mirror of
https://github.com/AsahiLinux/u-boot
synced 2024-12-12 22:33:18 +00:00
5573c20fad
This cleans up the now unneeded code from the old btrfs implementation. Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: Marek Behún <marek.behun@nic.cz>
742 lines
18 KiB
C
742 lines
18 KiB
C
// SPDX-License-Identifier: GPL-2.0+
|
|
/*
|
|
* BTRFS filesystem implementation for U-Boot
|
|
*
|
|
* 2017 Marek Behun, CZ.NIC, marek.behun@nic.cz
|
|
*/
|
|
|
|
#include <linux/kernel.h>
|
|
#include <log.h>
|
|
#include <malloc.h>
|
|
#include <memalign.h>
|
|
#include "btrfs.h"
|
|
#include "disk-io.h"
|
|
|
|
static const struct btrfs_csum {
|
|
u16 size;
|
|
const char name[14];
|
|
} btrfs_csums[] = {
|
|
[BTRFS_CSUM_TYPE_CRC32] = { 4, "crc32c" },
|
|
[BTRFS_CSUM_TYPE_XXHASH] = { 8, "xxhash64" },
|
|
[BTRFS_CSUM_TYPE_SHA256] = { 32, "sha256" },
|
|
[BTRFS_CSUM_TYPE_BLAKE2] = { 32, "blake2" },
|
|
};
|
|
|
|
u16 btrfs_super_csum_size(const struct btrfs_super_block *sb)
|
|
{
|
|
const u16 csum_type = btrfs_super_csum_type(sb);
|
|
|
|
return btrfs_csums[csum_type].size;
|
|
}
|
|
|
|
const char *btrfs_super_csum_name(u16 csum_type)
|
|
{
|
|
return btrfs_csums[csum_type].name;
|
|
}
|
|
|
|
size_t btrfs_super_num_csums(void)
|
|
{
|
|
return ARRAY_SIZE(btrfs_csums);
|
|
}
|
|
|
|
u16 btrfs_csum_type_size(u16 csum_type)
|
|
{
|
|
return btrfs_csums[csum_type].size;
|
|
}
|
|
|
|
struct btrfs_path *btrfs_alloc_path(void)
|
|
{
|
|
struct btrfs_path *path;
|
|
path = kzalloc(sizeof(struct btrfs_path), GFP_NOFS);
|
|
return path;
|
|
}
|
|
|
|
void btrfs_free_path(struct btrfs_path *p)
|
|
{
|
|
if (!p)
|
|
return;
|
|
btrfs_release_path(p);
|
|
kfree(p);
|
|
}
|
|
|
|
void btrfs_release_path(struct btrfs_path *p)
|
|
{
|
|
int i;
|
|
for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
|
|
if (!p->nodes[i])
|
|
continue;
|
|
free_extent_buffer(p->nodes[i]);
|
|
}
|
|
memset(p, 0, sizeof(*p));
|
|
}
|
|
|
|
int btrfs_comp_cpu_keys(const struct btrfs_key *k1, const struct btrfs_key *k2)
|
|
{
|
|
if (k1->objectid > k2->objectid)
|
|
return 1;
|
|
if (k1->objectid < k2->objectid)
|
|
return -1;
|
|
if (k1->type > k2->type)
|
|
return 1;
|
|
if (k1->type < k2->type)
|
|
return -1;
|
|
if (k1->offset > k2->offset)
|
|
return 1;
|
|
if (k1->offset < k2->offset)
|
|
return -1;
|
|
return 0;
|
|
}
|
|
|
|
static int btrfs_comp_keys(struct btrfs_disk_key *disk,
