u-boot/drivers/mtd/nand/davinci_nand.c
Tom Rini 83d290c56f SPDX: Convert all of our single license tags to Linux Kernel style
When U-Boot started using SPDX tags we were among the early adopters and
there weren't a lot of other examples to borrow from.  So we picked the
area of the file that usually had a full license text and replaced it
with an appropriate SPDX-License-Identifier: entry.  Since then, the
Linux Kernel has adopted SPDX tags and they place it as the very first
line in a file (except where shebangs are used, then it's second line)
and with slightly different comment styles than us.

In part due to community overlap, in part due to better tag visibility
and in part for other minor reasons, switch over to that style.

This commit changes all instances where we have a single declared
license in the tag as both the before and after are identical in tag
contents.  There's also a few places where I found we did not have a tag
and have introduced one.

Signed-off-by: Tom Rini <trini@konsulko.com>
2018-05-07 09:34:12 -04:00

833 lines
22 KiB
C

// SPDX-License-Identifier: GPL-2.0+
/*
* NAND driver for TI DaVinci based boards.
*
* Copyright (C) 2007 Sergey Kubushyn <ksi@koi8.net>
*
* Based on Linux DaVinci NAND driver by TI. Original copyright follows:
*/
/*
*
* linux/drivers/mtd/nand/nand_davinci.c
*
* NAND Flash Driver
*
* Copyright (C) 2006 Texas Instruments.
*
* ----------------------------------------------------------------------------
*
* ----------------------------------------------------------------------------
*
* Overview:
* This is a device driver for the NAND flash device found on the
* DaVinci board which utilizes the Samsung k9k2g08 part.
*
Modifications:
ver. 1.0: Feb 2005, Vinod/Sudhakar
-
*/
#include <common.h>
#include <asm/io.h>
#include <nand.h>
#include <asm/ti-common/davinci_nand.h>
/* Definitions for 4-bit hardware ECC */
#define NAND_TIMEOUT 10240
#define NAND_ECC_BUSY 0xC
#define NAND_4BITECC_MASK 0x03FF03FF
#define EMIF_NANDFSR_ECC_STATE_MASK 0x00000F00
#define ECC_STATE_NO_ERR 0x0
#define ECC_STATE_TOO_MANY_ERRS 0x1
#define ECC_STATE_ERR_CORR_COMP_P 0x2
#define ECC_STATE_ERR_CORR_COMP_N 0x3
/*
* Exploit the little endianness of the ARM to do multi-byte transfers
* per device read. This can perform over twice as quickly as individual
* byte transfers when buffer alignment is conducive.
*
* NOTE: This only works if the NAND is not connected to the 2 LSBs of
* the address bus. On Davinci EVM platforms this has always been true.
*/
static void nand_davinci_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
{
struct nand_chip *chip = mtd_to_nand(mtd);
const u32 *nand = chip->IO_ADDR_R;
/* Make sure that buf is 32 bit aligned */
if (((int)buf & 0x3) != 0) {
if (((int)buf & 0x1) != 0) {
if (len) {
*buf = readb(nand);
buf += 1;
len--;
}
}
if (((int)buf & 0x3) != 0) {
if (len >= 2) {
