nand_read_buf(struct mtd_info *mtd, u8 *buf, int len)
{
struct nand_chip *chip = mtd_to_nand(mtd);
/* Make sure that buf is 32 bit aligned */
if (((unsigned long)buf & 0x3) != 0) {
if (((unsigned long)buf & 0x1) != 0) {
if (len) {
*buf = readb(chip->IO_ADDR_R);
buf += 1;
len--;
}
}
if (((unsigned long)buf & 0x3) != 0) {
if (len >= 2) {
*(u16 *)buf = readw(chip->IO_ADDR_R);
buf += 2;
len -= 2;
}
}
}
/* copy aligned data */
while (len >= 4) {
*(u32 *)buf = readl(chip->IO_ADDR_R);
buf += 4;
len -= 4;
}
/* mop up any remaining bytes */
if (len) {
if (len >= 2) {
*(u16 *)buf = readw(chip->IO_ADDR_R);
buf += 2;
len -= 2;
}
if (len)
*buf = readb(chip->IO_ADDR_R);
}
}
/*
* zynq_nand_write_buf - write buffer to chip
* @mtd: MTD device structure
* @buf: data buffer
* @len: number of bytes to write
*/
static void zynq_nand_write_buf(struct mtd_info *mtd, const u8 *buf, int len)
{
struct nand_chip *chip = mtd_to_nand(mtd);
const u32 *nand = chip->IO_ADDR_W;
/* Make sure that buf is 32 bit aligned */
if (((unsigned long)buf & 0x3) != 0) {
if (((unsigned long)buf & 0x1) != 0) {
if (len) {
writeb(*buf, nand);
buf += 1;
len--;
}
}
if (((unsigned long)buf & 0x3) != 0) {
if (len >= 2) {
writew(*(u16 *)buf, nand);
buf += 2;
len -= 2;
}
}
}
/* copy aligned data */
while (len >= 4) {
writel(*(u32 *)buf, nand);
buf += 4;
len -= 4;
}
/* mop up any remaining bytes */
if (len) {
if (len >= 2) {
writew(*(u16 *)buf, nand);
buf += 2;
len -= 2;
}
if (len)
writeb(*buf, nand);
}
}
/*
* zynq_nand_device_ready - Check device ready/busy line
* @mtd: Pointer to the mtd_info structure
*
* returns: 0 on busy or 1 on ready state
*/
static int zynq_nand_device_ready(struct mtd_info *mtd)
{
struct nand_chip *nand_chip = mtd_to_nand(mtd);
struct nand_drv *smc = nand_get_controller_data(nand_chip);
u32 csr_val;
csr_val = readl(&smc->reg->csr);
/* Check the raw_int_status1 bit */
if (csr_val & ZYNQ_MEMC_SR_RAW_INT_ST1) {
/* Clear the interrupt condition */
writel(ZYNQ_MEMC_SR_INT_ST1, &smc->reg->cfr);
return 1;
}
return 0;
}
static int zynq_nand_check_is_16bit_bw_flash(void)
{
int is_16bit_bw = NAND_BW_UNKNOWN;
int mio_num_8bit = 0, mio_num_16bit = 0;
mio_num_8bit = zynq_slcr_get_mio_pin_status("nand8");
if (mio_num_8bit == ZYNQ_NAND_MIO_NUM_NAND_8BIT)
is_16bit_bw = NAND_BW_8BIT;
mio_num_16bit = zynq_slcr_get_mio_pin_status("nand16");
if (mio_num_8bit == ZYNQ_NAND_MIO_NUM_NAND_8BIT &&
mio_num_16bit == ZYNQ_NAND_MIO_NUM_NAND_16BIT)
is_16bit_bw = NAND_BW_16BIT;
return is_16bit_bw;
}
static int zynq_nand_probe(struct udevice *dev)
{
struct zynq_nand_info *zynq = dev_get_priv(dev);
struct nand_chip *nand_chip = &zynq->nand_chip;
struct nand_drv *smc = &zynq->nand_ctrl;
struct nand_config *xnand = &smc->config;
struct mtd_info *mtd;
struct resource res;
ofnode of_nand;
unsigned long ecc_page_size;
u8 maf_id, dev_id, i;
u8 get_feature[4];
u8 set_feature[4] = {ONDIE_ECC_FEATURE_ENABLE, 0x00, 0x00, 0x00};
unsigned long ecc_cfg;
int ondie_ecc_enabled = 0;
int is_16bit_bw;
smc->reg = (struct zynq_nand_smc_regs *)dev_read_addr(dev);