|
|
const struct btrfs_key *k2)
|
|
{
|
|
struct btrfs_key k1;
|
|
|
|
btrfs_disk_key_to_cpu(&k1, disk);
|
|
return btrfs_comp_cpu_keys(&k1, k2);
|
|
}
|
|
|
|
enum btrfs_tree_block_status
|
|
btrfs_check_node(struct btrfs_fs_info *fs_info,
|
|
struct btrfs_disk_key *parent_key, struct extent_buffer *buf)
|
|
{
|
|
int i;
|
|
struct btrfs_key cpukey;
|
|
struct btrfs_disk_key key;
|
|
u32 nritems = btrfs_header_nritems(buf);
|
|
enum btrfs_tree_block_status ret = BTRFS_TREE_BLOCK_INVALID_NRITEMS;
|
|
|
|
if (nritems == 0 || nritems > BTRFS_NODEPTRS_PER_BLOCK(fs_info))
|
|
goto fail;
|
|
|
|
ret = BTRFS_TREE_BLOCK_INVALID_PARENT_KEY;
|
|
if (parent_key && parent_key->type) {
|
|
btrfs_node_key(buf, &key, 0);
|
|
if (memcmp(parent_key, &key, sizeof(key)))
|
|
goto fail;
|
|
}
|
|
ret = BTRFS_TREE_BLOCK_BAD_KEY_ORDER;
|
|
for (i = 0; nritems > 1 && i < nritems - 2; i++) {
|
|
btrfs_node_key(buf, &key, i);
|
|
btrfs_node_key_to_cpu(buf, &cpukey, i + 1);
|
|
if (btrfs_comp_keys(&key, &cpukey) >= 0)
|
|
goto fail;
|
|
}
|
|
return BTRFS_TREE_BLOCK_CLEAN;
|
|
fail:
|
|
return ret;
|
|
}
|
|
|
|
enum btrfs_tree_block_status
|
|
btrfs_check_leaf(struct btrfs_fs_info *fs_info,
|
|
struct btrfs_disk_key *parent_key, struct extent_buffer *buf)
|
|
{
|
|
int i;
|
|
struct btrfs_key cpukey;
|
|
struct btrfs_disk_key key;
|
|
u32 nritems = btrfs_header_nritems(buf);
|
|
enum btrfs_tree_block_status ret = BTRFS_TREE_BLOCK_INVALID_NRITEMS;
|
|
|
|
if (nritems * sizeof(struct btrfs_item) > buf->len) {
|
|
fprintf(stderr, "invalid number of items %llu\n",
|
|
(unsigned long long)buf->start);
|
|
goto fail;
|
|
}
|
|
|
|
if (btrfs_header_level(buf) != 0) {
|
|
ret = BTRFS_TREE_BLOCK_INVALID_LEVEL;
|
|
fprintf(stderr, "leaf is not a leaf %llu\n",
|
|
(unsigned long long)btrfs_header_bytenr(buf));
|
|
goto fail;
|
|
}
|
|
if (btrfs_leaf_free_space(buf) < 0) {
|
|
ret = BTRFS_TREE_BLOCK_INVALID_FREE_SPACE;
|
|
fprintf(stderr, "leaf free space incorrect %llu %d\n",
|
|
(unsigned long long)btrfs_header_bytenr(buf),
|
|
btrfs_leaf_free_space(buf));
|
|
goto fail;
|
|
}
|
|
|
|
if (nritems == 0)
|
|
return BTRFS_TREE_BLOCK_CLEAN;
|
|
|
|
btrfs_item_key(buf, &key, 0);
|
|
if (parent_key && parent_key->type &&
|
|
memcmp(parent_key, &key, sizeof(key))) {
|
|
ret = BTRFS_TREE_BLOCK_INVALID_PARENT_KEY;
|
|
fprintf(stderr, "leaf parent key incorrect %llu\n",