*(u16 *)buf = readw(nand);
buf += 2;
len -= 2;
}
}
}
/* copy aligned data */
while (len >= 4) {
*(u32 *)buf = __raw_readl(nand);
buf += 4;
len -= 4;
}
/* mop up any remaining bytes */
if (len) {
if (len >= 2) {
*(u16 *)buf = readw(nand);
buf += 2;
len -= 2;
}
if (len)
*buf = readb(nand);
}
}
static void nand_davinci_write_buf(struct mtd_info *mtd, const uint8_t *buf,
int len)
{
struct nand_chip *chip = mtd_to_nand(mtd);
const u32 *nand = chip->IO_ADDR_W;
/* Make sure that buf is 32 bit aligned */
if (((int)buf & 0x3) != 0) {
if (((int)buf & 0x1) != 0) {
if (len) {
writeb(*buf, nand);
buf += 1;
len--;
}
}
if (((int)buf & 0x3) != 0) {
if (len >= 2) {
writew(*(u16 *)buf, nand);
buf += 2;
len -= 2;
}
}
}
/* copy aligned data */
while (len >= 4) {
__raw_writel(*(u32 *)buf, nand);
buf += 4;
len -= 4;
}
/* mop up any remaining bytes */
if (len) {
if (len >= 2) {
writew(*(u16 *)buf, nand);
buf += 2;
len -= 2;
}
if (len)
writeb(*buf, nand);
}
}
static void nand_davinci_hwcontrol(struct mtd_info *mtd, int cmd,
unsigned int ctrl)
{
struct nand_chip *this = mtd_to_nand(mtd);
u_int32_t IO_ADDR_W = (u_int32_t)this->IO_ADDR_W;
if (ctrl & NAND_CTRL_CHANGE) {
IO_ADDR_W &= ~(MASK_ALE|MASK_CLE);
if (ctrl & NAND_CLE)
IO_ADDR_W |= MASK_CLE;
if (ctrl & NAND_ALE)
IO_ADDR_W |= MASK_ALE;
this->IO_ADDR_W = (void __iomem *) IO_ADDR_W;
}
if (cmd != NAND_CMD_NONE)
writeb(cmd, IO_ADDR_W);
}
#ifdef CONFIG_SYS_NAND_HW_ECC
static u_int32_t nand_davinci_readecc(struct mtd_info *mtd)
{
u_int32_t ecc = 0;
ecc = __raw_readl(&(davinci_emif_regs->nandfecc[
CONFIG_SYS_NAND_CS - 2]));
return ecc;
}
static void nand_davinci_enable_hwecc(struct mtd_info *mtd, int mode)
{
u_int32_t val;
/* reading the ECC result register resets the ECC calculation */
nand_davinci_readecc(mtd);
val = __raw_readl(&davinci_emif_regs->nandfcr);
val |= DAVINCI_NANDFCR_NAND_ENABLE(CONFIG_SYS_NAND_CS);
val |= DAVINCI_NANDFCR_1BIT_ECC_START(CONFIG_SYS_NAND_CS);
__raw_writel(val, &davinci_emif_regs->nandfcr);
}
static int nand_davinci_calculate_ecc(struct mtd_info *mtd, const u_char *dat,
u_char *ecc_code)
{
u_int32_t tmp;
tmp = nand_davinci_readecc(mtd);
/* Squeeze 4 bytes ECC into 3 bytes by removing RESERVED bits
* and shifting. RESERVED bits are 31 to 28 and 15 to 12. */
tmp = (tmp & 0x00000fff) | ((tmp & 0x0fff0000) >> 4);
/* Invert so that erased block ECC is correct */
tmp = ~tmp;
*ecc_code++ = tmp;
*ecc_code++ = tmp >> 8;
*ecc_code++ = tmp >> 16;
/* NOTE: the above code matches mainline Linux:
* .PQR.stu ==> ~PQRstu
*
* MontaVista/TI kernels encode those bytes differently, use
* complicated (and allegedly sometimes-wrong) correction code,
* and usually shipped with U-Boot that uses software ECC:
* .PQR.stu ==> PsQRtu
*
* If you need MV/TI compatible NAND I/O in U-Boot, it should
* be possible to (a) change the mangling above, (b) reverse
* that mangling in nand_davinci_correct_data() below.