of_nand = dev_read_subnode(dev, "flash@e1000000");
if (!ofnode_valid(of_nand)) {
printf("Failed to find nand node in dt\n");
return -ENODEV;
}
if (!ofnode_is_available(of_nand)) {
debug("Nand node in dt disabled\n");
return dm_scan_fdt_dev(dev);
}
if (ofnode_read_resource(of_nand, 0, &res)) {
printf("Failed to get nand resource\n");
return -ENODEV;
}
xnand->nand_base = (void __iomem *)res.start;
mtd = nand_to_mtd(nand_chip);
nand_set_controller_data(nand_chip, &zynq->nand_ctrl);
/* Set address of NAND IO lines */
nand_chip->IO_ADDR_R = xnand->nand_base;
nand_chip->IO_ADDR_W = xnand->nand_base;
/* Set the driver entry points for MTD */
nand_chip->cmdfunc = zynq_nand_cmd_function;
nand_chip->dev_ready = zynq_nand_device_ready;
nand_chip->select_chip = zynq_nand_select_chip;
/* If we don't set this delay driver sets 20us by default */
nand_chip->chip_delay = 30;
/* Buffer read/write routines */
nand_chip->read_buf = zynq_nand_read_buf;
nand_chip->write_buf = zynq_nand_write_buf;
is_16bit_bw = zynq_nand_check_is_16bit_bw_flash();
if (is_16bit_bw == NAND_BW_UNKNOWN) {
printf("%s: Unable detect NAND based on MIO settings\n",
__func__);
return -EINVAL;
}
if (is_16bit_bw == NAND_BW_16BIT)
nand_chip->options = NAND_BUSWIDTH_16;
nand_chip->bbt_options = NAND_BBT_USE_FLASH;
/* Initialize the NAND flash interface on NAND controller */
if (zynq_nand_init_nand_flash(mtd, nand_chip->options) < 0) {
printf("%s: nand flash init failed\n", __func__);
return -EINVAL;
}
/* first scan to find the device and get the page size */
if (nand_scan_ident(mtd, 1, NULL)) {
printf("%s: nand_scan_ident failed\n", __func__);
return -EINVAL;
}
/* Send the command for reading device ID */
nand_chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
nand_chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
/* Read manufacturer and device IDs */
maf_id = nand_chip->read_byte(mtd);
dev_id = nand_chip->read_byte(mtd);
if ((maf_id == 0x2c) && ((dev_id == 0xf1) ||
(dev_id == 0xa1) || (dev_id == 0xb1) ||
(dev_id == 0xaa) || (dev_id == 0xba) ||
(dev_id == 0xda) || (dev_id == 0xca) ||
(dev_id == 0xac) || (dev_id == 0xbc) ||
(dev_id == 0xdc) || (dev_id == 0xcc) ||
(dev_id == 0xa3) || (dev_id == 0xb3) ||
(dev_id == 0xd3) || (dev_id == 0xc3))) {
nand_chip->cmdfunc(mtd, NAND_CMD_SET_FEATURES,
ONDIE_ECC_FEATURE_ADDR, -1);
for (i = 0; i < 4; i++)
writeb(set_feature[i], nand_chip->IO_ADDR_W);
/* Wait for 1us after writing data with SET_FEATURES command */
ndelay(1000);
nand_chip->cmdfunc(mtd, NAND_CMD_GET_FEATURES,
ONDIE_ECC_FEATURE_ADDR, -1);
nand_chip->read_buf(mtd, get_feature, 4);
if (get_feature[0] & ONDIE_ECC_FEATURE_ENABLE) {
debug("%s: OnDie ECC flash\n", __func__);
ondie_ecc_enabled = 1;
} else {
printf("%s: Unable to detect OnDie ECC\n", __func__);
}
}
if (ondie_ecc_enabled) {
/* Bypass the controller ECC block */
ecc_cfg = readl(&smc->reg->emcr);
ecc_cfg &= ~ZYNQ_MEMC_NAND_ECC_MODE_MASK;
writel(ecc_cfg, &smc->reg->emcr);
/* The software ECC routines won't work
* with the SMC controller
*/
nand_chip->ecc.mode = NAND_ECC_HW;
nand_chip->ecc.strength = 1;