|
|
(unsigned long long)btrfs_header_bytenr(buf));
|
|
goto fail;
|
|
}
|
|
for (i = 0; nritems > 1 && i < nritems - 1; i++) {
|
|
btrfs_item_key(buf, &key, i);
|
|
btrfs_item_key_to_cpu(buf, &cpukey, i + 1);
|
|
if (btrfs_comp_keys(&key, &cpukey) >= 0) {
|
|
ret = BTRFS_TREE_BLOCK_BAD_KEY_ORDER;
|
|
fprintf(stderr, "bad key ordering %d %d\n", i, i+1);
|
|
goto fail;
|
|
}
|
|
if (btrfs_item_offset_nr(buf, i) !=
|
|
btrfs_item_end_nr(buf, i + 1)) {
|
|
ret = BTRFS_TREE_BLOCK_INVALID_OFFSETS;
|
|
fprintf(stderr, "incorrect offsets %u %u\n",
|
|
btrfs_item_offset_nr(buf, i),
|
|
btrfs_item_end_nr(buf, i + 1));
|
|
goto fail;
|
|
}
|
|
if (i == 0 && btrfs_item_end_nr(buf, i) !=
|
|
BTRFS_LEAF_DATA_SIZE(fs_info)) {
|
|
ret = BTRFS_TREE_BLOCK_INVALID_OFFSETS;
|
|
fprintf(stderr, "bad item end %u wanted %u\n",
|
|
btrfs_item_end_nr(buf, i),
|
|
(unsigned)BTRFS_LEAF_DATA_SIZE(fs_info));
|
|
goto fail;
|
|
}
|
|
}
|
|
|
|
for (i = 0; i < nritems; i++) {
|
|
if (btrfs_item_end_nr(buf, i) >
|
|
BTRFS_LEAF_DATA_SIZE(fs_info)) {
|
|
btrfs_item_key(buf, &key, 0);
|
|
ret = BTRFS_TREE_BLOCK_INVALID_OFFSETS;
|
|
fprintf(stderr, "slot end outside of leaf %llu > %llu\n",
|
|
(unsigned long long)btrfs_item_end_nr(buf, i),
|
|
(unsigned long long)BTRFS_LEAF_DATA_SIZE(
|
|
fs_info));
|
|
goto fail;
|
|
}
|
|
}
|
|
|
|
return BTRFS_TREE_BLOCK_CLEAN;
|
|
fail:
|
|
return ret;
|
|
}
|
|
|
|
static int noinline check_block(struct btrfs_fs_info *fs_info,
|
|
struct btrfs_path *path, int level)
|
|
{
|
|
struct btrfs_disk_key key;
|
|
struct btrfs_disk_key *key_ptr = NULL;
|
|
struct extent_buffer *parent;
|
|
enum btrfs_tree_block_status ret;
|
|
|
|
if (path->nodes[level + 1]) {
|
|
parent = path->nodes[level + 1];
|
|
btrfs_node_key(parent, &key, path->slots[level + 1]);
|
|
key_ptr = &key;
|
|
}
|
|
if (level == 0)
|
|
ret = btrfs_check_leaf(fs_info, key_ptr, path->nodes[0]);
|
|
else
|
|
ret = btrfs_check_node(fs_info, key_ptr, path->nodes[level]);
|
|
if (ret == BTRFS_TREE_BLOCK_CLEAN)
|
|
return 0;
|
|
return -EIO;
|
|
}
|
|
|
|
/*
|
|
* search for key in the extent_buffer. The items start at offset p,
|
|
* and they are item_size apart. There are 'max' items in p.
|
|
*
|
|
* the slot in the array is returned via slot, and it points to
|
|
* the place where you would insert key if it is not found in
|
|
* the array.