*/
return 0;
}
static int nand_davinci_correct_data(struct mtd_info *mtd, u_char *dat,
u_char *read_ecc, u_char *calc_ecc)
{
struct nand_chip *this = mtd_to_nand(mtd);
u_int32_t ecc_nand = read_ecc[0] | (read_ecc[1] << 8) |
(read_ecc[2] << 16);
u_int32_t ecc_calc = calc_ecc[0] | (calc_ecc[1] << 8) |
(calc_ecc[2] << 16);
u_int32_t diff = ecc_calc ^ ecc_nand;
if (diff) {
if ((((diff >> 12) ^ diff) & 0xfff) == 0xfff) {
/* Correctable error */
if ((diff >> (12 + 3)) < this->ecc.size) {
uint8_t find_bit = 1 << ((diff >> 12) & 7);
uint32_t find_byte = diff >> (12 + 3);
dat[find_byte] ^= find_bit;
pr_debug("Correcting single "
"bit ECC error at offset: %d, bit: "
"%d\n", find_byte, find_bit);
return 1;
} else {
return -EBADMSG;
}
} else if (!(diff & (diff - 1))) {
/* Single bit ECC error in the ECC itself,
nothing to fix */
pr_debug("Single bit ECC error in " "ECC.\n");
return 1;
} else {
/* Uncorrectable error */
pr_debug("ECC UNCORRECTED_ERROR 1\n");
return -EBADMSG;
}
}
return 0;
}
#endif /* CONFIG_SYS_NAND_HW_ECC */
#ifdef CONFIG_SYS_NAND_4BIT_HW_ECC_OOBFIRST
static struct nand_ecclayout nand_davinci_4bit_layout_oobfirst = {
#if defined(CONFIG_SYS_NAND_PAGE_2K)
.eccbytes = 40,
#ifdef CONFIG_NAND_6BYTES_OOB_FREE_10BYTES_ECC
.eccpos = {
6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
22, 23, 24, 25, 26, 27, 28, 29, 30, 31,
38, 39, 40, 41, 42, 43, 44, 45, 46, 47,
54, 55, 56, 57, 58, 59, 60, 61, 62, 63,
},
.oobfree = {
{2, 4}, {16, 6}, {32, 6}, {48, 6},
},
#else
.eccpos = {
24, 25, 26, 27, 28,
29, 30, 31, 32, 33, 34, 35, 36, 37, 38,
39, 40, 41, 42, 43, 44, 45, 46, 47, 48,
49, 50, 51, 52, 53, 54, 55, 56, 57, 58,
59, 60, 61, 62, 63,
},
.oobfree = {
{.offset = 2, .length = 22, },
},
#endif /* #ifdef CONFIG_NAND_6BYTES_OOB_FREE_10BYTES_ECC */
#elif defined(CONFIG_SYS_NAND_PAGE_4K)
.eccbytes = 80,
.eccpos = {
48, 49, 50, 51, 52, 53, 54, 55, 56, 57,
58, 59, 60, 61, 62, 63, 64, 65, 66, 67,
68, 69, 70, 71, 72, 73, 74, 75, 76, 77,
78, 79, 80, 81, 82, 83, 84, 85, 86, 87,
88, 89, 90, 91, 92, 93, 94, 95, 96, 97,
98, 99, 100, 101, 102, 103, 104, 105, 106, 107,
108, 109, 110, 111, 112, 113, 114, 115, 116, 117,
118, 119, 120, 121, 122, 123, 124, 125, 126, 127,
},
.oobfree = {
{.offset = 2, .length = 46, },
},
#endif
};
#if defined CONFIG_KEYSTONE_RBL_NAND
static struct nand_ecclayout nand_keystone_rbl_4bit_layout_oobfirst = {
#if defined(CONFIG_SYS_NAND_PAGE_2K)
.eccbytes = 40,
.eccpos = {
6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
22, 23, 24, 25, 26, 27, 28, 29, 30, 31,
38, 39, 40, 41, 42, 43, 44, 45, 46, 47,
54, 55, 56, 57, 58, 59, 60, 61, 62, 63,
},
.oobfree = {
{.offset = 2, .length = 4, },
{.offset = 16, .length = 6, },