nand_chip->ecc.read_page = zynq_nand_read_page_raw_nooob;
nand_chip->ecc.read_subpage = zynq_nand_read_subpage_raw;
nand_chip->ecc.write_page = zynq_nand_write_page_raw;
nand_chip->ecc.read_page_raw = zynq_nand_read_page_raw;
nand_chip->ecc.write_page_raw = zynq_nand_write_page_raw;
nand_chip->ecc.read_oob = zynq_nand_read_oob;
nand_chip->ecc.write_oob = zynq_nand_write_oob;
nand_chip->ecc.size = mtd->writesize;
nand_chip->ecc.bytes = 0;
/* NAND with on-die ECC supports subpage reads */
nand_chip->options |= NAND_SUBPAGE_READ;
/* On-Die ECC spare bytes offset 8 is used for ECC codes */
if (ondie_ecc_enabled) {
nand_chip->ecc.layout = &ondie_nand_oob_64;
/* Use the BBT pattern descriptors */
nand_chip->bbt_td = &bbt_main_descr;
nand_chip->bbt_md = &bbt_mirror_descr;
}
} else {
/* Hardware ECC generates 3 bytes ECC code for each 512 bytes */
nand_chip->ecc.mode = NAND_ECC_HW;
nand_chip->ecc.strength = 1;
nand_chip->ecc.size = ZYNQ_NAND_ECC_SIZE;
nand_chip->ecc.bytes = 3;
nand_chip->ecc.calculate = zynq_nand_calculate_hwecc;
nand_chip->ecc.correct = zynq_nand_correct_data;
nand_chip->ecc.hwctl = NULL;
nand_chip->ecc.read_page = zynq_nand_read_page_hwecc;
nand_chip->ecc.write_page = zynq_nand_write_page_hwecc;
nand_chip->ecc.read_page_raw = zynq_nand_read_page_raw;
nand_chip->ecc.write_page_raw = zynq_nand_write_page_raw;
nand_chip->ecc.read_oob = zynq_nand_read_oob;
nand_chip->ecc.write_oob = zynq_nand_write_oob;
switch (mtd->writesize) {
case 512:
ecc_page_size = 0x1;
/* Set the ECC memory config register */
writel((ZYNQ_NAND_ECC_CONFIG | ecc_page_size),
&smc->reg->emcr);
break;
case 1024:
ecc_page_size = 0x2;
/* Set the ECC memory config register */
writel((ZYNQ_NAND_ECC_CONFIG | ecc_page_size),
&smc->reg->emcr);
break;
case 2048:
ecc_page_size = 0x3;
/* Set the ECC memory config register */
writel((ZYNQ_NAND_ECC_CONFIG | ecc_page_size),
&smc->reg->emcr);
break;
default:
nand_chip->ecc.mode = NAND_ECC_SOFT;
nand_chip->ecc.calculate = nand_calculate_ecc;
nand_chip->ecc.correct = nand_correct_data;
nand_chip->ecc.read_page = zynq_nand_read_page_swecc;
nand_chip->ecc.write_page = zynq_nand_write_page_swecc;
nand_chip->ecc.size = 256;
break;
}
if (mtd->oobsize == 16)
nand_chip->ecc.layout = &nand_oob_16;
else if (mtd->oobsize == 64)
nand_chip->ecc.layout = &nand_oob_64;
else
printf("%s: No oob layout found\n", __func__);
}
/* Second phase scan */
if (nand_scan_tail(mtd)) {
printf("%s: nand_scan_tail failed\n", __func__);
return -EINVAL;
}
if (nand_register(0, mtd))
return -EINVAL;
return 0;
}
static const struct udevice_id zynq_nand_dt_ids[] = {
{.compatible = "arm,pl353-smc-r2p1",},
{ /* sentinel */ }
};
U_BOOT_DRIVER(zynq_nand) = {
.name = "zynq-nand",
.id = UCLASS_MTD,
.of_match = zynq_nand_dt_ids,
.probe = zynq_nand_probe,
.priv_auto_alloc_size = sizeof(struct zynq_nand_info),
};
void board_nand_init(void)
{
struct udevice *dev;
int ret;
ret = uclass_get_device_by_driver(UCLASS_MTD,
DM_GET_DRIVER(zynq_nand), &dev);
if (ret && ret != -ENODEV)
pr_err("Failed to initialize %s. (error %d)\n", dev->name, ret);
}