|
|
*
|
|
* slot may point to max if the key is bigger than all of the keys
|
|
*/
|
|
static int generic_bin_search(struct extent_buffer *eb, unsigned long p,
|
|
int item_size, const struct btrfs_key *key,
|
|
int max, int *slot)
|
|
{
|
|
int low = 0;
|
|
int high = max;
|
|
int mid;
|
|
int ret;
|
|
unsigned long offset;
|
|
struct btrfs_disk_key *tmp;
|
|
|
|
while(low < high) {
|
|
mid = (low + high) / 2;
|
|
offset = p + mid * item_size;
|
|
|
|
tmp = (struct btrfs_disk_key *)(eb->data + offset);
|
|
ret = btrfs_comp_keys(tmp, key);
|
|
|
|
if (ret < 0)
|
|
low = mid + 1;
|
|
else if (ret > 0)
|
|
high = mid;
|
|
else {
|
|
*slot = mid;
|
|
return 0;
|
|
}
|
|
}
|
|
*slot = low;
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* simple bin_search frontend that does the right thing for
|
|
* leaves vs nodes
|
|
*/
|
|
int btrfs_bin_search(struct extent_buffer *eb, const struct btrfs_key *key,
|
|
int *slot)
|
|
{
|
|
if (btrfs_header_level(eb) == 0)
|
|
return generic_bin_search(eb,
|
|
offsetof(struct btrfs_leaf, items),
|
|
sizeof(struct btrfs_item),
|
|
key, btrfs_header_nritems(eb),
|
|
slot);
|
|
else
|
|
return generic_bin_search(eb,
|
|
offsetof(struct btrfs_node, ptrs),
|
|
sizeof(struct btrfs_key_ptr),
|
|
key, btrfs_header_nritems(eb),
|
|
slot);
|
|
}
|
|
|
|
struct extent_buffer *read_node_slot(struct btrfs_fs_info *fs_info,
|
|
struct extent_buffer *parent, int slot)
|
|
{
|
|
struct extent_buffer *ret;
|
|
int level = btrfs_header_level(parent);
|
|
|
|
if (slot < 0)
|
|
return NULL;
|
|
if (slot >= btrfs_header_nritems(parent))
|
|
return NULL;
|
|
|
|
if (level == 0)
|
|
return NULL;
|
|
|
|
ret = read_tree_block(fs_info, btrfs_node_blockptr(parent, slot),
|
|
btrfs_node_ptr_generation(parent, slot));
|
|
if (!extent_buffer_uptodate(ret))
|
|
return ERR_PTR(-EIO);
|
|
|
|
if (btrfs_header_level(ret) != level - 1) {
|
|
error("child eb corrupted: parent bytenr=%llu item=%d parent level=%d child level=%d",
|
|
btrfs_header_bytenr(parent), slot,
|
|
btrfs_header_level(parent), btrfs_header_level(ret));
|
|
free_extent_buffer(ret);
|
|
return ERR_PTR(-EIO);
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
int btrfs_find_item(struct btrfs_root *fs_root, struct btrfs_path *found_path,
|
|
u64 iobjectid, u64 ioff, u8 key_type,
|
|
struct btrfs_key *found_key)
|
|
{
|
|
int ret;
|
|
struct btrfs_key key;
|
|
struct extent_buffer *eb;
|
|
struct btrfs_path *path;
|
|
|
|
key.type = key_type;
|
|
key.objectid = iobjectid;
|
|
key.offset = ioff;
|
|
|
|
if (found_path == NULL) {
|
|
path = btrfs_alloc_path();
|
|
if (!path)
|
|
return -ENOMEM;
|
|
} else
|
|
path = found_path;
|
|
|
|
ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0);
|
|
if ((ret < 0) || (found_key == NULL))
|
|
goto out;
|
|
|
|
eb = path->nodes[0];
|
|
if (ret && path->slots[0] >= btrfs_header_nritems(eb)) {
|
|
ret = btrfs_next_leaf(fs_root, path);
|
|
if (ret)
|
|
goto out;
|
|
eb = path->nodes[0];
|
|
}
|
|
|
|
btrfs_item_key_to_cpu(eb, found_key, path->slots[0]);
|
|
if (found_key->type != key.type ||
|
|
found_key->objectid != key.objectid) {
|
|
ret = 1;
|
|
goto out;
|
|
}
|
|
|
|
out:
|
|
if (path != found_path)
|
|
btrfs_free_path(path);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* look for key in the tree. path is filled in with nodes along the way
|
|
* if key is found, we return zero and you can find the item in the leaf
|
|
* level of the path (level 0)
|
|
*
|
|
* If the key isn't found, the path points to the slot where it should
|
|
* be inserted, and 1 is returned. If there are other errors during the
|
|
* search a negative error number is returned.
|
|
*
|
|
* if ins_len > 0, nodes and leaves will be split as we walk down the
|
|
* tree. if ins_len < 0, nodes will be merged as we walk down the tree (if
|
|
* possible)
|
|
*
|
|
* NOTE: This version has no COW ability, thus we expect trans == NULL,
|
|
* ins_len == 0 and cow == 0.