{.offset = 32, .length = 6, },
{.offset = 48, .length = 6, },
},
#elif defined(CONFIG_SYS_NAND_PAGE_4K)
.eccbytes = 80,
.eccpos = {
6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
22, 23, 24, 25, 26, 27, 28, 29, 30, 31,
38, 39, 40, 41, 42, 43, 44, 45, 46, 47,
54, 55, 56, 57, 58, 59, 60, 61, 62, 63,
70, 71, 72, 73, 74, 75, 76, 77, 78, 79,
86, 87, 88, 89, 90, 91, 92, 93, 94, 95,
102, 103, 104, 105, 106, 107, 108, 109, 110, 111,
118, 119, 120, 121, 122, 123, 124, 125, 126, 127,
},
.oobfree = {
{.offset = 2, .length = 4, },
{.offset = 16, .length = 6, },
{.offset = 32, .length = 6, },
{.offset = 48, .length = 6, },
{.offset = 64, .length = 6, },
{.offset = 80, .length = 6, },
{.offset = 96, .length = 6, },
{.offset = 112, .length = 6, },
},
#endif
};
#ifdef CONFIG_SYS_NAND_PAGE_2K
#define CONFIG_KEYSTONE_NAND_MAX_RBL_PAGE CONFIG_KEYSTONE_NAND_MAX_RBL_SIZE >> 11
#elif defined(CONFIG_SYS_NAND_PAGE_4K)
#define CONFIG_KEYSTONE_NAND_MAX_RBL_PAGE CONFIG_KEYSTONE_NAND_MAX_RBL_SIZE >> 12
#endif
/**
* nand_davinci_write_page - write one page
* @mtd: MTD device structure
* @chip: NAND chip descriptor
* @buf: the data to write
* @oob_required: must write chip->oob_poi to OOB
* @page: page number to write
* @raw: use _raw version of write_page
*/
static int nand_davinci_write_page(struct mtd_info *mtd, struct nand_chip *chip,
uint32_t offset, int data_len,
const uint8_t *buf, int oob_required,
int page, int raw)
{
int status;
int ret = 0;
struct nand_ecclayout *saved_ecc_layout;
/* save current ECC layout and assign Keystone RBL ECC layout */
if (page < CONFIG_KEYSTONE_NAND_MAX_RBL_PAGE) {
saved_ecc_layout = chip->ecc.layout;
chip->ecc.layout = &nand_keystone_rbl_4bit_layout_oobfirst;
mtd->oobavail = chip->ecc.layout->oobavail;
}
chip->cmdfunc(mtd, NAND_CMD_SEQIN, 0x00, page);
if (unlikely(raw)) {
status = chip->ecc.write_page_raw(mtd, chip, buf,
oob_required, page);
} else {
status = chip->ecc.write_page(mtd, chip, buf,
oob_required, page);
}
if (status < 0) {
ret = status;
goto err;
}
chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
status = chip->waitfunc(mtd, chip);
if (status & NAND_STATUS_FAIL) {
ret = -EIO;
goto err;
}
err:
/* restore ECC layout */
if (page < CONFIG_KEYSTONE_NAND_MAX_RBL_PAGE) {
chip->ecc.layout = saved_ecc_layout;
mtd->oobavail = saved_ecc_layout->oobavail;
}
return ret;
}
/**
* nand_davinci_read_page_hwecc - hardware ECC based page read function
* @mtd: mtd info structure
* @chip: nand chip info structure
* @buf: buffer to store read data
* @oob_required: caller requires OOB data read to chip->oob_poi
* @page: page number to read
*
* Not for syndrome calculating ECC controllers which need a special oob layout.
*/
static int nand_davinci_read_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip,
uint8_t *buf, int oob_required, int page)
{
int i, eccsize = chip->ecc.size;
int eccbytes = chip->ecc.bytes;
int eccsteps = chip->ecc.steps;
uint32_t *eccpos;
uint8_t *p = buf;
uint8_t *ecc_code = chip->buffers->ecccode;
uint8_t *ecc_calc = chip->buffers->ecccalc;
struct nand_ecclayout *saved_ecc_layout = chip->ecc.layout;
/* save current ECC layout and assign Keystone RBL ECC layout */
if (page < CONFIG_KEYSTONE_NAND_MAX_RBL_PAGE) {
chip->ecc.layout = &nand_keystone_rbl_4bit_layout_oobfirst;
mtd->oobavail = chip->ecc.layout->oobavail;
}
eccpos = chip->ecc.layout->eccpos;
/* Read the OOB area first */
chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, page);
chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
chip->cmdfunc(mtd, NAND_CMD_READ0, 0, page);
for (i = 0; i < chip->ecc.total; i++)
ecc_code[i] = chip->oob_poi[eccpos[i]];
for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
int stat;
chip->ecc.hwctl(mtd, NAND_ECC_READ);
chip->read_buf(mtd, p, eccsize);
chip->ecc.calculate(mtd, p, &ecc_calc[i]);
stat = chip->ecc.correct(mtd, p, &ecc_code[i], NULL);
if (stat < 0)
mtd->ecc_stats.failed++;
else
mtd->ecc_stats.corrected += stat;
}
/* restore ECC layout */
if (page < CONFIG_KEYSTONE_NAND_MAX_RBL_PAGE) {
chip->ecc.layout = saved_ecc_layout;
mtd->oobavail = saved_ecc_layout->oobavail;
}
return 0;
}
#endif /* CONFIG_KEYSTONE_RBL_NAND */
static void nand_davinci_4bit_enable_hwecc(struct mtd_info *mtd, int mode)
{
u32 val;
switch (mode) {
case NAND_ECC_WRITE:
case NAND_ECC_READ:
/*
* Start a new ECC calculation for reading or writing 512 bytes
* of data.
*/
val = __raw_readl(&davinci_emif_regs->nandfcr);
val &= ~DAVINCI_NANDFCR_4BIT_ECC_SEL_MASK;
val |= DAVINCI_NANDFCR_NAND_ENABLE(CONFIG_SYS_NAND_CS);
val |= DAVINCI_NANDFCR_4BIT_ECC_SEL(CONFIG_SYS_NAND_CS);
val |= DAVINCI_NANDFCR_4BIT_ECC_START;
__raw_writel(val, &davinci_emif_regs->nandfcr);
break;
case NAND_ECC_READSYN:
val = __raw_readl(&davinci_emif_regs->nand4bitecc[0]);
break;
default:
break;
}
}
static u32 nand_davinci_4bit_readecc(struct mtd_info *mtd, unsigned int ecc[4])
{
int i;
for (i = 0; i < 4; i++) {
ecc[i] = __raw_readl(&davinci_emif_regs->nand4bitecc[i]) &
NAND_4BITECC_MASK;
}
return 0;
}
static int nand_davinci_4bit_calculate_ecc(struct mtd_info *mtd,
const uint8_t *dat,
uint8_t *ecc_code)
{
unsigned int hw_4ecc[4];
unsigned int i;
nand_davinci_4bit_readecc(mtd, hw_4ecc);
/*Convert 10 bit ecc value to 8 bit */
for (i = 0; i < 2; i++) {
unsigned int hw_ecc_low = hw_4ecc[i * 2];
unsigned int hw_ecc_hi = hw_4ecc[(i * 2) + 1];
/* Take first 8 bits from val1 (count1=0) or val5 (count1=1) */
*ecc_code++ = hw_ecc_low & 0xFF;
/*
* Take 2 bits as LSB bits from val1 (count1=0) or val5
* (count1=1) and 6 bits from val2 (count1=0) or
* val5 (count1=1)
*/