|
|
*/
|
|
int btrfs_search_slot(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *root, const struct btrfs_key *key,
|
|
struct btrfs_path *p, int ins_len, int cow)
|
|
{
|
|
struct extent_buffer *b;
|
|
int slot;
|
|
int ret;
|
|
int level;
|
|
struct btrfs_fs_info *fs_info = root->fs_info;
|
|
u8 lowest_level = 0;
|
|
|
|
assert(trans == NULL && ins_len == 0 && cow == 0);
|
|
lowest_level = p->lowest_level;
|
|
WARN_ON(lowest_level && ins_len > 0);
|
|
WARN_ON(p->nodes[0] != NULL);
|
|
|
|
b = root->node;
|
|
extent_buffer_get(b);
|
|
while (b) {
|
|
level = btrfs_header_level(b);
|
|
/*
|
|
if (cow) {
|
|
int wret;
|
|
wret = btrfs_cow_block(trans, root, b,
|
|
p->nodes[level + 1],
|
|
p->slots[level + 1],
|
|
&b);
|
|
if (wret) {
|
|
free_extent_buffer(b);
|
|
return wret;
|
|
}
|
|
}
|
|
*/
|
|
BUG_ON(!cow && ins_len);
|
|
if (level != btrfs_header_level(b))
|
|
WARN_ON(1);
|
|
level = btrfs_header_level(b);
|
|
p->nodes[level] = b;
|
|
ret = check_block(fs_info, p, level);
|
|
if (ret)
|
|
return -1;
|
|
ret = btrfs_bin_search(b, key, &slot);
|
|
if (level != 0) {
|
|
if (ret && slot > 0)
|
|
slot -= 1;
|
|
p->slots[level] = slot;
|
|
/*
|
|
if ((p->search_for_split || ins_len > 0) &&
|
|
btrfs_header_nritems(b) >=
|
|
BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3) {
|
|
int sret = split_node(trans, root, p, level);
|
|
BUG_ON(sret > 0);
|
|
if (sret)
|
|
return sret;
|
|
b = p->nodes[level];
|
|
slot = p->slots[level];
|
|
} else if (ins_len < 0) {
|
|
int sret = balance_level(trans, root, p,
|
|
level);
|
|
if (sret)
|
|
return sret;
|
|
b = p->nodes[level];
|
|
if (!b) {
|
|
btrfs_release_path(p);
|
|
goto again;
|
|
}
|
|
slot = p->slots[level];
|
|
BUG_ON(btrfs_header_nritems(b) == 1);
|
|
}
|
|
*/
|
|
/* this is only true while dropping a snapshot */
|
|
if (level == lowest_level)
|
|
break;
|
|
|
|
b = read_node_slot(fs_info, b, slot);
|
|
if (!extent_buffer_uptodate(b))
|
|
return -EIO;
|
|
} else {
|
|
p->slots[level] = slot;
|
|
/*
|
|
if (ins_len > 0 &&
|
|
ins_len > btrfs_leaf_free_space(b)) {
|
|
int sret = split_leaf(trans, root, key,
|
|
p, ins_len, ret == 0);
|
|
BUG_ON(sret > 0);
|
|
if (sret)
|
|
return sret;
|
|
}
|
|
*/
|
|
return ret;
|
|
}
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* Helper to use instead of search slot if no exact match is needed but
|
|
* instead the next or previous item should be returned.
|
|
* When find_higher is true, the next higher item is returned, the next lower
|
|
* otherwise.
|
|
* When return_any and find_higher are both true, and no higher item is found,
|
|
* return the next lower instead.
|
|
* When return_any is true and find_higher is false, and no lower item is found,
|
|
* return the next higher instead.
|
|
* It returns 0 if any item is found, 1 if none is found (tree empty), and
|
|
* < 0 on error
|
|
*/
|
|
int btrfs_search_slot_for_read(struct btrfs_root *root,
|
|
const struct btrfs_key *key,
|
|
struct btrfs_path *p, int find_higher,
|
|
int return_any)
|
|
{
|
|
int ret;
|
|
struct extent_buffer *leaf;
|
|
|
|
again:
|
|
ret = btrfs_search_slot(NULL, root, key, p, 0, 0);
|
|
if (ret <= 0)
|
|
return ret;
|
|
/*
|
|
* A return value of 1 means the path is at the position where the item
|
|
* should be inserted. Normally this is the next bigger item, but in
|
|
* case the previous item is the last in a leaf, path points to the
|
|
* first free slot in the previous leaf, i.e. at an invalid item.