*ecc_code++ =
((hw_ecc_low >> 8) & 0x3) | ((hw_ecc_low >> 14) & 0xFC);
/*
* Take 4 bits from val2 (count1=0) or val5 (count1=1) and
* 4 bits from val3 (count1=0) or val6 (count1=1)
*/
*ecc_code++ =
((hw_ecc_low >> 22) & 0xF) | ((hw_ecc_hi << 4) & 0xF0);
/*
* Take 6 bits from val3(count1=0) or val6 (count1=1) and
* 2 bits from val4 (count1=0) or val7 (count1=1)
*/
*ecc_code++ =
((hw_ecc_hi >> 4) & 0x3F) | ((hw_ecc_hi >> 10) & 0xC0);
/* Take 8 bits from val4 (count1=0) or val7 (count1=1) */
*ecc_code++ = (hw_ecc_hi >> 18) & 0xFF;
}
return 0;
}
static int nand_davinci_4bit_correct_data(struct mtd_info *mtd, uint8_t *dat,
uint8_t *read_ecc, uint8_t *calc_ecc)
{
int i;
unsigned int hw_4ecc[4];
unsigned int iserror;
unsigned short *ecc16;
unsigned int numerrors, erroraddress, errorvalue;
u32 val;
/*
* Check for an ECC where all bytes are 0xFF. If this is the case, we
* will assume we are looking at an erased page and we should ignore
* the ECC.
*/
for (i = 0; i < 10; i++) {
if (read_ecc[i] != 0xFF)
break;
}
if (i == 10)
return 0;
/* Convert 8 bit in to 10 bit */
ecc16 = (unsigned short *)&read_ecc[0];
/*
* Write the parity values in the NAND Flash 4-bit ECC Load register.
* Write each parity value one at a time starting from 4bit_ecc_val8
* to 4bit_ecc_val1.
*/
/*Take 2 bits from 8th byte and 8 bits from 9th byte */
__raw_writel(((ecc16[4]) >> 6) & 0x3FF,
&davinci_emif_regs->nand4biteccload);
/* Take 4 bits from 7th byte and 6 bits from 8th byte */
__raw_writel((((ecc16[3]) >> 12) & 0xF) | ((((ecc16[4])) << 4) & 0x3F0),
&davinci_emif_regs->nand4biteccload);
/* Take 6 bits from 6th byte and 4 bits from 7th byte */
__raw_writel((ecc16[3] >> 2) & 0x3FF,
&davinci_emif_regs->nand4biteccload);
/* Take 8 bits from 5th byte and 2 bits from 6th byte */
__raw_writel(((ecc16[2]) >> 8) | ((((ecc16[3])) << 8) & 0x300),
&davinci_emif_regs->nand4biteccload);
/*Take 2 bits from 3rd byte and 8 bits from 4th byte */
__raw_writel((((ecc16[1]) >> 14) & 0x3) | ((((ecc16[2])) << 2) & 0x3FC),
&davinci_emif_regs->nand4biteccload);
/* Take 4 bits form 2nd bytes and 6 bits from 3rd bytes */
__raw_writel(((ecc16[1]) >> 4) & 0x3FF,
&davinci_emif_regs->nand4biteccload);
/* Take 6 bits from 1st byte and 4 bits from 2nd byte */
__raw_writel((((ecc16[0]) >> 10) & 0x3F) | (((ecc16[1]) << 6) & 0x3C0),
&davinci_emif_regs->nand4biteccload);
/* Take 10 bits from 0th and 1st bytes */
__raw_writel((ecc16[0]) & 0x3FF,
&davinci_emif_regs->nand4biteccload);
/*
* Perform a dummy read to the EMIF Revision Code and Status register.
* This is required to ensure time for syndrome calculation after
* writing the ECC values in previous step.
*/
val = __raw_readl(&davinci_emif_regs->nandfsr);
/*
* Read the syndrome from the NAND Flash 4-Bit ECC 1-4 registers.
* A syndrome value of 0 means no bit errors. If the syndrome is
* non-zero then go further otherwise return.
*/
nand_davinci_4bit_readecc(mtd, hw_4ecc);
if (!(hw_4ecc[0] | hw_4ecc[1] | hw_4ecc[2] | hw_4ecc[3]))
return 0;
/*
* Clear any previous address calculation by doing a dummy read of an
* error address register.
*/
val = __raw_readl(&davinci_emif_regs->nanderradd1);
/*
* Set the addr_calc_st bit(bit no 13) in the NAND Flash Control
* register to 1.
*/
__raw_writel(DAVINCI_NANDFCR_4BIT_CALC_START,
&davinci_emif_regs->nandfcr);
/*
* Wait for the corr_state field (bits 8 to 11) in the
* NAND Flash Status register to be not equal to 0x0, 0x1, 0x2, or 0x3.
* Otherwise ECC calculation has not even begun and the next loop might
* fail because of a false positive!
*/
i = NAND_TIMEOUT;
do {
val = __raw_readl(&davinci_emif_regs->nandfsr);
val &= 0xc00;
i--;
} while ((i > 0) && !val);
/*
* Wait for the corr_state field (bits 8 to 11) in the
* NAND Flash Status register to be equal to 0x0, 0x1, 0x2, or 0x3.
*/
i = NAND_TIMEOUT;
do {
val = __raw_readl(&davinci_emif_regs->nandfsr);
val &= 0xc00;
i--;
} while ((i > 0) && val);
iserror = __raw_readl(&davinci_emif_regs->nandfsr);
iserror &= EMIF_NANDFSR_ECC_STATE_MASK;
iserror = iserror >> 8;
/*
* ECC_STATE_TOO_MANY_ERRS (0x1) means errors cannot be
* corrected (five or more errors). The number of errors
* calculated (err_num field) differs from the number of errors
* searched. ECC_STATE_ERR_CORR_COMP_P (0x2) means error
* correction complete (errors on bit 8 or 9).
* ECC_STATE_ERR_CORR_COMP_N (0x3) means error correction
* complete (error exists).
*/
if (iserror == ECC_STATE_NO_ERR) {
val = __raw_readl(&davinci_emif_regs->nanderrval1);
return 0;
} else if (iserror == ECC_STATE_TOO_MANY_ERRS) {
val = __raw_readl(&davinci_emif_regs->nanderrval1);
return -EBADMSG;
}
numerrors = ((__raw_readl(&davinci_emif_regs->nandfsr) >> 16)
& 0x3) + 1;
/* Read the error address, error value and correct */
for (i = 0; i < numerrors; i++) {
if (i > 1) {
erroraddress =
((__raw_readl(&davinci_emif_regs->nanderradd2) >>
(16 * (i & 1))) & 0x3FF);
erroraddress = ((512 + 7) - erroraddress);
errorvalue =
((__raw_readl(&davinci_emif_regs->nanderrval2) >>
(16 * (i & 1))) & 0xFF);
} else {
erroraddress =
((__raw_readl(&davinci_emif_regs->nanderradd1) >>
(16 * (i & 1))) & 0x3FF);
erroraddress = ((512 + 7) - erroraddress);
errorvalue =
((__raw_readl(&davinci_emif_regs->nanderrval1) >>
(16 * (i & 1))) & 0xFF);
}
/* xor the corrupt data with error value */
if (erroraddress < 512)
dat[erroraddress] ^= errorvalue;
}
return numerrors;
}
#endif /* CONFIG_SYS_NAND_4BIT_HW_ECC_OOBFIRST */
static int nand_davinci_dev_ready(struct mtd_info *mtd)
{
return __raw_readl(&davinci_emif_regs->nandfsr) & 0x1;
}
static void nand_flash_init(void)
{
/* This is for DM6446 EVM and *very* similar. DO NOT GROW THIS!
* Instead, have your board_init() set EMIF timings, based on its
* knowledge of the clocks and what devices are hooked up ... and
* don't even do that unless no UBL handled it.