|
|
*/
|
|
leaf = p->nodes[0];
|
|
|
|
if (find_higher) {
|
|
if (p->slots[0] >= btrfs_header_nritems(leaf)) {
|
|
ret = btrfs_next_leaf(root, p);
|
|
if (ret <= 0)
|
|
return ret;
|
|
if (!return_any)
|
|
return 1;
|
|
/*
|
|
* No higher item found, return the next lower instead
|
|
*/
|
|
return_any = 0;
|
|
find_higher = 0;
|
|
btrfs_release_path(p);
|
|
goto again;
|
|
}
|
|
} else {
|
|
if (p->slots[0] == 0) {
|
|
ret = btrfs_prev_leaf(root, p);
|
|
if (ret < 0)
|
|
return ret;
|
|
if (!ret) {
|
|
leaf = p->nodes[0];
|
|
if (p->slots[0] == btrfs_header_nritems(leaf))
|
|
p->slots[0]--;
|
|
return 0;
|
|
}
|
|
if (!return_any)
|
|
return 1;
|
|
/*
|
|
* No lower item found, return the next higher instead
|
|
*/
|
|
return_any = 0;
|
|
find_higher = 1;
|
|
btrfs_release_path(p);
|
|
goto again;
|
|
} else {
|
|
--p->slots[0];
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* how many bytes are required to store the items in a leaf. start
|
|
* and nr indicate which items in the leaf to check. This totals up the
|
|
* space used both by the item structs and the item data
|
|
*/
|
|
static int leaf_space_used(struct extent_buffer *l, int start, int nr)
|
|
{
|
|
int data_len;
|
|
int nritems = btrfs_header_nritems(l);
|
|
int end = min(nritems, start + nr) - 1;
|
|
|
|
if (!nr)
|
|
return 0;
|
|
data_len = btrfs_item_end_nr(l, start);
|
|
data_len = data_len - btrfs_item_offset_nr(l, end);
|
|
data_len += sizeof(struct btrfs_item) * nr;
|
|
WARN_ON(data_len < 0);
|
|
return data_len;
|
|
}
|
|
|
|
/*
|
|
* The space between the end of the leaf items and
|
|
* the start of the leaf data. IOW, how much room
|
|
* the leaf has left for both items and data
|
|
*/
|
|
int btrfs_leaf_free_space(struct extent_buffer *leaf)
|
|
{
|
|
int nritems = btrfs_header_nritems(leaf);
|
|
u32 leaf_data_size;
|
|
int ret;
|
|
|
|
BUG_ON(leaf->fs_info && leaf->fs_info->nodesize != leaf->len);
|
|
leaf_data_size = __BTRFS_LEAF_DATA_SIZE(leaf->len);
|
|
ret = leaf_data_size - leaf_space_used(leaf, 0 ,nritems);
|
|
if (ret < 0) {
|
|
printk("leaf free space ret %d, leaf data size %u, used %d nritems %d\n",
|
|
ret, leaf_data_size, leaf_space_used(leaf, 0, nritems),
|
|
nritems);
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* walk up the tree as far as required to find the previous leaf.
|
|
* returns 0 if it found something or 1 if there are no lesser leaves.
|
|
* returns < 0 on io errors.