*/
#ifdef CONFIG_SOC_DM644X
u_int32_t acfg1 = 0x3ffffffc;
/*------------------------------------------------------------------*
* NAND FLASH CHIP TIMEOUT @ 459 MHz *
* *
* AEMIF.CLK freq = PLL1/6 = 459/6 = 76.5 MHz *
* AEMIF.CLK period = 1/76.5 MHz = 13.1 ns *
* *
*------------------------------------------------------------------*/
acfg1 = 0
| (0 << 31) /* selectStrobe */
| (0 << 30) /* extWait */
| (1 << 26) /* writeSetup 10 ns */
| (3 << 20) /* writeStrobe 40 ns */
| (1 << 17) /* writeHold 10 ns */
| (1 << 13) /* readSetup 10 ns */
| (5 << 7) /* readStrobe 60 ns */
| (1 << 4) /* readHold 10 ns */
| (3 << 2) /* turnAround ?? ns */
| (0 << 0) /* asyncSize 8-bit bus */
;
__raw_writel(acfg1, &davinci_emif_regs->ab1cr); /* CS2 */
/* NAND flash on CS2 */
__raw_writel(0x00000101, &davinci_emif_regs->nandfcr);
#endif
}
void davinci_nand_init(struct nand_chip *nand)
{
#if defined CONFIG_KEYSTONE_RBL_NAND
int i;
struct nand_ecclayout *layout;
layout = &nand_keystone_rbl_4bit_layout_oobfirst;
layout->oobavail = 0;
for (i = 0; layout->oobfree[i].length &&
i < ARRAY_SIZE(layout->oobfree); i++)
layout->oobavail += layout->oobfree[i].length;
nand->write_page = nand_davinci_write_page;
nand->ecc.read_page = nand_davinci_read_page_hwecc;
#endif
nand->chip_delay = 0;
#ifdef CONFIG_SYS_NAND_USE_FLASH_BBT
nand->bbt_options |= NAND_BBT_USE_FLASH;
#endif
#ifdef CONFIG_SYS_NAND_NO_SUBPAGE_WRITE
nand->options |= NAND_NO_SUBPAGE_WRITE;
#endif
#ifdef CONFIG_SYS_NAND_BUSWIDTH_16BIT
nand->options |= NAND_BUSWIDTH_16;
#endif
#ifdef CONFIG_SYS_NAND_HW_ECC
nand->ecc.mode = NAND_ECC_HW;
nand->ecc.size = 512;
nand->ecc.bytes = 3;
nand->ecc.strength = 1;
nand->ecc.calculate = nand_davinci_calculate_ecc;
nand->ecc.correct = nand_davinci_correct_data;
nand->ecc.hwctl = nand_davinci_enable_hwecc;
#else
nand->ecc.mode = NAND_ECC_SOFT;
#endif /* CONFIG_SYS_NAND_HW_ECC */
#ifdef CONFIG_SYS_NAND_4BIT_HW_ECC_OOBFIRST
nand->ecc.mode = NAND_ECC_HW_OOB_FIRST;
nand->ecc.size = 512;
nand->ecc.bytes = 10;
nand->ecc.strength = 4;
nand->ecc.calculate = nand_davinci_4bit_calculate_ecc;
nand->ecc.correct = nand_davinci_4bit_correct_data;
nand->ecc.hwctl = nand_davinci_4bit_enable_hwecc;
nand->ecc.layout = &nand_davinci_4bit_layout_oobfirst;
#endif
/* Set address of hardware control function */
nand->cmd_ctrl = nand_davinci_hwcontrol;
nand->read_buf = nand_davinci_read_buf;
nand->write_buf = nand_davinci_write_buf;
nand->dev_ready = nand_davinci_dev_ready;
nand_flash_init();
}
int board_nand_init(struct nand_chip *chip) __attribute__((weak));
int board_nand_init(struct nand_chip *chip)
{
davinci_nand_init(chip);
return 0;
}