|
|
*/
|
|
int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path)
|
|
{
|
|
int slot;
|
|
int level = 1;
|
|
struct extent_buffer *c;
|
|
struct extent_buffer *next = NULL;
|
|
struct btrfs_fs_info *fs_info = root->fs_info;
|
|
|
|
while(level < BTRFS_MAX_LEVEL) {
|
|
if (!path->nodes[level])
|
|
return 1;
|
|
|
|
slot = path->slots[level];
|
|
c = path->nodes[level];
|
|
if (slot == 0) {
|
|
level++;
|
|
if (level == BTRFS_MAX_LEVEL)
|
|
return 1;
|
|
continue;
|
|
}
|
|
slot--;
|
|
|
|
next = read_node_slot(fs_info, c, slot);
|
|
if (!extent_buffer_uptodate(next)) {
|
|
if (IS_ERR(next))
|
|
return PTR_ERR(next);
|
|
return -EIO;
|
|
}
|
|
break;
|
|
}
|
|
path->slots[level] = slot;
|
|
while(1) {
|
|
level--;
|
|
c = path->nodes[level];
|
|
free_extent_buffer(c);
|
|
slot = btrfs_header_nritems(next);
|
|
if (slot != 0)
|
|
slot--;
|
|
path->nodes[level] = next;
|
|
path->slots[level] = slot;
|
|
if (!level)
|
|
break;
|
|
next = read_node_slot(fs_info, next, slot);
|
|
if (!extent_buffer_uptodate(next)) {
|
|
if (IS_ERR(next))
|
|
return PTR_ERR(next);
|
|
return -EIO;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Walk up the tree as far as necessary to find the next sibling tree block.
|
|
* More generic version of btrfs_next_leaf(), as it could find sibling nodes
|
|
* if @path->lowest_level is not 0.
|
|
*
|
|
* returns 0 if it found something or 1 if there are no greater leaves.
|
|
* returns < 0 on io errors.
|
|
*/
|
|
int btrfs_next_sibling_tree_block(struct btrfs_fs_info *fs_info,
|
|
struct btrfs_path *path)
|
|
{
|
|
int slot;
|
|
int level = path->lowest_level + 1;
|
|
struct extent_buffer *c;
|
|
struct extent_buffer *next = NULL;
|
|
|
|
BUG_ON(path->lowest_level + 1 >= BTRFS_MAX_LEVEL);
|
|
do {
|
|
if (!path->nodes[level])
|
|
return 1;
|
|
|
|
slot = path->slots[level] + 1;
|
|
c = path->nodes[level];
|
|
if (slot >= btrfs_header_nritems(c)) {
|
|
level++;
|
|
if (level == BTRFS_MAX_LEVEL)
|
|
return 1;
|
|
continue;
|
|
}
|
|
|
|
next = read_node_slot(fs_info, c, slot);
|
|
if (!extent_buffer_uptodate(next))
|
|
return -EIO;
|
|
break;
|
|
} while (level < BTRFS_MAX_LEVEL);
|
|
path->slots[level] = slot;
|
|
while(1) {
|
|
level--;
|
|
c = path->nodes[level];
|
|
free_extent_buffer(c);
|
|
path->nodes[level] = next;
|
|
path->slots[level] = 0;
|
|
if (level == path->lowest_level)
|
|
break;
|
|
next = read_node_slot(fs_info, next, 0);
|
|
if (!extent_buffer_uptodate(next))
|
|
return -EIO;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
int btrfs_previous_item(struct btrfs_root *root,
|
|
struct btrfs_path *path, u64 min_objectid,
|
|
int type)
|
|
{
|
|
struct btrfs_key found_key;
|
|
struct extent_buffer *leaf;
|
|
u32 nritems;
|
|
int ret;
|
|
|
|
while(1) {
|
|
if (path->slots[0] == 0) {
|
|
ret = btrfs_prev_leaf(root, path);
|
|
if (ret != 0)
|
|
return ret;
|
|
} else {
|
|
path->slots[0]--;
|
|
}
|
|
leaf = path->nodes[0];
|
|
nritems = btrfs_header_nritems(leaf);
|
|
if (nritems == 0)
|
|
return 1;
|
|
if (path->slots[0] == nritems)
|
|
path->slots[0]--;
|
|
|
|
btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
|
|
if (found_key.objectid < min_objectid)
|
|
break;
|
|
if (found_key.type == type)
|
|
return 0;
|
|
if (found_key.objectid == min_objectid &&
|
|
found_key.type < type)
|
|
break;
|
|
}
|
|
return 1;
|
|
}
|